Properties

Label 294.6.d.a.293.9
Level $294$
Weight $6$
Character 294.293
Analytic conductor $47.153$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(293,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.293");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 293.9
Character \(\chi\) \(=\) 294.293
Dual form 294.6.d.a.293.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} +(9.81768 - 12.1084i) q^{3} -16.0000 q^{4} -51.7855 q^{5} +(-48.4336 - 39.2707i) q^{6} +64.0000i q^{8} +(-50.2262 - 237.753i) q^{9} +207.142i q^{10} +453.242i q^{11} +(-157.083 + 193.734i) q^{12} -645.676i q^{13} +(-508.414 + 627.039i) q^{15} +256.000 q^{16} -834.812 q^{17} +(-951.011 + 200.905i) q^{18} +2066.63i q^{19} +828.569 q^{20} +1812.97 q^{22} +754.622i q^{23} +(774.937 + 628.332i) q^{24} -443.258 q^{25} -2582.70 q^{26} +(-3371.91 - 1726.02i) q^{27} +1454.53i q^{29} +(2508.16 + 2033.66i) q^{30} +3988.18i q^{31} -1024.00i q^{32} +(5488.03 + 4449.79i) q^{33} +3339.25i q^{34} +(803.619 + 3804.04i) q^{36} +15483.8 q^{37} +8266.53 q^{38} +(-7818.10 - 6339.04i) q^{39} -3314.27i q^{40} +19408.4 q^{41} -6770.34 q^{43} -7251.87i q^{44} +(2600.99 + 12312.2i) q^{45} +3018.49 q^{46} +5360.97 q^{47} +(2513.33 - 3099.75i) q^{48} +1773.03i q^{50} +(-8195.92 + 10108.2i) q^{51} +10330.8i q^{52} +34824.1i q^{53} +(-6904.09 + 13487.6i) q^{54} -23471.4i q^{55} +(25023.6 + 20289.5i) q^{57} +5818.10 q^{58} +4908.90 q^{59} +(8134.62 - 10032.6i) q^{60} -33592.3i q^{61} +15952.7 q^{62} -4096.00 q^{64} +33436.7i q^{65} +(17799.1 - 21952.1i) q^{66} -27503.9 q^{67} +13357.0 q^{68} +(9137.26 + 7408.64i) q^{69} +44855.5i q^{71} +(15216.2 - 3214.47i) q^{72} -81855.7i q^{73} -61935.0i q^{74} +(-4351.77 + 5367.14i) q^{75} -33066.1i q^{76} +(-25356.2 + 31272.4i) q^{78} -33844.3 q^{79} -13257.1 q^{80} +(-54003.7 + 23882.8i) q^{81} -77633.5i q^{82} -9450.81 q^{83} +43231.2 q^{85} +27081.3i q^{86} +(17612.0 + 14280.1i) q^{87} -29007.5 q^{88} +88428.0 q^{89} +(49248.6 - 10404.0i) q^{90} -12074.0i q^{92} +(48290.4 + 39154.7i) q^{93} -21443.9i q^{94} -107022. i q^{95} +(-12399.0 - 10053.3i) q^{96} +10166.3i q^{97} +(107759. - 22764.6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 448 q^{4} + 60 q^{9} - 516 q^{15} + 7168 q^{16} - 3264 q^{18} + 3312 q^{22} + 26416 q^{25} - 4896 q^{30} - 960 q^{36} - 10976 q^{37} - 43776 q^{39} - 40352 q^{43} + 23136 q^{46} + 69144 q^{51} + 57168 q^{57}+ \cdots + 153216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 9.81768 12.1084i 0.629805 0.776754i
\(4\) −16.0000 −0.500000
\(5\) −51.7855 −0.926368 −0.463184 0.886262i \(-0.653293\pi\)
−0.463184 + 0.886262i \(0.653293\pi\)
\(6\) −48.4336 39.2707i −0.549248 0.445339i
\(7\) 0 0
\(8\) 64.0000i 0.353553i
\(9\) −50.2262 237.753i −0.206692 0.978406i
\(10\) 207.142i 0.655041i
\(11\) 453.242i 1.12940i 0.825296 + 0.564701i \(0.191008\pi\)
−0.825296 + 0.564701i \(0.808992\pi\)
\(12\) −157.083 + 193.734i −0.314902 + 0.388377i
\(13\) 645.676i 1.05964i −0.848112 0.529818i \(-0.822260\pi\)
0.848112 0.529818i \(-0.177740\pi\)
\(14\) 0 0
\(15\) −508.414 + 627.039i −0.583431 + 0.719560i
\(16\) 256.000 0.250000
\(17\) −834.812 −0.700594 −0.350297 0.936639i \(-0.613919\pi\)
−0.350297 + 0.936639i \(0.613919\pi\)
\(18\) −951.011 + 200.905i −0.691838 + 0.146153i
\(19\) 2066.63i 1.31335i 0.754175 + 0.656673i \(0.228037\pi\)
−0.754175 + 0.656673i \(0.771963\pi\)
\(20\) 828.569 0.463184
\(21\) 0 0
\(22\) 1812.97 0.798608
\(23\) 754.622i 0.297447i 0.988879 + 0.148724i \(0.0475165\pi\)
−0.988879 + 0.148724i \(0.952484\pi\)
\(24\) 774.937 + 628.332i 0.274624 + 0.222670i
\(25\) −443.258 −0.141843
\(26\) −2582.70 −0.749275
\(27\) −3371.91 1726.02i −0.890156 0.455656i
\(28\) 0 0
\(29\) 1454.53i 0.321164i 0.987023 + 0.160582i \(0.0513370\pi\)
−0.987023 + 0.160582i \(0.948663\pi\)
\(30\) 2508.16 + 2033.66i 0.508805 + 0.412548i
\(31\) 3988.18i 0.745367i 0.927959 + 0.372684i \(0.121562\pi\)
−0.927959 + 0.372684i \(0.878438\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 5488.03 + 4449.79i 0.877267 + 0.711302i
\(34\) 3339.25i 0.495394i
\(35\) 0 0
\(36\) 803.619 + 3804.04i 0.103346 + 0.489203i
\(37\) 15483.8 1.85940 0.929698 0.368323i \(-0.120068\pi\)
0.929698 + 0.368323i \(0.120068\pi\)
\(38\) 8266.53 0.928676
\(39\) −7818.10 6339.04i −0.823075 0.667363i
\(40\) 3314.27i 0.327521i
\(41\) 19408.4 1.80314 0.901570 0.432633i \(-0.142415\pi\)
0.901570 + 0.432633i \(0.142415\pi\)
\(42\) 0 0
\(43\) −6770.34 −0.558392 −0.279196 0.960234i \(-0.590068\pi\)
−0.279196 + 0.960234i \(0.590068\pi\)
\(44\) 7251.87i 0.564701i
\(45\) 2600.99 + 12312.2i 0.191473 + 0.906364i
\(46\) 3018.49 0.210327
\(47\) 5360.97 0.353996 0.176998 0.984211i \(-0.443361\pi\)
0.176998 + 0.984211i \(0.443361\pi\)
\(48\) 2513.33 3099.75i 0.157451 0.194188i
\(49\) 0 0
\(50\) 1773.03i 0.100298i
\(51\) −8195.92 + 10108.2i −0.441237 + 0.544189i
\(52\) 10330.8i 0.529818i
\(53\) 34824.1i 1.70290i 0.524433 + 0.851452i \(0.324277\pi\)
−0.524433 + 0.851452i \(0.675723\pi\)
\(54\) −6904.09 + 13487.6i −0.322197 + 0.629435i
\(55\) 23471.4i 1.04624i
\(56\) 0 0
\(57\) 25023.6 + 20289.5i 1.02015 + 0.827151i
\(58\) 5818.10 0.227097
\(59\) 4908.90 0.183592 0.0917961 0.995778i \(-0.470739\pi\)
0.0917961 + 0.995778i \(0.470739\pi\)
\(60\) 8134.62 10032.6i 0.291715 0.359780i
\(61\) 33592.3i 1.15589i −0.816077 0.577944i \(-0.803855\pi\)
0.816077 0.577944i \(-0.196145\pi\)
\(62\) 15952.7 0.527054
\(63\) 0 0
\(64\) −4096.00 −0.125000
\(65\) 33436.7i 0.981612i
\(66\) 17799.1 21952.1i 0.502967 0.620321i
\(67\) −27503.9 −0.748527 −0.374264 0.927322i \(-0.622104\pi\)
−0.374264 + 0.927322i \(0.622104\pi\)
\(68\) 13357.0 0.350297
\(69\) 9137.26 + 7408.64i 0.231043 + 0.187334i
\(70\) 0 0
\(71\) 44855.5i 1.05601i 0.849240 + 0.528007i \(0.177061\pi\)
−0.849240 + 0.528007i \(0.822939\pi\)
\(72\) 15216.2 3214.47i 0.345919 0.0730767i
\(73\) 81855.7i 1.79780i −0.438153 0.898900i \(-0.644367\pi\)
