Properties

Label 294.6.e.l.79.1
Level $294$
Weight $6$
Character 294.79
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.79
Dual form 294.6.e.l.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(36.0000 - 62.3538i) q^{5} -36.0000 q^{6} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(-144.000 - 249.415i) q^{10} +(207.000 + 358.535i) q^{11} +(-72.0000 + 124.708i) q^{12} -1054.00 q^{13} -648.000 q^{15} +(-128.000 + 221.703i) q^{16} +(924.000 + 1600.41i) q^{17} +(162.000 + 280.592i) q^{18} +(-118.000 + 204.382i) q^{19} -1152.00 q^{20} +1656.00 q^{22} +(-1449.00 + 2509.74i) q^{23} +(288.000 + 498.831i) q^{24} +(-1029.50 - 1783.15i) q^{25} +(-2108.00 + 3651.16i) q^{26} +729.000 q^{27} -6522.00 q^{29} +(-1296.00 + 2244.74i) q^{30} +(-3100.00 - 5369.36i) q^{31} +(512.000 + 886.810i) q^{32} +(1863.00 - 3226.81i) q^{33} +7392.00 q^{34} +1296.00 q^{36} +(-4825.00 + 8357.15i) q^{37} +(472.000 + 817.528i) q^{38} +(4743.00 + 8215.12i) q^{39} +(-2304.00 + 3990.65i) q^{40} +8484.00 q^{41} -10804.0 q^{43} +(3312.00 - 5736.55i) q^{44} +(2916.00 + 5050.66i) q^{45} +(5796.00 + 10039.0i) q^{46} +(-30.0000 + 51.9615i) q^{47} +2304.00 q^{48} -8236.00 q^{50} +(8316.00 - 14403.7i) q^{51} +(8432.00 + 14604.7i) q^{52} +(-11253.0 - 19490.8i) q^{53} +(1458.00 - 2525.33i) q^{54} +29808.0 q^{55} +2124.00 q^{57} +(-13044.0 + 22592.9i) q^{58} +(14088.0 + 24401.1i) q^{59} +(5184.00 + 8978.95i) q^{60} +(17597.0 - 30478.9i) q^{61} -24800.0 q^{62} +4096.00 q^{64} +(-37944.0 + 65720.9i) q^{65} +(-7452.00 - 12907.2i) q^{66} +(14108.0 + 24435.8i) q^{67} +(14784.0 - 25606.6i) q^{68} +26082.0 q^{69} -6642.00 q^{71} +(2592.00 - 4489.48i) q^{72} +(26045.0 + 45111.3i) q^{73} +(19300.0 + 33428.6i) q^{74} +(-9265.50 + 16048.3i) q^{75} +3776.00 q^{76} +37944.0 q^{78} +(-21670.0 + 37533.5i) q^{79} +(9216.00 + 15962.6i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(16968.0 - 29389.4i) q^{82} +25716.0 q^{83} +133056. q^{85} +(-21608.0 + 37426.2i) q^{86} +(29349.0 + 50834.0i) q^{87} +(-13248.0 - 22946.2i) q^{88} +(-49362.0 + 85497.5i) q^{89} +23328.0 q^{90} +46368.0 q^{92} +(-27900.0 + 48324.2i) q^{93} +(120.000 + 207.846i) q^{94} +(8496.00 + 14715.5i) q^{95} +(4608.00 - 7981.29i) q^{96} -148954. q^{97} -33534.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 9 q^{3} - 16 q^{4} + 72 q^{5} - 72 q^{6} - 128 q^{8} - 81 q^{9} - 288 q^{10} + 414 q^{11} - 144 q^{12} - 2108 q^{13} - 1296 q^{15} - 256 q^{16} + 1848 q^{17} + 324 q^{18} - 236 q^{19} - 2304 q^{20}+ \cdots - 67068 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.353553 0.612372i
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) 36.0000 62.3538i 0.643988 1.11542i −0.340547 0.940228i \(-0.610612\pi\)
0.984534 0.175192i \(-0.0560545\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) −144.000 249.415i −0.455368 0.788720i
\(11\) 207.000 + 358.535i 0.515809 + 0.893407i 0.999832 + 0.0183515i \(0.00584179\pi\)
−0.484023 + 0.875055i \(0.660825\pi\)
\(12\) −72.0000 + 124.708i −0.144338 + 0.250000i
\(13\) −1054.00 −1.72975 −0.864873 0.501991i \(-0.832601\pi\)
−0.864873 + 0.501991i \(0.832601\pi\)
\(14\) 0 0
\(15\) −648.000 −0.743613
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) 924.000 + 1600.41i 0.775443 + 1.34311i 0.934545 + 0.355844i \(0.115807\pi\)