0.438153 0.898900i \(-0.355633\pi\)
\(74\) 61935.0i 1.31479i
\(75\) −4351.77 + 5367.14i −0.0893331 + 0.110177i
\(76\) 33066.1i 0.656673i
\(77\) 0 0
\(78\) −25356.2 + 31272.4i −0.471897 + 0.582002i
\(79\) −33844.3 −0.610124 −0.305062 0.952333i \(-0.598677\pi\)
−0.305062 + 0.952333i \(0.598677\pi\)
\(80\) −13257.1 −0.231592
\(81\) −54003.7 + 23882.8i −0.914557 + 0.404457i
\(82\) 77633.5i 1.27501i
\(83\) −9450.81 −0.150582 −0.0752911 0.997162i \(-0.523989\pi\)
−0.0752911 + 0.997162i \(0.523989\pi\)
\(84\) 0 0
\(85\) 43231.2 0.649007
\(86\) 27081.3i 0.394843i
\(87\) 17612.0 + 14280.1i 0.249465 + 0.202270i
\(88\) −29007.5 −0.399304
\(89\) 88428.0 1.18335 0.591677 0.806175i \(-0.298466\pi\)
0.591677 + 0.806175i \(0.298466\pi\)
\(90\) 49248.6 10404.0i 0.640896 0.135392i
\(91\) 0 0
\(92\) 12074.0i 0.148724i
\(93\) 48290.4 + 39154.7i 0.578966 + 0.469436i
\(94\) 21443.9i 0.250313i
\(95\) 107022.i 1.21664i
\(96\) −12399.0 10053.3i −0.137312 0.111335i
\(97\) 10166.3i 0.109707i 0.998494 + 0.0548534i \(0.0174691\pi\)
−0.998494 + 0.0548534i \(0.982531\pi\)
\(98\) 0 0
\(99\) 107759. 22764.6i 1.10501 0.233438i
\(100\) 7092.13 0.0709213
\(101\) −33793.4 −0.329631 −0.164816 0.986324i \(-0.552703\pi\)
−0.164816 + 0.986324i \(0.552703\pi\)
\(102\) 40432.9 + 32783.7i 0.384799 + 0.312002i
\(103\) 124679.i 1.15798i 0.815334 + 0.578991i \(0.196553\pi\)
−0.815334 + 0.578991i \(0.803447\pi\)
\(104\) 41323.3 0.374638
\(105\) 0 0
\(106\) 139296. 1.20413
\(107\) 118610.i 1.00153i 0.865584 + 0.500764i \(0.166948\pi\)
−0.865584 + 0.500764i \(0.833052\pi\)
\(108\) 53950.5 + 27616.4i 0.445078 + 0.227828i
\(109\) 38236.1 0.308253 0.154127 0.988051i \(-0.450744\pi\)
0.154127 + 0.988051i \(0.450744\pi\)
\(110\) −93885.5 −0.739804
\(111\) 152015. 187483.i 1.17106 1.44429i
\(112\) 0 0
\(113\) 144560.i 1.06500i 0.846429 + 0.532502i \(0.178748\pi\)
−0.846429 + 0.532502i \(0.821252\pi\)
\(114\) 81158.2 100094.i 0.584884 0.721352i
\(115\) 39078.5i 0.275546i
\(116\) 23272.4i 0.160582i
\(117\) −153511. + 32429.8i −1.03675 + 0.219018i
\(118\) 19635.6i 0.129819i
\(119\) 0 0
\(120\) −40130.5 32538.5i −0.254403 0.206274i
\(121\) −44377.3 −0.275548
\(122\) −134369. −0.817336
\(123\) 190545. 235004.i 1.13563 1.40060i
\(124\) 63810.8i 0.372684i
\(125\) 184784. 1.05777
\(126\) 0 0
\(127\) 107284. 0.590237 0.295118 0.955461i \(-0.404641\pi\)
0.295118 + 0.955461i \(0.404641\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −66469.0 + 81977.9i −0.351678 + 0.433733i
\(130\) 133747. 0.694105
\(131\) 147808. 0.752522 0.376261 0.926514i \(-0.377210\pi\)
0.376261 + 0.926514i \(0.377210\pi\)
\(132\) −87808.5 71196.6i −0.438633 0.355651i
\(133\) 0 0
\(134\) 110016.i 0.529289i
\(135\) 174616. + 89383.0i 0.824612 + 0.422105i
\(136\) 53427.9i 0.247697i
\(137\) 287912.i 1.31057i 0.755383 + 0.655283i \(0.227451\pi\)
−0.755383 + 0.655283i \(0.772549\pi\)
\(138\) 29634.6 36549.0i 0.132465 0.163372i
\(139\) 34769.7i 0.152638i −0.997083 0.0763192i \(-0.975683\pi\)
0.997083 0.0763192i \(-0.0243168\pi\)
\(140\) 0 0
\(141\) 52632.3 64912.7i 0.222948 0.274968i
\(142\) 179422. 0.746715
\(143\) 292648. 1.19675
\(144\) −12857.9 60864.7i −0.0516730 0.244602i
\(145\) 75323.4i 0.297516i
\(146\) −327423. −1.27124
\(147\) 0 0
\(148\) −247740. −0.929698
\(149\) 167696.i 0.618810i 0.950930 + 0.309405i \(0.100130\pi\)
−0.950930 + 0.309405i \(0.899870\pi\)
\(150\) 21468.6 + 17407.1i 0.0779067 + 0.0631680i
\(151\) −456147. −1.62803 −0.814015 0.580843i \(-0.802723\pi\)
−0.814015 + 0.580843i \(0.802723\pi\)
\(152\) −132264. −0.464338
\(153\) 41929.4 + 198479.i 0.144807 + 0.685465i
\(154\) 0 0
\(155\) 206530.i 0.690484i
\(156\) 125090. + 101425.i 0.411538 + 0.333682i
\(157\) 182676.i 0.591471i 0.955270 + 0.295736i \(0.0955647\pi\)
−0.955270 + 0.295736i \(0.904435\pi\)
\(158\) 135377.i 0.431422i
\(159\) 421664. + 341892.i 1.32274 + 1.07250i
\(160\) 53028.4i 0.163760i
\(161\) 0 0
\(162\) 95531.2 + 216015.i 0.285995 + 0.646689i
\(163\) −505273. −1.48956 −0.744778 0.667312i \(-0.767445\pi\)
−0.744778 + 0.667312i \(0.767445\pi\)
\(164\) −310534. −0.901570
\(165\) −284201. 230435.i −0.812672 0.658928i
\(166\) 37803.2i 0.106478i
\(167\) −219889. −0.610116 −0.305058 0.952334i \(-0.598676\pi\)
−0.305058 + 0.952334i \(0.598676\pi\)
\(168\) 0 0
\(169\) −45604.7 −0.122827
\(170\) 172925.i 0.458918i
\(171\) 491347. 103799.i 1.28499 0.271458i
\(172\) 108325. 0.279196
\(173\) −143085. −0.363480 −0.181740 0.983347i \(-0.558173\pi\)
−0.181740 + 0.983347i \(0.558173\pi\)
\(174\) 57120.3 70447.8i 0.143027 0.176398i
\(175\) 0 0
\(176\) 116030.i 0.282350i
\(177\) 48194.0 59438.9i 0.115627 0.142606i
\(178\) 353712.i 0.836758i
\(179\) 764119.i 1.78250i 0.453516 + 0.891248i \(0.350169\pi\)
−0.453516 + 0.891248i \(0.649831\pi\)
\(180\) −41615.8 196994.i −0.0957364 0.453182i
\(181\) 186403.i 0.422918i 0.977387 + 0.211459i \(0.0678215\pi\)
−0.977387 + 0.211459i \(0.932179\pi\)
\(182\) 0 0
\(183\) −406749. 329799.i −0.897840 0.727983i
\(184\) −48295.8 −0.105163
\(185\) −801834. −1.72248
\(186\) 156619. 193162.i 0.331941 0.409391i
\(187\) 378372.i 0.791252i
\(188\) −85775.4 −0.176998
\(189\) 0 0
\(190\) −428087. −0.860295
\(191\) 659693.i 1.30845i −0.756298 0.654227i \(-0.772994\pi\)
0.756298 0.654227i \(-0.227006\pi\)
\(192\) −40213.2 + 49596.0i −0.0787256 + 0.0970942i
\(193\) 20527.9 0.0396691 0.0198345 0.999803i \(-0.493686\pi\)
0.0198345 + 0.999803i \(0.493686\pi\)
\(194\) 40665.2 0.0775744
\(195\) 404864. + 328271.i 0.762471 + 0.618224i
\(196\) 0 0
\(197\) 558536.i 1.02538i −0.858573 0.512691i \(-0.828649\pi\)
0.858573 0.512691i \(-0.171351\pi\)
\(198\) −91058.4 431038.i −0.165066 0.781362i
\(199\) 245715.i 0.439844i 0.975517 + 0.219922i \(0.0705803\pi\)
−0.975517 + 0.219922i \(0.929420\pi\)
\(200\) 28368.5i 0.0501489i
\(201\) −270025. + 333028.i −0.471426 + 0.581421i
\(202\) 135174.i 0.233084i
\(203\) 0 0
\(204\) 131135. 161732.i 0.220619 0.272094i
\(205\) −1.00507e6 −1.67037
\(206\) 498718. 0.818817
\(207\) 179413. 37901.8i 0.291024 0.0614800i
\(208\) 165293.i 0.264909i
\(209\) −936684. −1.48330
\(210\) 0 0
\(211\) −475438. −0.735170 −0.367585 0.929990i \(-0.619815\pi\)
−0.367585 + 0.929990i \(0.619815\pi\)
\(212\) 557186.i 0.851452i
\(213\) 543128. + 440377.i 0.820263 + 0.665083i
\(214\) 474442. 0.708188
\(215\) 350605. 0.517276
\(216\) 110465. 215802.i 0.161099 0.314718i
\(217\) 0 0
\(218\) 152945.i 0.217968i
\(219\) −991140. 803633.i −1.39645 1.13226i
\(220\) 375542.i 0.523121i
\(221\) 539018.i 0.742374i
\(222\) −749933. 608058.i −1.02127 0.828062i
\(223\) 1.17495e6i 1.58219i 0.611695 + 0.791094i \(0.290488\pi\)
−0.611695 + 0.791094i \(0.709512\pi\)
\(224\) 0 0
\(225\) 22263.1 + 105386.i 0.0293177 + 0.138780i
\(226\) 578238. 0.753071
\(227\) −226179. −0.291331 −0.145666 0.989334i \(-0.546532\pi\)
−0.145666 + 0.989334i \(0.546532\pi\)
\(228\) −400377. 324633.i −0.510073 0.413576i
\(229\) 781225.i 0.984436i 0.870472 + 0.492218i \(0.163814\pi\)
−0.870472 + 0.492218i \(0.836186\pi\)
\(230\) −156314. −0.194840
\(231\) 0 0
\(232\) −93089.6 −0.113548
\(233\) 1.57982e6i 1.90642i 0.302306 + 0.953211i \(0.402244\pi\)
−0.302306 + 0.953211i \(0.597756\pi\)
\(234\) 129719. + 614045.i 0.154869 + 0.733095i
\(235\) −277620. −0.327931
\(236\) −78542.4 −0.0917961
\(237\) −332273. + 409800.i −0.384259 + 0.473916i
\(238\) 0 0
\(239\) 1.06612e6i 1.20729i 0.797254 + 0.603644i \(0.206285\pi\)
−0.797254 + 0.603644i \(0.793715\pi\)
\(240\) −130154. + 160522.i −0.145858 + 0.179890i
\(241\) 288887.i 0.320395i −0.987085 0.160197i \(-0.948787\pi\)
0.987085 0.160197i \(-0.0512131\pi\)
\(242\) 177509.i 0.194842i
\(243\) −241009. + 888371.i −0.261828 + 0.965114i
\(244\) 537477.i 0.577944i
\(245\) 0 0
\(246\) −940017. 762181.i −0.990371 0.803009i
\(247\) 1.33437e6 1.39167
\(248\) −255243. −0.263527
\(249\) −92785.0 + 114434.i −0.0948374 + 0.116965i
\(250\) 739137.i 0.747954i
\(251\) −1.78066e6 −1.78401 −0.892003 0.452030i \(-0.850700\pi\)
−0.892003 + 0.452030i \(0.850700\pi\)
\(252\) 0 0
\(253\) −342026. −0.335937
\(254\) 429136.i 0.417360i
\(255\) 424430. 523460.i 0.408748 0.504119i
\(256\) 65536.0 0.0625000
\(257\) 1.37352e6 1.29718 0.648591 0.761137i \(-0.275359\pi\)
0.648591 + 0.761137i \(0.275359\pi\)
\(258\) 327911. + 265876.i 0.306695 + 0.248674i
\(259\) 0 0
\(260\) 534987.i 0.490806i
\(261\) 345817. 73055.2i 0.314228 0.0663820i
\(262\) 591231.i 0.532113i
\(263\) 468938.i 0.418048i 0.977910 + 0.209024i \(0.0670287\pi\)
−0.977910 + 0.209024i \(0.932971\pi\)
\(264\) −284786. + 351234.i −0.251483 + 0.310161i
\(265\) 1.80338e6i 1.57752i
\(266\) 0 0
\(267\) 868158. 1.07072e6i 0.745282 0.919175i
\(268\) 440063. 0.374264
\(269\) −2.22292e6 −1.87302 −0.936511 0.350638i \(-0.885965\pi\)
−0.936511 + 0.350638i \(0.885965\pi\)
\(270\) 357532. 698464.i 0.298473 0.583089i
\(271\) 259965.i 0.215026i 0.994204 + 0.107513i \(0.0342888\pi\)
−0.994204 + 0.107513i \(0.965711\pi\)
\(272\) −213712. −0.175148
\(273\) 0 0
\(274\) 1.15165e6 0.926710
\(275\) 200903.i 0.160197i
\(276\) −146196. 118538.i −0.115522 0.0936668i
\(277\) 1.39166e6 1.08977 0.544885 0.838511i \(-0.316573\pi\)
0.544885 + 0.838511i \(0.316573\pi\)
\(278\) −139079. −0.107932
\(279\) 948200. 200311.i 0.729272 0.154061i
\(280\) 0 0
\(281\) 1.81463e6i 1.37095i −0.728096 0.685475i \(-0.759594\pi\)
0.728096 0.685475i \(-0.240406\pi\)
\(282\) −259651. 210529.i −0.194431 0.157648i
\(283\) 1.14413e6i 0.849200i 0.905381 + 0.424600i \(0.139585\pi\)
−0.905381 + 0.424600i \(0.860415\pi\)
\(284\) 717688.i 0.528007i
\(285\) −1.29586e6 1.05070e6i −0.945031 0.766247i
\(286\) 1.17059e6i 0.846233i
\(287\) 0 0
\(288\) −243459. + 51431.6i −0.172959 + 0.0365383i
\(289\) −722947. −0.509169
\(290\) −301293. −0.210375
\(291\) 123097. + 99809.4i 0.0852151 + 0.0690938i
\(292\) 1.30969e6i 0.898900i
\(293\) 29080.6 0.0197895 0.00989475 0.999951i \(-0.496850\pi\)
0.00989475 + 0.999951i \(0.496850\pi\)
\(294\) 0 0
\(295\) −254210. −0.170074
\(296\) 990960.i 0.657396i
\(297\) 782306. 1.52829e6i 0.514619 1.00534i
\(298\) 670784. 0.437565
\(299\) 487241. 0.315186
\(300\) 69628.3 85874.2i 0.0446665 0.0550883i
\(301\) 0 0
\(302\) 1.82459e6i 1.15119i
\(303\) −331773. + 409183.i −0.207603 + 0.256042i
\(304\) 529058.i 0.328336i
\(305\) 1.73960e6i 1.07078i
\(306\) 793915. 167718.i 0.484697 0.102394i
\(307\) 193469.i 0.117156i 0.998283 + 0.0585780i \(0.0186566\pi\)
−0.998283 + 0.0585780i \(0.981343\pi\)
\(308\) 0 0
\(309\) 1.50967e6 + 1.22406e6i 0.899466 + 0.729302i
\(310\) −826120. −0.488246
\(311\) −2.55667e6 −1.49890 −0.749451 0.662060i \(-0.769683\pi\)
−0.749451 + 0.662060i \(0.769683\pi\)
\(312\) 405699. 500358.i 0.235949 0.291001i
\(313\) 423190.i 0.244160i 0.992520 + 0.122080i \(0.0389564\pi\)
−0.992520 + 0.122080i \(0.961044\pi\)
\(314\) 730706. 0.418233
\(315\) 0 0
\(316\) 541509. 0.305062
\(317\) 36170.8i 0.0202167i −0.999949 0.0101083i \(-0.996782\pi\)
0.999949 0.0101083i \(-0.00321764\pi\)
\(318\) 1.36757e6 1.68665e6i 0.758370 0.935316i
\(319\) −659252. −0.362723
\(320\) 212114. 0.115796
\(321\) 1.43618e6 + 1.16448e6i 0.777941 + 0.630767i
\(322\) 0 0
\(323\) 1.72525e6i 0.920122i
\(324\) 864059. 382125.i 0.457278 0.202229i
\(325\) 286201.i 0.150301i
\(326\) 2.02109e6i 1.05328i
\(327\) 375390. 462978.i 0.194139 0.239437i
\(328\) 1.24214e6i 0.637506i
\(329\) 0 0
\(330\) −921738. + 1.13680e6i −0.465932 + 0.574646i
\(331\) 219141. 0.109939 0.0549697 0.998488i \(-0.482494\pi\)
0.0549697 + 0.998488i \(0.482494\pi\)
\(332\) 151213. 0.0752911
\(333\) −777689. 3.68130e6i −0.384322 1.81924i
\(334\) 879557.i 0.431417i
\(335\) 1.42431e6 0.693411
\(336\) 0 0
\(337\) −279137. −0.133889 −0.0669443 0.997757i \(-0.521325\pi\)
−0.0669443 + 0.997757i \(0.521325\pi\)
\(338\) 182419.i 0.0868516i
\(339\) 1.75038e6 + 1.41924e6i 0.827245 + 0.670744i
\(340\) −691699. −0.324504
\(341\) −1.80761e6 −0.841819