−0.159103 + 0.987262i \(0.550860\pi\)
\(18\) 162.000 + 280.592i 0.117851 + 0.204124i
\(19\) −118.000 + 204.382i −0.0749891 + 0.129885i −0.901082 0.433650i \(-0.857226\pi\)
0.826092 + 0.563535i \(0.190559\pi\)
\(20\) −1152.00 −0.643988
\(21\) 0 0
\(22\) 1656.00 0.729464
\(23\) −1449.00 + 2509.74i −0.571148 + 0.989258i 0.425300 + 0.905052i \(0.360169\pi\)
−0.996448 + 0.0842053i \(0.973165\pi\)
\(24\) 288.000 + 498.831i 0.102062 + 0.176777i
\(25\) −1029.50 1783.15i −0.329440 0.570607i
\(26\) −2108.00 + 3651.16i −0.611557 + 1.05925i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −6522.00 −1.44008 −0.720039 0.693934i \(-0.755876\pi\)
−0.720039 + 0.693934i \(0.755876\pi\)
\(30\) −1296.00 + 2244.74i −0.262907 + 0.455368i
\(31\) −3100.00 5369.36i −0.579372 1.00350i −0.995551 0.0942192i \(-0.969965\pi\)
0.416180 0.909282i \(-0.363369\pi\)
\(32\) 512.000 + 886.810i 0.0883883 + 0.153093i
\(33\) 1863.00 3226.81i 0.297802 0.515809i
\(34\) 7392.00 1.09664
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −4825.00 + 8357.15i −0.579419 + 1.00358i 0.416127 + 0.909307i \(0.363387\pi\)
−0.995546 + 0.0942771i \(0.969946\pi\)
\(38\) 472.000 + 817.528i 0.0530253 + 0.0918425i
\(39\) 4743.00 + 8215.12i 0.499335 + 0.864873i
\(40\) −2304.00 + 3990.65i −0.227684 + 0.394360i
\(41\) 8484.00 0.788208 0.394104 0.919066i \(-0.371055\pi\)
0.394104 + 0.919066i \(0.371055\pi\)
\(42\) 0 0
\(43\) −10804.0 −0.891073 −0.445537 0.895264i \(-0.646987\pi\)
−0.445537 + 0.895264i \(0.646987\pi\)
\(44\) 3312.00 5736.55i 0.257904 0.446703i
\(45\) 2916.00 + 5050.66i 0.214663 + 0.371806i
\(46\) 5796.00 + 10039.0i 0.403863 + 0.699511i
\(47\) −30.0000 + 51.9615i −0.00198096 + 0.00343113i −0.867014 0.498283i \(-0.833964\pi\)
0.865033 + 0.501715i \(0.167297\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) −8236.00 −0.465899
\(51\) 8316.00 14403.7i 0.447702 0.775443i
\(52\) 8432.00 + 14604.7i 0.432436 + 0.749002i
\(53\) −11253.0 19490.8i −0.550274 0.953102i −0.998255 0.0590587i \(-0.981190\pi\)
0.447981 0.894043i \(-0.352143\pi\)
\(54\) 1458.00 2525.33i 0.0680414 0.117851i
\(55\) 29808.0 1.32870
\(56\) 0 0
\(57\) 2124.00 0.0865899
\(58\) −13044.0 + 22592.9i −0.509144 + 0.881864i
\(59\) 14088.0 + 24401.1i 0.526889 + 0.912599i 0.999509 + 0.0313325i \(0.00997507\pi\)
−0.472620 + 0.881266i \(0.656692\pi\)
\(60\) 5184.00 + 8978.95i 0.185903 + 0.321994i
\(61\) 17597.0 30478.9i 0.605500 1.04876i −0.386472 0.922301i \(-0.626307\pi\)
0.991972 0.126456i \(-0.0403601\pi\)
\(62\) −24800.0 −0.819356
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −37944.0 + 65720.9i −1.11393 + 1.92939i
\(66\) −7452.00 12907.2i −0.210578 0.364732i
\(67\) 14108.0 + 24435.8i 0.383953 + 0.665027i 0.991623 0.129163i \(-0.0412290\pi\)
−0.607670 + 0.794190i \(0.707896\pi\)
\(68\) 14784.0 25606.6i 0.387721 0.671553i
\(69\) 26082.0 0.659505
\(70\) 0 0
\(71\) −6642.00 −0.156370 −0.0781849 0.996939i \(-0.524912\pi\)
−0.0781849 + 0.996939i \(0.524912\pi\)
\(72\) 2592.00 4489.48i 0.0589256 0.102062i
\(73\) 26045.0 + 45111.3i 0.572028 + 0.990781i 0.996358 + 0.0852736i \(0.0271764\pi\)
−0.424330 + 0.905508i \(0.639490\pi\)
\(74\) 19300.0 + 33428.6i 0.409711 + 0.709641i
\(75\) −9265.50 + 16048.3i −0.190202 + 0.329440i