\(342\) −415196. 1.96539e6i −0.191950 0.908622i
\(343\) 0 0
\(344\) 433301.i 0.197421i
\(345\) −473178. 383660.i −0.214031 0.173540i
\(346\) 572341.i 0.257019i
\(347\) 2.22153e6i 0.990441i −0.868767 0.495220i \(-0.835087\pi\)
0.868767 0.495220i \(-0.164913\pi\)
\(348\) −281791. 228481.i −0.124732 0.101135i
\(349\) 2.77164e6i 1.21807i −0.793142 0.609037i \(-0.791556\pi\)
0.793142 0.609037i \(-0.208444\pi\)
\(350\) 0 0
\(351\) −1.11445e6 + 2.17716e6i −0.482829 + 0.943241i
\(352\) 464120. 0.199652
\(353\) 3.40150e6 1.45289 0.726447 0.687222i \(-0.241170\pi\)
0.726447 + 0.687222i \(0.241170\pi\)
\(354\) −237756. 192776.i −0.100838 0.0817608i
\(355\) 2.32287e6i 0.978258i
\(356\) −1.41485e6 −0.591677
\(357\) 0 0
\(358\) 3.05648e6 1.26041
\(359\) 197860.i 0.0810257i 0.999179 + 0.0405128i \(0.0128992\pi\)
−0.999179 + 0.0405128i \(0.987101\pi\)
\(360\) −787978. + 166463.i −0.320448 + 0.0676959i
\(361\) −1.79487e6 −0.724877
\(362\) 745611. 0.299048
\(363\) −435682. + 537338.i −0.173542 + 0.214033i
\(364\) 0 0
\(365\) 4.23894e6i 1.66543i
\(366\) −1.31920e6 + 1.62700e6i −0.514762 + 0.634869i
\(367\) 2.34797e6i 0.909970i −0.890499 0.454985i \(-0.849645\pi\)
0.890499 0.454985i \(-0.150355\pi\)
\(368\) 193183.i 0.0743618i
\(369\) −974808. 4.61439e6i −0.372695 1.76420i
\(370\) 3.20734e6i 1.21798i
\(371\) 0 0
\(372\) −772646. 626475.i −0.289483 0.234718i
\(373\) 4.18523e6 1.55757 0.778785 0.627292i \(-0.215837\pi\)
0.778785 + 0.627292i \(0.215837\pi\)
\(374\) −1.51349e6 −0.559499
\(375\) 1.81415e6 2.23744e6i 0.666186 0.821624i
\(376\) 343102.i 0.125156i
\(377\) 939152. 0.340316
\(378\) 0 0
\(379\) 1.16220e6 0.415606 0.207803 0.978171i \(-0.433369\pi\)
0.207803 + 0.978171i \(0.433369\pi\)
\(380\) 1.71235e6i 0.608321i
\(381\) 1.05328e6 1.29904e6i 0.371734 0.458468i
\(382\) −2.63877e6 −0.925217
\(383\) 501080. 0.174546 0.0872730 0.996184i \(-0.472185\pi\)
0.0872730 + 0.996184i \(0.472185\pi\)
\(384\) 198384. + 160853.i 0.0686560 + 0.0556674i
\(385\) 0 0
\(386\) 82111.8i 0.0280503i
\(387\) 340048. + 1.60967e6i 0.115415 + 0.546334i
\(388\) 162661.i 0.0548534i
\(389\) 689216.i 0.230930i 0.993312 + 0.115465i \(0.0368359\pi\)
−0.993312 + 0.115465i \(0.963164\pi\)
\(390\) 1.31308e6 1.61946e6i 0.437150 0.539148i
\(391\) 629967.i 0.208390i
\(392\) 0 0
\(393\) 1.45113e6 1.78971e6i 0.473942 0.584524i
\(394\) −2.23414e6 −0.725055
\(395\) 1.75265e6 0.565199
\(396\) −1.72415e6 + 364234.i −0.552507 + 0.116719i
\(397\) 1.81071e6i 0.576598i 0.957540 + 0.288299i \(0.0930896\pi\)
−0.957540 + 0.288299i \(0.906910\pi\)
\(398\) 982860. 0.311017
\(399\) 0 0
\(400\) −113474. −0.0354606
\(401\) 1.36292e6i 0.423261i −0.977350 0.211631i \(-0.932123\pi\)
0.977350 0.211631i \(-0.0678774\pi\)
\(402\) 1.33211e6 + 1.08010e6i 0.411127 + 0.333348i
\(403\) 2.57507e6 0.789817
\(404\) 540694. 0.164816
\(405\) 2.79661e6 1.23678e6i 0.847216 0.374676i
\(406\) 0 0
\(407\) 7.01789e6i 2.10000i
\(408\) −646926. 524539.i −0.192400 0.156001i
\(409\) 314547.i 0.0929773i −0.998919 0.0464887i \(-0.985197\pi\)
0.998919 0.0464887i \(-0.0148031\pi\)
\(410\) 4.02029e6i 1.18113i
\(411\) 3.48616e6 + 2.82663e6i 1.01799 + 0.825401i
\(412\) 1.99487e6i 0.578991i
\(413\) 0 0
\(414\) −151607. 717654.i −0.0434729 0.205785i
\(415\) 489415. 0.139495
\(416\) −661172. −0.187319
\(417\) −421005. 341358.i −0.118562 0.0961324i
\(418\) 3.74674e6i 1.04885i
\(419\) 2.75221e6 0.765856 0.382928 0.923778i \(-0.374916\pi\)
0.382928 + 0.923778i \(0.374916\pi\)
\(420\) 0 0
\(421\) −759489. −0.208841 −0.104421 0.994533i \(-0.533299\pi\)
−0.104421 + 0.994533i \(0.533299\pi\)
\(422\) 1.90175e6i 0.519844i
\(423\) −269261. 1.27458e6i −0.0731682 0.346352i
\(424\) −2.22874e6 −0.602067
\(425\) 370037. 0.0993740
\(426\) 1.76151e6 2.17251e6i 0.470285 0.580014i
\(427\) 0 0
\(428\) 1.89777e6i 0.500764i
\(429\) 2.87312e6 3.54349e6i 0.753721 0.929583i
\(430\) 1.40242e6i 0.365770i
\(431\) 1.12460e6i 0.291611i 0.989313 + 0.145805i \(0.0465773\pi\)
−0.989313 + 0.145805i \(0.953423\pi\)
\(432\) −863208. 441862.i −0.222539 0.113914i
\(433\) 5.88187e6i 1.50763i −0.657085 0.753816i \(-0.728211\pi\)
0.657085 0.753816i \(-0.271789\pi\)
\(434\) 0 0
\(435\) −912045. 739501.i −0.231096 0.187377i
\(436\) −611778. −0.154127
\(437\) −1.55953e6 −0.390651
\(438\) −3.21453e6 + 3.96456e6i −0.800631 + 0.987438i
\(439\) 1.95736e6i 0.484741i −0.970184 0.242371i \(-0.922075\pi\)
0.970184 0.242371i \(-0.0779250\pi\)
\(440\) 1.50217e6 0.369902
\(441\) 0 0
\(442\) 2.15607e6 0.524937
\(443\) 3.38550e6i 0.819622i 0.912171 + 0.409811i \(0.134405\pi\)
−0.912171 + 0.409811i \(0.865595\pi\)
\(444\) −2.43223e6 + 2.99973e6i −0.585528 + 0.722146i
\(445\) −4.57929e6 −1.09622
\(446\) 4.69981e6 1.11878
\(447\) 2.03053e6 + 1.64639e6i 0.480663 + 0.389729i
\(448\) 0 0
\(449\) 274544.i 0.0642681i 0.999484 + 0.0321340i \(0.0102303\pi\)
−0.999484 + 0.0321340i \(0.989770\pi\)
\(450\) 421543. 89052.6i 0.0981320 0.0207308i
\(451\) 8.79669e6i 2.03647i
\(452\) 2.31295e6i 0.532502i
\(453\) −4.47831e6 + 5.52321e6i −1.02534 + 1.26458i
\(454\) 904714.i 0.206002i
\(455\) 0 0
\(456\) −1.29853e6 + 1.60151e6i −0.292442 + 0.360676i
\(457\) 5.44191e6 1.21888 0.609440 0.792832i \(-0.291394\pi\)
0.609440 + 0.792832i \(0.291394\pi\)
\(458\) 3.12490e6 0.696102
\(459\) 2.81491e6 + 1.44090e6i 0.623638 + 0.319230i
\(460\) 625256.i 0.137773i
\(461\) −3.82312e6 −0.837848 −0.418924 0.908021i \(-0.637593\pi\)
−0.418924 + 0.908021i \(0.637593\pi\)
\(462\) 0 0
\(463\) −6.74062e6 −1.46133 −0.730664 0.682738i \(-0.760789\pi\)
−0.730664 + 0.682738i \(0.760789\pi\)
\(464\) 372358.i 0.0802909i
\(465\) −2.50074e6 2.02765e6i −0.536336 0.434870i
\(466\) 6.31930e6 1.34804
\(467\) −4.06885e6 −0.863335 −0.431667 0.902033i \(-0.642075\pi\)
−0.431667 + 0.902033i \(0.642075\pi\)
\(468\) 2.45618e6 518877.i 0.518377 0.109509i
\(469\) 0 0
\(470\) 1.11048e6i 0.231882i
\(471\) 2.21192e6 + 1.79346e6i 0.459427 + 0.372511i
\(472\) 314170.i 0.0649097i
\(473\) 3.06860e6i 0.630649i
\(474\) 1.63920e6 + 1.32909e6i 0.335109 + 0.271712i
\(475\) 916051.i 0.186288i
\(476\) 0 0
\(477\) 8.27952e6 1.74908e6i 1.66613 0.351977i
\(478\) 4.26448e6 0.853681
\(479\) 2.34505e6 0.466997 0.233498 0.972357i \(-0.424983\pi\)
0.233498 + 0.972357i \(0.424983\pi\)
\(480\) 642088. + 520616.i 0.127201 + 0.103137i
\(481\) 9.99749e6i 1.97028i
\(482\) −1.15555e6 −0.226553
\(483\) 0 0
\(484\) 710037. 0.137774
\(485\) 526467.i 0.101629i
\(486\) 3.55349e6 + 964034.i 0.682439 + 0.185141i
\(487\) 4.27665e6 0.817111 0.408556 0.912733i \(-0.366033\pi\)
0.408556 + 0.912733i \(0.366033\pi\)
\(488\) 2.14991e6 0.408668
\(489\) −4.96061e6 + 6.11804e6i −0.938130 + 1.15702i
\(490\) 0 0
\(491\) 596779.i 0.111715i 0.998439 + 0.0558573i \(0.0177892\pi\)
−0.998439 + 0.0558573i \(0.982211\pi\)
\(492\) −3.04872e6 + 3.76007e6i −0.567813 + 0.700298i
\(493\) 1.21425e6i 0.225005i
\(494\) 5.33750e6i 0.984058i
\(495\) −5.58038e6 + 1.17888e6i −1.02365 + 0.216250i
\(496\) 1.02097e6i 0.186342i
\(497\) 0 0
\(498\) 457736. + 371140.i 0.0827069 + 0.0670602i
\(499\) −4.28430e6 −0.770245 −0.385122 0.922865i \(-0.625841\pi\)
−0.385122 + 0.922865i \(0.625841\pi\)
\(500\) −2.95655e6 −0.528883
\(501\) −2.15880e6 + 2.66250e6i −0.384254 + 0.473910i
\(502\) 7.12263e6i 1.26148i
\(503\) −4.95292e6 −0.872854 −0.436427 0.899740i \(-0.643756\pi\)
−0.436427 + 0.899740i \(0.643756\pi\)
\(504\) 0 0
\(505\) 1.75001e6 0.305360
\(506\) 1.36811e6i 0.237544i
\(507\) −447733. + 552200.i −0.0773569 + 0.0954061i
\(508\) −1.71655e6 −0.295118
\(509\) −366780. −0.0627496 −0.0313748 0.999508i \(-0.509989\pi\)
−0.0313748 + 0.999508i \(0.509989\pi\)
\(510\) −2.09384e6 1.69772e6i −0.356466 0.289028i
\(511\) 0 0
\(512\) 262144.i 0.0441942i
\(513\) 3.56705e6 6.96849e6i 0.598434 1.16908i
\(514\) 5.49407e6i 0.917246i
\(515\) 6.45659e6i 1.07272i
\(516\) 1.06350e6 1.31165e6i 0.175839 0.216866i
\(517\) 2.42981e6i 0.399804i
\(518\) 0 0
\(519\) −1.40477e6 + 1.73253e6i −0.228921 + 0.282334i
\(520\) −2.13995e6 −0.347052
\(521\) −235391. −0.0379923 −0.0189961 0.999820i \(-0.506047\pi\)
−0.0189961 + 0.999820i \(0.506047\pi\)
\(522\) −292221. 1.38327e6i −0.0469391 0.222193i
\(523\) 5.89434e6i 0.942283i −0.882058 0.471141i \(-0.843842\pi\)
0.882058 0.471141i \(-0.156158\pi\)
\(524\) −2.36493e6 −0.376261
\(525\) 0 0
\(526\) 1.87575e6 0.295605
\(527\) 3.32938e6i 0.522199i
\(528\) 1.40494e6 + 1.13915e6i 0.219317 + 0.177826i
\(529\) 5.86689e6 0.911525
\(530\) −7.21354e6 −1.11547
\(531\) −246555. 1.16710e6i −0.0379471 0.179628i
\(532\) 0 0
\(533\) 1.25315e7i 1.91067i
\(534\) −4.28288e6 3.47263e6i −0.649955 0.526994i
\(535\) 6.14230e6i 0.927784i
\(536\) 1.76025e6i 0.264644i
\(537\) 9.25225e6 + 7.50188e6i 1.38456 + 1.12262i
\(538\) 8.89167e6i 1.32443i
\(539\) 0 0
\(540\) −2.79386e6 1.43013e6i −0.412306 0.211053i
\(541\) −3.02975e6 −0.445054 −0.222527 0.974926i \(-0.571431\pi\)
−0.222527 + 0.974926i \(0.571431\pi\)
\(542\) 1.03986e6 0.152046
\(543\) 2.25704e6 + 1.83004e6i 0.328503 + 0.266356i
\(544\) 854847.i 0.123849i
\(545\) −1.98008e6 −0.285556
\(546\) 0 0
\(547\) −1.95647e6 −0.279579 −0.139789 0.990181i \(-0.544643\pi\)
−0.139789 + 0.990181i \(0.544643\pi\)
\(548\) 4.60660e6i 0.655283i
\(549\) −7.98667e6 + 1.68721e6i −1.13093 + 0.238913i
\(550\) −803612. −0.113277
\(551\) −3.00597e6 −0.421799
\(552\) −474153. + 584784.i −0.0662325 + 0.0816861i
\(553\) 0 0
\(554\) 5.56666e6i 0.770584i
\(555\) −7.87216e6 + 9.70892e6i −1.08483 + 1.33795i
\(556\) 556315.i 0.0763192i
\(557\) 8.87892e6i 1.21261i 0.795231 + 0.606307i \(0.207350\pi\)
−0.795231 + 0.606307i \(0.792650\pi\)
\(558\) −801243. 3.79280e6i −0.108938 0.515673i
\(559\) 4.37144e6i 0.591692i
\(560\) 0 0
\(561\) −4.58147e6 3.71473e6i −0.614607 0.498334i
\(562\) −7.25851e6 −0.969408
\(563\) −4.64860e6 −0.618090 −0.309045 0.951047i \(-0.600009\pi\)
−0.309045 + 0.951047i \(0.600009\pi\)
\(564\) −842116. + 1.03860e6i −0.111474 + 0.137484i
\(565\) 7.48610e6i 0.986585i
\(566\) 4.57653e6 0.600475
\(567\) 0 0
\(568\) −2.87075e6 −0.373358
\(569\) 1.52111e7i 1.96961i −0.173655 0.984807i \(-0.555558\pi\)
0.173655 0.984807i \(-0.444442\pi\)
\(570\) −4.20282e6 + 5.18344e6i −0.541818 + 0.668237i
\(571\) −3.07924e6 −0.395233 −0.197616 0.980279i \(-0.563320\pi\)
−0.197616 + 0.980279i \(0.563320\pi\)
\(572\) −4.68236e6 −0.598377
\(573\) −7.98782e6 6.47666e6i −1.01635 0.824071i
\(574\) 0 0
\(575\) 334492.i 0.0421907i
\(576\) 205726. + 973835.i 0.0258365 + 0.122301i
\(577\) 387655.i 0.0484736i 0.999706 + 0.0242368i \(0.00771557\pi\)
−0.999706 + 0.0242368i \(0.992284\pi\)
\(578\) 2.89179e6i 0.360037i
\(579\) 201537. 248560.i 0.0249838 0.0308131i
\(580\) 1.20517e6i 0.148758i
\(581\) 0 0
\(582\) 399238. 492390.i 0.0488567 0.0602562i
\(583\) −1.57837e7 −1.92326
\(584\) 5.23876e6 0.635619
\(585\) 7.94966e6 1.67940e6i 0.960415 0.202891i
\(586\) 116323.i 0.0139933i
\(587\) 1.46128e7 1.75040 0.875200 0.483762i \(-0.160730\pi\)
0.875200 + 0.483762i \(0.160730\pi\)
\(588\) 0 0
\(589\) −8.24209e6 −0.978925
\(590\) 1.01684e6i 0.120260i
\(591\) −6.76297e6 5.48353e6i −0.796469 0.645790i
\(592\) 3.96384e6 0.464849
\(593\) 4.47738e6 0.522862 0.261431 0.965222i \(-0.415806\pi\)
0.261431 + 0.965222i \(0.415806\pi\)
\(594\) −6.11316e6 3.12922e6i −0.710885 0.363890i
\(595\) 0 0
\(596\) 2.68314e6i 0.309405i
\(597\) 2.97521e6 + 2.41235e6i 0.341651 + 0.277016i
\(598\) 1.94897e6i 0.222870i
\(599\) 1.87106e6i 0.213069i −0.994309 0.106535i \(-0.966024\pi\)
0.994309 0.106535i \(-0.0339755\pi\)
\(600\) −343497. 278513.i −0.0389533 0.0315840i
\(601\) 4.17439e6i 0.471419i −0.971824 0.235709i \(-0.924259\pi\)
0.971824 0.235709i \(-0.0757413\pi\)
\(602\) 0 0
\(603\) 1.38142e6 + 6.53913e6i 0.154715 + 0.732363i
\(604\) 7.29835e6 0.814015
\(605\) 2.29810e6 0.255259
\(606\) 1.63673e6 + 1.32709e6i 0.181049 + 0.146798i
\(607\) 7.37398e6i 0.812326i 0.913801 + 0.406163i \(0.133133\pi\)
−0.913801 + 0.406163i \(0.866867\pi\)