\(76\) 3776.00 0.0749891
\(77\) 0 0
\(78\) 37944.0 0.706166
\(79\) −21670.0 + 37533.5i −0.390653 + 0.676631i −0.992536 0.121954i \(-0.961084\pi\)
0.601883 + 0.798584i \(0.294417\pi\)
\(80\) 9216.00 + 15962.6i 0.160997 + 0.278855i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 16968.0 29389.4i 0.278674 0.482677i
\(83\) 25716.0 0.409740 0.204870 0.978789i \(-0.434323\pi\)
0.204870 + 0.978789i \(0.434323\pi\)
\(84\) 0 0
\(85\) 133056. 1.99750
\(86\) −21608.0 + 37426.2i −0.315042 + 0.545669i
\(87\) 29349.0 + 50834.0i 0.415715 + 0.720039i
\(88\) −13248.0 22946.2i −0.182366 0.315867i
\(89\) −49362.0 + 85497.5i −0.660568 + 1.14414i 0.319898 + 0.947452i \(0.396351\pi\)
−0.980467 + 0.196686i \(0.936982\pi\)
\(90\) 23328.0 0.303579
\(91\) 0 0
\(92\) 46368.0 0.571148
\(93\) −27900.0 + 48324.2i −0.334501 + 0.579372i
\(94\) 120.000 + 207.846i 0.00140075 + 0.00242618i
\(95\) 8496.00 + 14715.5i 0.0965841 + 0.167289i
\(96\) 4608.00 7981.29i 0.0510310 0.0883883i
\(97\) −148954. −1.60740 −0.803698 0.595038i \(-0.797137\pi\)
−0.803698 + 0.595038i \(0.797137\pi\)
\(98\) 0 0
\(99\) −33534.0 −0.343872
\(100\) −16472.0 + 28530.3i −0.164720 + 0.285303i
\(101\) −24174.0 41870.6i −0.235801 0.408419i 0.723704 0.690110i \(-0.242438\pi\)
−0.959505 + 0.281691i \(0.909105\pi\)
\(102\) −33264.0 57614.9i −0.316573 0.548321i
\(103\) 91796.0 158995.i 0.852571 1.47670i −0.0263087 0.999654i \(-0.508375\pi\)
0.878880 0.477043i \(-0.158291\pi\)
\(104\) 67456.0 0.611557
\(105\) 0 0
\(106\) −90024.0 −0.778204
\(107\) 1119.00 1938.16i 0.00944867 0.0163656i −0.861262 0.508160i \(-0.830326\pi\)
0.870711 + 0.491795i \(0.163659\pi\)
\(108\) −5832.00 10101.3i −0.0481125 0.0833333i
\(109\) −30079.0 52098.4i −0.242492 0.420008i 0.718932 0.695081i \(-0.244631\pi\)
−0.961423 + 0.275073i \(0.911298\pi\)
\(110\) 59616.0 103258.i 0.469766 0.813658i
\(111\) 86850.0 0.669056
\(112\) 0 0
\(113\) −7014.00 −0.0516737 −0.0258369 0.999666i \(-0.508225\pi\)
−0.0258369 + 0.999666i \(0.508225\pi\)
\(114\) 4248.00 7357.75i 0.0306142 0.0530253i
\(115\) 104328. + 180701.i 0.735625 + 1.27414i
\(116\) 52176.0 + 90371.5i 0.360019 + 0.623572i
\(117\) 42687.0 73936.1i 0.288291 0.499335i
\(118\) 112704. 0.745134
\(119\) 0 0
\(120\) 41472.0 0.262907
\(121\) −5172.50 + 8959.03i −0.0321172 + 0.0556285i
\(122\) −70388.0 121916.i −0.428153 0.741583i
\(123\) −38178.0 66126.2i −0.227536 0.394104i
\(124\) −49600.0 + 85909.7i −0.289686 + 0.501751i
\(125\) 76752.0 0.439354
\(126\) 0 0
\(127\) −1780.00 −0.00979289 −0.00489644 0.999988i \(-0.501559\pi\)
−0.00489644 + 0.999988i \(0.501559\pi\)
\(128\) 8192.00 14189.0i 0.0441942 0.0765466i
\(129\) 48618.0 + 84208.8i 0.257231 + 0.445537i
\(130\) 151776. + 262884.i 0.787671 + 1.36429i
\(131\) 132570. 229618.i 0.674943 1.16904i −0.301543 0.953453i \(-0.597502\pi\)
0.976486 0.215583i \(-0.0691651\pi\)
\(132\) −59616.0 −0.297802
\(133\) 0 0
\(134\) 112864. 0.542992
\(135\) 26244.0 45455.9i 0.123935 0.214663i
\(136\) −59136.0 102427.i −0.274160 0.474860i
\(137\) 103365. + 179033.i 0.470514 + 0.814953i 0.999431 0.0337198i \(-0.0107354\pi\)
−0.528918 + 0.848673i \(0.677402\pi\)
\(138\) 52164.0 90350.7i 0.233170 0.403863i
\(139\) −236836. −1.03971 −0.519853 0.854256i \(-0.674013\pi\)
−0.519853 + 0.854256i \(0.674013\pi\)
\(140\) 0 0
\(141\) 540.000 0.00228742
\(142\) −13284.0 + 23008.6i −0.0552851 + 0.0957566i
\(143\) −218178. 377895.i −0.892218 1.54537i
\(144\) −10368.0 17957.9i −0.0416667 0.0721688i
\(145\) −234792. + 406672.i −0.927392 + 1.60629i
\(146\) 208360. 0.808970
\(147\) 0 0
\(148\) 154400. 0.579419
\(149\) −236853. + 410241.i −0.874004 + 1.51382i −0.0161832 + 0.999869i \(0.505151\pi\)
−0.857820 + 0.513950i \(0.828182\pi\)
\(150\) 37062.0 + 64193.3i 0.134493 + 0.232949i
\(151\) −197476. 342038.i −0.704810 1.22077i −0.966760 0.255685i \(-0.917699\pi\)
0.261950 0.965081i \(-0.415634\pi\)
\(152\) 7552.00 13080.4i 0.0265126 0.0459212i
\(153\) −149688. −0.516962
\(154\) 0 0
\(155\) −446400. −1.49243
\(156\) 75888.0 131442.i 0.249667 0.432436i
\(157\) 72545.0 + 125652.i 0.234887 + 0.406836i 0.959240 0.282594i \(-0.0911948\pi\)
−0.724353 + 0.689429i \(0.757861\pi\)
\(158\) 86680.0 + 150134.i 0.276233 + 0.478450i
\(159\) −101277. + 175417.i −0.317701 + 0.550274i
\(160\) 73728.0 0.227684
\(161\) 0 0
\(162\) −26244.0 −0.0785674
\(163\) −265240. + 459409.i −0.781934 + 1.35435i 0.148880 + 0.988855i \(0.452433\pi\)
−0.930814 + 0.365494i \(0.880900\pi\)
\(164\) −67872.0 117558.i −0.197052 0.341304i
\(165\) −134136. 232330.i −0.383562 0.664349i
\(166\) 51432.0 89082.8i 0.144865 0.250913i
\(167\) −312348. −0.866658 −0.433329 0.901236i \(-0.642661\pi\)
−0.433329 + 0.901236i \(0.642661\pi\)
\(168\) 0 0
\(169\) 739623. 1.99202
\(170\) 266112. 460920.i 0.706223 1.22321i
\(171\) −9558.00 16554.9i −0.0249964 0.0432950i
\(172\) 86432.0 + 149705.i 0.222768 + 0.385846i
\(173\) 37554.0 65045.4i 0.0953984 0.165235i −0.814376 0.580337i \(-0.802921\pi\)
0.909775 + 0.415102i \(0.136254\pi\)
\(174\) 234792. 0.587909
\(175\) 0 0
\(176\) −105984. −0.257904
\(177\) 126792. 219610.i 0.304200 0.526889i
\(178\) 197448. + 341990.i 0.467092 + 0.809028i
\(179\) −193359. 334908.i −0.451057 0.781254i 0.547395 0.836875i \(-0.315620\pi\)
−0.998452 + 0.0556203i \(0.982286\pi\)
\(180\) 46656.0 80810.6i 0.107331 0.185903i
\(181\) −417598. −0.947462 −0.473731 0.880669i \(-0.657093\pi\)
−0.473731 + 0.880669i \(0.657093\pi\)
\(182\) 0 0
\(183\) −316746. −0.699171
\(184\) 92736.0 160623.i 0.201931 0.349755i
\(185\) 347400. + 601714.i 0.746278 + 1.29259i
\(186\) 111600. + 193297.i 0.236528 + 0.409678i
\(187\) −382536. + 662572.i −0.799960 + 1.38557i
\(188\) 960.000 0.00198096
\(189\) 0 0
\(190\) 67968.0 0.136590
\(191\) 494025. 855676.i 0.979863 1.69717i 0.317013 0.948421i \(-0.397320\pi\)
0.662850 0.748752i \(-0.269347\pi\)
\(192\) −18432.0 31925.2i −0.0360844 0.0625000i
\(193\) 204629. + 354428.i 0.395434 + 0.684912i 0.993156 0.116791i \(-0.0372609\pi\)
−0.597723 + 0.801703i \(0.703928\pi\)
\(194\) −297908. + 515992.i −0.568300 + 0.984325i
\(195\) 682992. 1.28626
\(196\) 0 0
\(197\) −922230. −1.69307 −0.846533 0.532337i \(-0.821314\pi\)
−0.846533 + 0.532337i \(0.821314\pi\)
\(198\) −67068.0 + 116165.i −0.121577 + 0.210578i
\(199\) −94744.0 164101.i −0.169597 0.293751i 0.768681 0.639632i \(-0.220913\pi\)
−0.938278 + 0.345881i \(0.887580\pi\)
\(200\) 65888.0 + 114121.i 0.116475 + 0.201740i
\(201\) 126972. 219922.i 0.221676 0.383953i
\(202\) −193392. −0.333473