\(608\) 2.11623e6 0.232169
\(609\) 0 0
\(610\) 6.95839e6 0.757154
\(611\) 3.46145e6i 0.375107i
\(612\) −670870. 3.17566e6i −0.0724036 0.342732i
\(613\) −800852. −0.0860797 −0.0430399 0.999073i \(-0.513704\pi\)
−0.0430399 + 0.999073i \(0.513704\pi\)
\(614\) 773874. 0.0828418
\(615\) −9.86749e6 + 1.21698e7i −1.05201 + 1.29747i
\(616\) 0 0
\(617\) 9.07689e6i 0.959896i −0.877297 0.479948i \(-0.840655\pi\)
0.877297 0.479948i \(-0.159345\pi\)
\(618\) 4.89625e6 6.03867e6i 0.515695 0.636019i
\(619\) 9.43127e6i 0.989335i −0.869082 0.494668i \(-0.835290\pi\)
0.869082 0.494668i \(-0.164710\pi\)
\(620\) 3.30448e6i 0.345242i
\(621\) 1.30249e6 2.54451e6i 0.135534 0.264774i
\(622\) 1.02267e7i 1.05988i
\(623\) 0 0
\(624\) −2.00143e6 1.62280e6i −0.205769 0.166841i
\(625\) −8.18397e6 −0.838038
\(626\) 1.69276e6 0.172647
\(627\) −9.19607e6 + 1.13417e7i −0.934186 + 1.15215i
\(628\) 2.92282e6i 0.295736i
\(629\) −1.29260e7 −1.30268
\(630\) 0 0
\(631\) −1.86977e7 −1.86945 −0.934726 0.355369i \(-0.884355\pi\)
−0.934726 + 0.355369i \(0.884355\pi\)
\(632\) 2.16603e6i 0.215711i
\(633\) −4.66770e6 + 5.75679e6i −0.463013 + 0.571046i
\(634\) −144683. −0.0142953
\(635\) −5.55577e6 −0.546776
\(636\) −6.74662e6 5.47027e6i −0.661368 0.536248i
\(637\) 0 0
\(638\) 2.63701e6i 0.256484i
\(639\) 1.06645e7 2.25292e6i 1.03321 0.218270i
\(640\) 848454.i 0.0818801i
\(641\) 5.48980e6i 0.527729i −0.964560 0.263865i \(-0.915003\pi\)
0.964560 0.263865i \(-0.0849972\pi\)
\(642\) 4.65792e6 5.74472e6i 0.446020 0.550087i
\(643\) 7.07744e6i 0.675070i 0.941313 + 0.337535i \(0.109593\pi\)
−0.941313 + 0.337535i \(0.890407\pi\)
\(644\) 0 0
\(645\) 3.44213e6 4.24527e6i 0.325783 0.401796i
\(646\) −6.90099e6 −0.650624
\(647\) 4.27271e6 0.401276 0.200638 0.979665i \(-0.435699\pi\)
0.200638 + 0.979665i \(0.435699\pi\)
\(648\) −1.52850e6 3.45623e6i −0.142997 0.323345i
\(649\) 2.22492e6i 0.207349i
\(650\) 1.14480e6 0.106279
\(651\) 0 0
\(652\) 8.08437e6 0.744778
\(653\) 1.16466e7i 1.06885i 0.845216 + 0.534424i \(0.179472\pi\)
−0.845216 + 0.534424i \(0.820528\pi\)
\(654\) −1.85191e6 1.50156e6i −0.169307 0.137277i
\(655\) −7.65431e6 −0.697112
\(656\) 4.96854e6 0.450785
\(657\) −1.94614e7 + 4.11130e6i −1.75898 + 0.371591i
\(658\) 0 0
\(659\) 8.49340e6i 0.761847i −0.924607 0.380924i \(-0.875606\pi\)
0.924607 0.380924i \(-0.124394\pi\)
\(660\) 4.54721e6 + 3.68695e6i 0.406336 + 0.329464i
\(661\) 5.04077e6i 0.448738i 0.974504 + 0.224369i \(0.0720321\pi\)
−0.974504 + 0.224369i \(0.927968\pi\)
\(662\) 876564.i 0.0777389i
\(663\) 6.52664e6 + 5.29191e6i 0.576641 + 0.467550i
\(664\) 604852.i 0.0532389i
\(665\) 0 0
\(666\) −1.47252e7 + 3.11076e6i −1.28640 + 0.271757i
\(667\) −1.09762e6 −0.0955292
\(668\) 3.51823e6 0.305058
\(669\) 1.42268e7 + 1.15353e7i 1.22897 + 0.996470i
\(670\) 5.69722e6i 0.490316i
\(671\) 1.52255e7 1.30546
\(672\) 0 0
\(673\) 1.55507e7 1.32346 0.661730 0.749742i \(-0.269822\pi\)
0.661730 + 0.749742i \(0.269822\pi\)
\(674\) 1.11655e6i 0.0946735i
\(675\) 1.49462e6 + 765073.i 0.126262 + 0.0646314i
\(676\) 729675. 0.0614134
\(677\) 8.38455e6 0.703086 0.351543 0.936172i \(-0.385657\pi\)
0.351543 + 0.936172i \(0.385657\pi\)
\(678\) 5.67696e6 7.00154e6i 0.474288 0.584951i
\(679\) 0 0
\(680\) 2.76679e6i 0.229459i
\(681\) −2.22055e6 + 2.73866e6i −0.183482 + 0.226292i
\(682\) 7.23044e6i 0.595256i
\(683\) 1.66025e7i 1.36183i −0.732363 0.680914i \(-0.761583\pi\)
0.732363 0.680914i \(-0.238417\pi\)
\(684\) −7.86156e6 + 1.66078e6i −0.642493 + 0.135729i
\(685\) 1.49097e7i 1.21407i
\(686\) 0 0
\(687\) 9.45938e6 + 7.66982e6i 0.764664 + 0.620003i
\(688\) −1.73321e6 −0.139598
\(689\) 2.24851e7 1.80446
\(690\) −1.53464e6 + 1.89271e6i −0.122711 + 0.151343i
\(691\) 4.25259e6i 0.338811i 0.985546 + 0.169406i \(0.0541848\pi\)
−0.985546 + 0.169406i \(0.945815\pi\)
\(692\) 2.28937e6 0.181740
\(693\) 0 0
\(694\) −8.88612e6 −0.700348
\(695\) 1.80057e6i 0.141399i
\(696\) −913924. + 1.12717e6i −0.0715134 + 0.0881992i
\(697\) −1.62023e7 −1.26327
\(698\) −1.10866e7 −0.861308
\(699\) 1.91291e7 + 1.55102e7i 1.48082 + 1.20067i
\(700\) 0 0
\(701\) 6.21609e6i 0.477773i 0.971047 + 0.238887i \(0.0767825\pi\)
−0.971047 + 0.238887i \(0.923218\pi\)
\(702\) 8.70864e6 + 4.45781e6i 0.666972 + 0.341412i
\(703\) 3.19992e7i 2.44203i
\(704\) 1.85648e6i 0.141175i
\(705\) −2.72559e6 + 3.36154e6i −0.206532 + 0.254721i
\(706\) 1.36060e7i 1.02735i
\(707\) 0 0
\(708\) −771105. + 951022.i −0.0578136 + 0.0713030i
\(709\) 2.53893e7 1.89686 0.948430 0.316985i \(-0.102671\pi\)
0.948430 + 0.316985i \(0.102671\pi\)
\(710\) −9.29147e6 −0.691733
\(711\) 1.69987e6 + 8.04657e6i 0.126108 + 0.596949i
\(712\) 5.65939e6i 0.418379i
\(713\) −3.00957e6 −0.221707
\(714\) 0 0
\(715\) −1.51549e7 −1.10863
\(716\) 1.22259e7i 0.891248i
\(717\) 1.29090e7 + 1.04668e7i 0.937765 + 0.760356i
\(718\) 791441. 0.0572938
\(719\) −1.96525e7 −1.41774 −0.708870 0.705339i \(-0.750795\pi\)
−0.708870 + 0.705339i \(0.750795\pi\)
\(720\) 665853. + 3.15191e6i 0.0478682 + 0.226591i
\(721\) 0 0
\(722\) 7.17947e6i 0.512566i
\(723\) −3.49796e6 2.83620e6i −0.248868 0.201786i
\(724\) 2.98244e6i 0.211459i
\(725\) 644730.i 0.0455547i
\(726\) 2.14935e6 + 1.74273e6i 0.151344 + 0.122712i
\(727\) 1.40321e7i 0.984660i 0.870409 + 0.492330i \(0.163855\pi\)
−0.870409 + 0.492330i \(0.836145\pi\)
\(728\) 0 0
\(729\) 8.39060e6 + 1.16400e7i 0.584755 + 0.811210i
\(730\) 1.69558e7 1.17763
\(731\) 5.65195e6 0.391206
\(732\) 6.50799e6 + 5.27678e6i 0.448920 + 0.363992i
\(733\) 1.93215e7i 1.32825i 0.747621 + 0.664125i \(0.231196\pi\)
−0.747621 + 0.664125i \(0.768804\pi\)
\(734\) −9.39187e6 −0.643446
\(735\) 0 0
\(736\) 772733. 0.0525817
\(737\) 1.24659e7i 0.845388i
\(738\) −1.84576e7 + 3.89923e6i −1.24748 + 0.263535i
\(739\) 1.64831e7 1.11027 0.555133 0.831762i \(-0.312668\pi\)
0.555133 + 0.831762i \(0.312668\pi\)
\(740\) 1.28293e7 0.861242
\(741\) 1.31005e7 1.61571e7i 0.876479 1.08098i
\(742\) 0 0