\(203\) 0 0
\(204\) −266112. −0.447702
\(205\) 305424. 529010.i 0.507596 0.879183i
\(206\) −367184. 635981.i −0.602859 1.04418i
\(207\) −117369. 203289.i −0.190383 0.329753i
\(208\) 134912. 233674.i 0.216218 0.374501i
\(209\) −97704.0 −0.154720
\(210\) 0 0
\(211\) −611380. −0.945377 −0.472689 0.881230i \(-0.656716\pi\)
−0.472689 + 0.881230i \(0.656716\pi\)
\(212\) −180048. + 311852.i −0.275137 + 0.476551i
\(213\) 29889.0 + 51769.3i 0.0451401 + 0.0781849i
\(214\) −4476.00 7752.66i −0.00668122 0.0115722i
\(215\) −388944. + 673671.i −0.573840 + 0.993920i
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) −240632. −0.342935
\(219\) 234405. 406001.i 0.330260 0.572028i
\(220\) −238464. 413032.i −0.332174 0.575343i
\(221\) −973896. 1.68684e6i −1.34132 2.32323i
\(222\) 173700. 300857.i 0.236547 0.409711i
\(223\) −783256. −1.05473 −0.527365 0.849639i \(-0.676820\pi\)
−0.527365 + 0.849639i \(0.676820\pi\)
\(224\) 0 0
\(225\) 166779. 0.219627
\(226\) −14028.0 + 24297.2i −0.0182694 + 0.0316436i
\(227\) −40356.0 69898.6i −0.0519809 0.0900335i 0.838864 0.544341i \(-0.183220\pi\)
−0.890845 + 0.454307i \(0.849887\pi\)
\(228\) −16992.0 29431.0i −0.0216475 0.0374945i
\(229\) −76369.0 + 132275.i −0.0962340 + 0.166682i −0.910123 0.414338i \(-0.864013\pi\)
0.813889 + 0.581020i \(0.197346\pi\)
\(230\) 834624. 1.04033
\(231\) 0 0
\(232\) 417408. 0.509144
\(233\) 177141. 306817.i 0.213761 0.370246i −0.739127 0.673566i \(-0.764762\pi\)
0.952889 + 0.303320i \(0.0980952\pi\)
\(234\) −170748. 295744.i −0.203852 0.353083i
\(235\) 2160.00 + 3741.23i 0.00255143 + 0.00441921i
\(236\) 225408. 390418.i 0.263445 0.456299i
\(237\) 390060. 0.451087
\(238\) 0 0
\(239\) 275370. 0.311833 0.155916 0.987770i \(-0.450167\pi\)
0.155916 + 0.987770i \(0.450167\pi\)
\(240\) 82944.0 143663.i 0.0929516 0.160997i
\(241\) 292349. + 506363.i 0.324234 + 0.561590i 0.981357 0.192193i \(-0.0615600\pi\)
−0.657123 + 0.753784i \(0.728227\pi\)
\(242\) 20690.0 + 35836.1i 0.0227103 + 0.0393353i
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) −563104. −0.605500
\(245\) 0 0
\(246\) −305424. −0.321785
\(247\) 124372. 215419.i 0.129712 0.224668i
\(248\) 198400. + 343639.i 0.204839 + 0.354791i
\(249\) −115722. 200436.i −0.118282 0.204870i
\(250\) 153504. 265877.i 0.155335 0.269048i
\(251\) −184752. −0.185099 −0.0925497 0.995708i \(-0.529502\pi\)
−0.0925497 + 0.995708i \(0.529502\pi\)
\(252\) 0 0
\(253\) −1.19977e6 −1.17841
\(254\) −3560.00 + 6166.10i −0.00346231 + 0.00599689i
\(255\) −598752. 1.03707e6i −0.576629 0.998751i
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) −117990. + 204365.i −0.111433 + 0.193007i −0.916348 0.400383i \(-0.868877\pi\)
0.804915 + 0.593389i \(0.202211\pi\)
\(258\) 388944. 0.363779
\(259\) 0 0
\(260\) 1.21421e6 1.11393
\(261\) 264141. 457506.i 0.240013 0.415715i
\(262\) −530280. 918472.i −0.477257 0.826633i
\(263\) 122247. + 211738.i 0.108981 + 0.188760i 0.915358 0.402642i \(-0.131908\pi\)
−0.806377 + 0.591402i \(0.798575\pi\)
\(264\) −119232. + 206516.i −0.105289 + 0.182366i
\(265\) −1.62043e6 −1.41748
\(266\) 0 0
\(267\) 888516. 0.762759
\(268\) 225728. 390972.i 0.191977 0.332513i
\(269\) −763896. 1.32311e6i −0.643656 1.11484i −0.984610 0.174764i \(-0.944084\pi\)
0.340955 0.940080i \(-0.389250\pi\)
\(270\) −104976. 181824.i −0.0876356 0.151789i
\(271\) −1.03528e6 + 1.79316e6i −0.856317 + 1.48318i 0.0191007 + 0.999818i \(0.493920\pi\)
−0.875418 + 0.483367i \(0.839414\pi\)
\(272\) −473088. −0.387721
\(273\) 0 0
\(274\) 826920. 0.665407
\(275\) 426213. 738223.i 0.339856 0.588648i
\(276\) −208656. 361403.i −0.164876 0.285574i
\(277\) 1.20364e6 + 2.08476e6i 0.942530 + 1.63251i 0.760622 + 0.649195i \(0.224894\pi\)
0.181909 + 0.983315i \(0.441773\pi\)
\(278\) −473672. + 820424.i −0.367592 + 0.636688i
\(279\) 502200. 0.386248
\(280\) 0 0
\(281\) 341886. 0.258295 0.129147 0.991625i \(-0.458776\pi\)
0.129147 + 0.991625i \(0.458776\pi\)
\(282\) 1080.00 1870.61i 0.000808725 0.00140075i
\(283\) −289282. 501051.i −0.214712 0.371891i 0.738472 0.674284i \(-0.235548\pi\)
−0.953183 + 0.302393i \(0.902214\pi\)
\(284\) 53136.0 + 92034.3i 0.0390925 + 0.0677101i
\(285\) 76464.0 132440.i 0.0557628 0.0965841i
\(286\) −1.74542e6 −1.26179
\(287\) 0 0
\(288\) −82944.0 −0.0589256
\(289\) −997624. + 1.72793e6i −0.702623 + 1.21698i
\(290\) 939168. + 1.62669e6i 0.655765 + 1.13582i
\(291\) 670293. + 1.16098e6i 0.464015 + 0.803698i
\(292\) 416720. 721780.i 0.286014 0.495391i
\(293\) 780540. 0.531161 0.265580 0.964089i \(-0.414436\pi\)
0.265580 + 0.964089i \(0.414436\pi\)
\(294\) 0 0
\(295\) 2.02867e6 1.35724
\(296\) 308800. 534857.i 0.204856 0.354820i
\(297\) 150903. + 261372.i 0.0992674 + 0.171936i
\(298\) 947412. + 1.64097e6i 0.618014 + 1.07043i
\(299\) 1.52725e6 2.64527e6i 0.987941 1.71116i
\(300\) 296496. 0.190202
\(301\) 0 0
\(302\) −1.57981e6 −0.996752
\(303\) −217566. + 376835.i −0.136140 + 0.235801i
\(304\) −30208.0 52321.8i −0.0187473 0.0324712i
\(305\) −1.26698e6 2.19448e6i −0.779869 1.35077i
\(306\) −299376. + 518534.i −0.182774 + 0.316573i
\(307\) −2.24825e6 −1.36144 −0.680721 0.732543i \(-0.738333\pi\)
−0.680721 + 0.732543i \(0.738333\pi\)
\(308\) 0 0
\(309\) −1.65233e6 −0.984465
\(310\) −892800. + 1.54637e6i −0.527655 + 0.913925i
\(311\) −290706. 503518.i −0.170433 0.295198i 0.768138 0.640284i \(-0.221183\pi\)
−0.938571 + 0.345086i \(0.887850\pi\)
\(312\) −303552. 525767.i −0.176541 0.305779i
\(313\) 1.00204e6 1.73558e6i 0.578125 1.00134i −0.417569 0.908645i \(-0.637118\pi\)
0.995694 0.0926973i \(-0.0295489\pi\)
\(314\) 580360. 0.332180
\(315\) 0 0
\(316\) 693440. 0.390653
\(317\) 639159. 1.10706e6i 0.357241 0.618759i −0.630258 0.776386i \(-0.717051\pi\)
0.987499 + 0.157627i \(0.0503843\pi\)
\(318\) 405108. + 701668.i 0.224648 + 0.389102i
\(319\) −1.35005e6 2.33836e6i −0.742804 1.28657i
\(320\) 147456. 255401.i 0.0804984 0.139427i
\(321\) −20142.0 −0.0109104
\(322\) 0 0
\(323\) −436128. −0.232599
\(324\) −52488.0 + 90911.9i −0.0277778 + 0.0481125i
\(325\) 1.08509e6 + 1.87944e6i 0.569847 + 0.987005i
\(326\) 1.06096e6 + 1.83764e6i 0.552911 + 0.957669i
\(327\) −270711. + 468885.i −0.140003 + 0.242492i
\(328\) −542976. −0.278674
\(329\) 0 0
\(330\) −1.07309e6 −0.542438
\(331\) −1.29906e6 + 2.25003e6i −0.651716 + 1.12881i 0.330990 + 0.943634i \(0.392617\pi\)
−0.982706 + 0.185171i \(0.940716\pi\)
\(332\) −205728. 356331.i −0.102435 0.177423i
\(333\) −390825. 676929.i −0.193140 0.334528i
\(334\) −624696. + 1.08201e6i −0.306410 + 0.530717i
\(335\) 2.03155e6 0.989045