\(743\) 1.51394e7i 1.00609i 0.864261 + 0.503043i \(0.167786\pi\)
−0.864261 + 0.503043i \(0.832214\pi\)
\(744\) −2.50590e6 + 3.09059e6i −0.165971 + 0.204696i
\(745\) 8.68423e6i 0.573246i
\(746\) 1.67409e7i 1.10137i
\(747\) 474678. + 2.24695e6i 0.0311241 + 0.147331i
\(748\) 6.05395e6i 0.395626i
\(749\) 0 0
\(750\) −8.94975e6 7.25661e6i −0.580976 0.471065i
\(751\) −1.71437e6 −0.110919 −0.0554593 0.998461i \(-0.517662\pi\)
−0.0554593 + 0.998461i \(0.517662\pi\)
\(752\) 1.37241e6 0.0884990
\(753\) −1.74819e7 + 2.15609e7i −1.12357 + 1.38573i
\(754\) 3.75661e6i 0.240640i
\(755\) 2.36218e7 1.50816
\(756\) 0 0
\(757\) 2.16978e7 1.37618 0.688092 0.725624i \(-0.258449\pi\)
0.688092 + 0.725624i \(0.258449\pi\)
\(758\) 4.64879e6i 0.293878i
\(759\) −3.35791e6 + 4.14139e6i −0.211575 + 0.260941i
\(760\) 6.84939e6 0.430148
\(761\) −4.45762e6 −0.279024 −0.139512 0.990220i \(-0.544553\pi\)
−0.139512 + 0.990220i \(0.544553\pi\)
\(762\) −5.19615e6 4.21313e6i −0.324186 0.262855i
\(763\) 0 0
\(764\) 1.05551e7i 0.654227i
\(765\) −2.17134e6 1.02783e7i −0.134145 0.634993i
\(766\) 2.00432e6i 0.123423i
\(767\) 3.16956e6i 0.194541i
\(768\) 643412. 793535.i 0.0393628 0.0485471i
\(769\) 1.64855e7i 1.00528i −0.864497 0.502638i \(-0.832363\pi\)
0.864497 0.502638i \(-0.167637\pi\)
\(770\) 0 0
\(771\) 1.34847e7 1.66311e7i 0.816972 1.00759i
\(772\) −328447. −0.0198345
\(773\) −1.16889e7 −0.703601 −0.351800 0.936075i \(-0.614430\pi\)
−0.351800 + 0.936075i \(0.614430\pi\)
\(774\) 6.43866e6 1.36019e6i 0.386316 0.0816108i
\(775\) 1.76779e6i 0.105725i
\(776\) −650643. −0.0387872
\(777\) 0 0
\(778\) 2.75686e6 0.163292
\(779\) 4.01100e7i 2.36815i
\(780\) −6.47783e6 5.25233e6i −0.381235 0.309112i
\(781\) −2.03304e7 −1.19266
\(782\) −2.51987e6 −0.147354
\(783\) 2.51054e6 4.90452e6i 0.146340 0.285886i
\(784\) 0 0
\(785\) 9.46000e6i 0.547920i
\(786\) −7.15886e6 5.80452e6i −0.413321 0.335128i
\(787\) 1.36544e7i 0.785842i −0.919572 0.392921i \(-0.871465\pi\)
0.919572 0.392921i \(-0.128535\pi\)
\(788\) 8.93658e6i 0.512691i
\(789\) 5.67809e6 + 4.60389e6i 0.324721 + 0.263289i
\(790\) 7.01058e6i 0.399656i
\(791\) 0 0
\(792\) 1.45693e6 + 6.89661e6i 0.0825329 + 0.390681i
\(793\) −2.16898e7 −1.22482
\(794\) 7.24284e6 0.407716
\(795\) −2.18361e7 1.77051e7i −1.22534 0.993527i
\(796\) 3.93144e6i 0.219922i
\(797\) 1.88724e7 1.05240 0.526200 0.850361i \(-0.323616\pi\)
0.526200 + 0.850361i \(0.323616\pi\)
\(798\) 0 0
\(799\) −4.47540e6 −0.248007
\(800\) 453896.i 0.0250745i
\(801\) −4.44140e6 2.10240e7i −0.244590 1.15780i
\(802\) −5.45167e6 −0.299291
\(803\) 3.71004e7 2.03044
\(804\) 4.32040e6 5.32845e6i 0.235713 0.290711i
\(805\) 0 0
\(806\) 1.03003e7i 0.558485i
\(807\) −2.18239e7 + 2.69160e7i −1.17964 + 1.45488i
\(808\) 2.16278e6i 0.116542i
\(809\) 2.22245e7i 1.19388i −0.802285 0.596941i \(-0.796383\pi\)
0.802285 0.596941i \(-0.203617\pi\)
\(810\) −4.94714e6 1.11864e7i −0.264936 0.599072i
\(811\) 9.63993e6i 0.514661i −0.966323 0.257331i \(-0.917157\pi\)
0.966323 0.257331i \(-0.0828430\pi\)
\(812\) 0 0
\(813\) 3.14776e6 + 2.55225e6i 0.167022 + 0.135425i
\(814\) 2.80715e7 1.48493
\(815\) 2.61658e7 1.37988
\(816\) −2.09815e6 + 2.58771e6i −0.110309 + 0.136047i
\(817\) 1.39918e7i 0.733362i
\(818\) −1.25819e6 −0.0657449
\(819\) 0 0
\(820\) 1.60812e7 0.835186
\(821\) 2.73858e6i 0.141797i −0.997484 0.0708986i \(-0.977413\pi\)
0.997484 0.0708986i \(-0.0225867\pi\)
\(822\) 1.13065e7 1.39446e7i 0.583647 0.719826i
\(823\) 3.29152e6 0.169394 0.0846968 0.996407i \(-0.473008\pi\)
0.0846968 + 0.996407i \(0.473008\pi\)
\(824\) −7.97948e6 −0.409408
\(825\) −2.43261e6 1.97240e6i −0.124434 0.100893i
\(826\) 0 0
\(827\) 2.80950e7i 1.42845i 0.699916 + 0.714225i \(0.253221\pi\)
−0.699916 + 0.714225i \(0.746779\pi\)
\(828\) −2.87061e6 + 606428.i −0.145512 + 0.0307400i
\(829\) 1.76526e7i 0.892119i −0.895003 0.446059i \(-0.852827\pi\)
0.895003 0.446059i \(-0.147173\pi\)
\(830\) 1.95766e6i 0.0986375i
\(831\) 1.36629e7 1.68508e7i 0.686343 0.846483i
\(832\) 2.64469e6i 0.132454i
\(833\) 0 0
\(834\) −1.36543e6 + 1.68402e6i −0.0679759 + 0.0838363i
\(835\) 1.13871e7 0.565192
\(836\) 1.49869e7 0.741648
\(837\) 6.88368e6 1.34478e7i 0.339631 0.663493i
\(838\) 1.10089e7i 0.541542i
\(839\) −2.52447e7 −1.23813 −0.619065 0.785340i \(-0.712488\pi\)
−0.619065 + 0.785340i \(0.712488\pi\)
\(840\) 0 0
\(841\) 1.83955e7 0.896854
\(842\) 3.03796e6i 0.147673i
\(843\) −2.19722e7 1.78154e7i −1.06489 0.863431i
\(844\) 7.60701e6 0.367585
\(845\) 2.36166e6 0.113783
\(846\) −5.09834e6 + 1.07704e6i −0.244908 + 0.0517377i
\(847\) 0 0
\(848\) 8.91497e6i 0.425726i
\(849\) 1.38536e7 + 1.12327e7i 0.659619 + 0.534830i
\(850\) 1.48015e6i 0.0702680i
\(851\) 1.16844e7i 0.553072i
\(852\) −8.69005e6 7.04603e6i −0.410131 0.332541i
\(853\) 1.05962e7i 0.498630i 0.968422 + 0.249315i \(0.0802054\pi\)
−0.968422 + 0.249315i \(0.919795\pi\)
\(854\) 0 0
\(855\) −2.54447e7 + 5.37529e6i −1.19037 + 0.251470i
\(856\) −7.59106e6 −0.354094
\(857\) −1.46215e7 −0.680048 −0.340024 0.940417i \(-0.610435\pi\)
−0.340024 + 0.940417i \(0.610435\pi\)
\(858\) −1.41740e7 1.14925e7i −0.657314 0.532961i
\(859\) 9.57574e6i 0.442781i 0.975185 + 0.221391i \(0.0710596\pi\)
−0.975185 + 0.221391i \(0.928940\pi\)
\(860\) −5.60969e6 −0.258638
\(861\) 0 0
\(862\) 4.49838e6 0.206200
\(863\) 2.31365e7i 1.05747i 0.848786 + 0.528737i \(0.177334\pi\)
−0.848786 + 0.528737i \(0.822666\pi\)
\(864\) −1.76745e6 + 3.45283e6i −0.0805494 + 0.157359i
\(865\) 7.40975e6 0.336716
\(866\) −2.35275e7 −1.06606
\(867\) −7.09766e6 + 8.75372e6i −0.320677 + 0.395499i
\(868\) 0 0
\(869\) 1.53397e7i 0.689075i
\(870\) −2.95800e6 + 3.64818e6i −0.132495 + 0.163410i
\(871\) 1.77586e7i 0.793166i
\(872\) 2.44711e6i 0.108984i
\(873\) 2.41706e6 510614.i 0.107338 0.0226755i
\(874\) 6.23810e6i 0.276232i
\(875\) 0 0
\(876\) 1.58582e7 + 1.28581e7i 0.698224 + 0.566132i
\(877\) 2.38822e7 1.04852 0.524258 0.851560i \(-0.324343\pi\)
0.524258 + 0.851560i \(0.324343\pi\)