\(336\) 0 0
\(337\) 3.06190e6 1.46864 0.734321 0.678802i \(-0.237501\pi\)
0.734321 + 0.678802i \(0.237501\pi\)
\(338\) 1.47925e6 2.56213e6i 0.704285 1.21986i
\(339\) 31563.0 + 54668.7i 0.0149169 + 0.0258369i
\(340\) −1.06445e6 1.84368e6i −0.499375 0.864944i
\(341\) 1.28340e6 2.22291e6i 0.597690 1.03523i
\(342\) −76464.0 −0.0353502
\(343\) 0 0
\(344\) 691456. 0.315042
\(345\) 938952. 1.62631e6i 0.424713 0.735625i
\(346\) −150216. 260182.i −0.0674568 0.116839i
\(347\) 712749. + 1.23452e6i 0.317770 + 0.550394i 0.980022 0.198887i \(-0.0637327\pi\)
−0.662252 + 0.749281i \(0.730399\pi\)
\(348\) 469584. 813343.i 0.207857 0.360019i
\(349\) 2.93322e6 1.28908 0.644542 0.764569i \(-0.277048\pi\)
0.644542 + 0.764569i \(0.277048\pi\)
\(350\) 0 0
\(351\) −768366. −0.332890
\(352\) −211968. + 367139.i −0.0911830 + 0.157934i
\(353\) 1.00638e6 + 1.74310e6i 0.429858 + 0.744536i 0.996860 0.0791801i \(-0.0252302\pi\)
−0.567002 + 0.823716i \(0.691897\pi\)
\(354\) −507168. 878441.i −0.215102 0.372567i
\(355\) −239112. + 414154.i −0.100700 + 0.174418i
\(356\) 1.57958e6 0.660568
\(357\) 0 0
\(358\) −1.54687e6 −0.637891
\(359\) −2.03855e6 + 3.53087e6i −0.834806 + 1.44593i 0.0593826 + 0.998235i \(0.481087\pi\)
−0.894188 + 0.447691i \(0.852247\pi\)
\(360\) −186624. 323242.i −0.0758947 0.131453i
\(361\) 1.21020e6 + 2.09613e6i 0.488753 + 0.846546i
\(362\) −835196. + 1.44660e6i −0.334979 + 0.580200i
\(363\) 93105.0 0.0370857
\(364\) 0 0
\(365\) 3.75048e6 1.47352
\(366\) −633492. + 1.09724e6i −0.247194 + 0.428153i
\(367\) −297376. 515070.i −0.115250 0.199619i 0.802630 0.596478i \(-0.203434\pi\)
−0.917880 + 0.396859i \(0.870100\pi\)
\(368\) −370944. 642494.i −0.142787 0.247314i
\(369\) −343602. + 595136.i −0.131368 + 0.227536i
\(370\) 2.77920e6 1.05540
\(371\) 0 0
\(372\) 892800. 0.334501
\(373\) −1.02261e6 + 1.77121e6i −0.380573 + 0.659172i −0.991144 0.132789i \(-0.957607\pi\)
0.610571 + 0.791962i \(0.290940\pi\)
\(374\) 1.53014e6 + 2.65029e6i 0.565657 + 0.979747i
\(375\) −345384. 598223.i −0.126831 0.219677i
\(376\) 1920.00 3325.54i 0.000700377 0.00121309i
\(377\) 6.87419e6 2.49097
\(378\) 0 0
\(379\) −3.22198e6 −1.15219 −0.576096 0.817382i \(-0.695425\pi\)
−0.576096 + 0.817382i \(0.695425\pi\)
\(380\) 135936. 235448.i 0.0482920 0.0836443i
\(381\) 8010.00 + 13873.7i 0.00282696 + 0.00489644i
\(382\) −1.97610e6 3.42271e6i −0.692868 1.20008i
\(383\) 864828. 1.49793e6i 0.301254 0.521787i −0.675166 0.737666i \(-0.735928\pi\)
0.976420 + 0.215878i \(0.0692615\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) 1.63703e6 0.559228
\(387\) 437562. 757880.i 0.148512 0.257231i
\(388\) 1.19163e6 + 2.06397e6i 0.401849 + 0.696023i
\(389\) 874593. + 1.51484e6i 0.293043 + 0.507566i 0.974528 0.224267i \(-0.0719986\pi\)
−0.681484 + 0.731833i \(0.738665\pi\)
\(390\) 1.36598e6 2.36595e6i 0.454762 0.787671i
\(391\) −5.35550e6 −1.77157
\(392\) 0 0
\(393\) −2.38626e6 −0.779357
\(394\) −1.84446e6 + 3.19470e6i −0.598589 + 1.03679i
\(395\) 1.56024e6 + 2.70241e6i 0.503151 + 0.871484i
\(396\) 268272. + 464661.i 0.0859681 + 0.148901i
\(397\) −941023. + 1.62990e6i −0.299657 + 0.519021i −0.976057 0.217513i \(-0.930205\pi\)
0.676401 + 0.736534i \(0.263539\pi\)
\(398\) −757952. −0.239847
\(399\) 0 0