\(878\) −7.82945e6 −0.342764
\(879\) 285505. 352120.i 0.0124635 0.0153716i
\(880\) 6.00867e6i 0.261560i
\(881\) 9.62250e6 0.417684 0.208842 0.977949i \(-0.433030\pi\)
0.208842 + 0.977949i \(0.433030\pi\)
\(882\) 0 0
\(883\) −692985. −0.0299104 −0.0149552 0.999888i \(-0.504761\pi\)
−0.0149552 + 0.999888i \(0.504761\pi\)
\(884\) 8.62429e6i 0.371187i
\(885\) −2.49575e6 + 3.07807e6i −0.107113 + 0.132106i
\(886\) 1.35420e7 0.579560
\(887\) −8.07328e6 −0.344541 −0.172270 0.985050i \(-0.555110\pi\)
−0.172270 + 0.985050i \(0.555110\pi\)
\(888\) 1.19989e7 + 9.72893e6i 0.510634 + 0.414031i
\(889\) 0 0
\(890\) 1.83172e7i 0.775146i
\(891\) −1.08247e7 2.44767e7i −0.456795 1.03290i
\(892\) 1.87992e7i 0.791094i
\(893\) 1.10791e7i 0.464919i
\(894\) 6.58555e6 8.12212e6i 0.275580 0.339880i
\(895\) 3.95703e7i 1.65125i
\(896\) 0 0
\(897\) 4.78358e6 5.89971e6i 0.198505 0.244821i
\(898\) 1.09817e6 0.0454444
\(899\) −5.80090e6 −0.239385
\(900\) −356210. 1.68617e6i −0.0146589 0.0693898i
\(901\) 2.90716e7i 1.19304i
\(902\) 3.51868e7 1.44000
\(903\) 0 0
\(904\) −9.25182e6 −0.376535
\(905\) 9.65297e6i 0.391777i
\(906\) 2.20928e7 + 1.79132e7i 0.894192 + 0.725026i
\(907\) 3.87958e7 1.56591 0.782954 0.622080i \(-0.213712\pi\)
0.782954 + 0.622080i \(0.213712\pi\)
\(908\) 3.61886e6 0.145666
\(909\) 1.69731e6 + 8.03447e6i 0.0681321 + 0.322513i
\(910\) 0 0
\(911\) 1.13804e7i 0.454321i 0.973857 + 0.227160i \(0.0729442\pi\)
−0.973857 + 0.227160i \(0.927056\pi\)
\(912\) 6.40604e6 + 5.19412e6i 0.255037 + 0.206788i
\(913\) 4.28350e6i 0.170068i
\(914\) 2.17677e7i 0.861879i
\(915\) 2.10637e7 + 1.70788e7i 0.831730 + 0.674381i
\(916\) 1.24996e7i 0.492218i
\(917\) 0 0
\(918\) 5.76361e6 1.12596e7i 0.225729 0.440978i
\(919\) −2.18961e7 −0.855221 −0.427611 0.903963i \(-0.640645\pi\)
−0.427611 + 0.903963i \(0.640645\pi\)
\(920\) 2.50102e6 0.0974201
\(921\) 2.34259e6 + 1.89941e6i 0.0910013 + 0.0737854i
\(922\) 1.52925e7i 0.592448i
\(923\) 2.89621e7 1.11899
\(924\) 0 0
\(925\) −6.86330e6 −0.263741
\(926\) 2.69625e7i 1.03331i
\(927\) 2.96429e7 6.26217e6i 1.13298 0.239346i
\(928\) 1.48943e6 0.0567742
\(929\) −3.17704e7 −1.20777 −0.603885 0.797072i \(-0.706381\pi\)
−0.603885 + 0.797072i \(0.706381\pi\)
\(930\) −8.11058e6 + 1.00030e7i −0.307500 + 0.379247i
\(931\) 0 0
\(932\) 2.52772e7i 0.953211i
\(933\) −2.51006e7 + 3.09571e7i −0.944016 + 1.16428i
\(934\) 1.62754e7i 0.610470i
\(935\) 1.95942e7i 0.732990i
\(936\) −2.07551e6 9.82472e6i −0.0774346 0.366548i
\(937\) 9.04032e6i 0.336384i −0.985754 0.168192i \(-0.946207\pi\)
0.985754 0.168192i \(-0.0537928\pi\)
\(938\) 0 0
\(939\) 5.12415e6 + 4.15474e6i 0.189652 + 0.153773i
\(940\) 4.44193e6 0.163965
\(941\) −6.45640e6 −0.237693 −0.118847 0.992913i \(-0.537920\pi\)
−0.118847 + 0.992913i \(0.537920\pi\)
\(942\) 7.17384e6 8.84767e6i 0.263405 0.324864i
\(943\) 1.46460e7i 0.536339i
\(944\) 1.25668e6 0.0458981
\(945\) 0 0
\(946\) −1.22744e7 −0.445936
\(947\) 3.57334e7i 1.29479i −0.762154 0.647396i \(-0.775858\pi\)
0.762154 0.647396i \(-0.224142\pi\)
\(948\) 5.31636e6 6.55680e6i 0.192129 0.236958i
\(949\) −5.28523e7 −1.90501
\(950\) −3.66420e6 −0.131726
\(951\) −437970. 355113.i −0.0157034 0.0127326i
\(952\) 0 0
\(953\) 1.85895e7i 0.663033i −0.943449 0.331516i \(-0.892440\pi\)
0.943449 0.331516i \(-0.107560\pi\)
\(954\) −6.99632e6 3.31181e7i −0.248885 1.17813i
\(955\) 3.41626e7i 1.21211i
\(956\) 1.70579e7i 0.603644i
\(957\) −6.47233e6 + 7.98248e6i −0.228444 + 0.281746i
\(958\) 9.38022e6i 0.330217i
\(959\) 0 0
\(960\) 2.08246e6 2.56835e6i 0.0729289 0.0899449i
\(961\) 1.27236e7 0.444428
\(962\) −3.99900e7 −1.39320
\(963\) 2.81999e7 5.95734e6i 0.979901 0.207008i
\(964\) 4.62219e6i 0.160197i
\(965\) −1.06305e6 −0.0367482
\(966\) 0 0
\(967\) 4.34595e7 1.49458 0.747288 0.664500i \(-0.231355\pi\)
0.747288 + 0.664500i \(0.231355\pi\)
\(968\) 2.84015e6i 0.0974210i
\(969\) −2.08900e7 1.69379e7i −0.714708 0.579497i
\(970\) −2.10587e6 −0.0718624
\(971\) 4.52687e7 1.54081 0.770407 0.637553i \(-0.220053\pi\)
0.770407 + 0.637553i \(0.220053\pi\)
\(972\) 3.85614e6 1.42139e7i 0.130914 0.482557i
\(973\) 0 0
\(974\) 1.71066e7i 0.577785i
\(975\) 3.46543e6 + 2.80983e6i 0.116747 + 0.0946605i
\(976\) 8.59964e6i 0.288972i
\(977\) 1.79054e7i 0.600133i 0.953918 + 0.300067i \(0.0970089\pi\)
−0.953918 + 0.300067i \(0.902991\pi\)
\(978\) 2.44722e7 + 1.98424e7i 0.818136 + 0.663358i
\(979\) 4.00793e7i 1.33648i
\(980\) 0 0
\(981\) −1.92045e6 9.09074e6i −0.0637135 0.301597i
\(982\) 2.38712e6 0.0789942
\(983\) −1.12555e7 −0.371519 −0.185760 0.982595i \(-0.559475\pi\)
−0.185760 + 0.982595i \(0.559475\pi\)
\(984\) 1.50403e7 + 1.21949e7i 0.495185 + 0.401505i
\(985\) 2.89241e7i 0.949881i
\(986\) −4.85702e6 −0.159103
\(987\) 0 0
\(988\) −2.13500e7 −0.695834
\(989\) 5.10904e6i 0.166092i
\(990\) 4.71551e6 + 2.23215e7i 0.152912 + 0.723829i
\(991\) 3.85163e6 0.124583 0.0622917 0.998058i \(-0.480159\pi\)
0.0622917 + 0.998058i \(0.480159\pi\)
\(992\) 4.08389e6 0.131764
\(993\) 2.15146e6 2.65344e6i 0.0692404 0.0853959i
\(994\) 0 0
\(995\) 1.27245e7i 0.407458i
\(996\) 1.48456e6 1.83094e6i 0.0474187 0.0584826i
\(997\) 5.88461e6i 0.187491i 0.995596 + 0.0937454i \(0.0298840\pi\)
−0.995596 + 0.0937454i \(0.970116\pi\)
\(998\) 1.71372e7i 0.544645i
\(999\) −5.22098e7 2.67253e7i −1.65515 0.847245i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.d.a.293.9 28
3.2 odd 2 inner 294.6.d.a.293.20 28
7.4 even 3 42.6.f.a.5.8 yes 28
7.5 odd 6 42.6.f.a.17.3 yes 28
7.6 odd 2 inner 294.6.d.a.293.19 28
21.5 even 6 42.6.f.a.17.8 yes 28
21.11 odd 6 42.6.f.a.5.3 28
21.20 even 2 inner 294.6.d.a.293.10 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.f.a.5.3 28 21.11 odd 6
42.6.f.a.5.8 yes 28 7.4 even 3
42.6.f.a.17.3 yes 28 7.5 odd 6
42.6.f.a.17.8 yes 28 21.5 even 6
294.6.d.a.293.9 28 1.1 even 1 trivial
294.6.d.a.293.10 28 21.20 even 2 inner
294.6.d.a.293.19 28 7.6 odd 2 inner
294.6.d.a.293.20 28 3.2 odd 2 inner