\(400\) 527104. 0.164720
\(401\) −2.09062e6 + 3.62106e6i −0.649253 + 1.12454i 0.334049 + 0.942556i \(0.391585\pi\)
−0.983302 + 0.181983i \(0.941748\pi\)
\(402\) −507888. 879688.i −0.156748 0.271496i
\(403\) 3.26740e6 + 5.65930e6i 1.00217 + 1.73580i
\(404\) −386784. + 669930.i −0.117900 + 0.204209i
\(405\) −472392. −0.143108
\(406\) 0 0
\(407\) −3.99510e6 −1.19548
\(408\) −532224. + 921839.i −0.158287 + 0.274160i
\(409\) 235841. + 408489.i 0.0697126 + 0.120746i 0.898775 0.438411i \(-0.144458\pi\)
−0.829062 + 0.559156i \(0.811125\pi\)
\(410\) −1.22170e6 2.11604e6i −0.358925 0.621676i
\(411\) 930285. 1.61130e6i 0.271651 0.470514i
\(412\) −2.93747e6 −0.852571
\(413\) 0 0
\(414\) −938952. −0.269242
\(415\) 925776. 1.60349e6i 0.263867 0.457032i
\(416\) −539648. 934698.i −0.152889 0.264812i
\(417\) 1.06576e6 + 1.84595e6i 0.300137 + 0.519853i
\(418\) −195408. + 338457.i −0.0547018 + 0.0947463i
\(419\) −3.54094e6 −0.985333 −0.492666 0.870218i \(-0.663978\pi\)
−0.492666 + 0.870218i \(0.663978\pi\)
\(420\) 0 0
\(421\) 2.72763e6 0.750032 0.375016 0.927018i \(-0.377637\pi\)
0.375016 + 0.927018i \(0.377637\pi\)
\(422\) −1.22276e6 + 2.11788e6i −0.334241 + 0.578923i
\(423\) −2430.00 4208.88i −0.000660321 0.00114371i
\(424\) 720192. + 1.24741e6i 0.194551 + 0.336972i
\(425\) 1.90252e6 3.29525e6i 0.510924 0.884946i
\(426\) 239112. 0.0638377
\(427\) 0 0
\(428\) −35808.0 −0.00944867
\(429\) −1.96360e6 + 3.40106e6i −0.515122 + 0.892218i
\(430\) 1.55578e6 + 2.69468e6i 0.405766 + 0.702808i
\(431\) 2.38258e6 + 4.12676e6i 0.617810 + 1.07008i 0.989884 + 0.141876i \(0.0453134\pi\)
−0.372074 + 0.928203i \(0.621353\pi\)
\(432\) −93312.0 + 161621.i −0.0240563 + 0.0416667i
\(433\) 6.90300e6 1.76937 0.884684 0.466191i \(-0.154374\pi\)
0.884684 + 0.466191i \(0.154374\pi\)
\(434\) 0 0
\(435\) 4.22626e6 1.07086
\(436\) −481264. + 833574.i −0.121246 + 0.210004i
\(437\) −341964. 592299.i −0.0856597 0.148367i
\(438\) −937620. 1.62401e6i −0.233529 0.404485i
\(439\) −2.70063e6 + 4.67762e6i −0.668811 + 1.15841i 0.309426 + 0.950924i \(0.399863\pi\)
−0.978237 + 0.207491i \(0.933470\pi\)
\(440\) −1.90771e6 −0.469766
\(441\) 0 0
\(442\) −7.79117e6 −1.89691
\(443\) 2.02932e6 3.51488e6i 0.491293 0.850944i −0.508657 0.860969i \(-0.669858\pi\)
0.999950 + 0.0100250i \(0.00319110\pi\)
\(444\) −694800. 1.20343e6i −0.167264 0.289710i
\(445\) 3.55406e6 + 6.15582e6i 0.850796 + 1.47362i
\(446\) −1.56651e6 + 2.71328e6i −0.372904 + 0.645888i
\(447\) 4.26335e6 1.00921
\(448\) 0 0
\(449\) 212994. 0.0498599 0.0249300 0.999689i \(-0.492064\pi\)
0.0249300 + 0.999689i \(0.492064\pi\)
\(450\) 333558. 577739.i 0.0776498 0.134493i
\(451\) 1.75619e6 + 3.04181e6i 0.406565 + 0.704191i
\(452\) 56112.0 + 97188.8i 0.0129184 + 0.0223754i
\(453\) −1.77728e6 + 3.07835e6i −0.406922 + 0.704810i
\(454\) −322848. −0.0735120
\(455\) 0 0
\(456\) −135936. −0.0306142
\(457\) 458075. 793409.i 0.102600 0.177708i −0.810155 0.586215i \(-0.800617\pi\)
0.912755 + 0.408507i \(0.133951\pi\)
\(458\) 305476. + 529100.i 0.0680477 + 0.117862i
\(459\) 673596. + 1.16670e6i 0.149234 + 0.258481i
\(460\) 1.66925e6 2.89122e6i 0.367812 0.637070i
\(461\) −4.15835e6 −0.911315 −0.455657 0.890155i \(-0.650596\pi\)
−0.455657 + 0.890155i \(0.650596\pi\)
\(462\) 0 0
\(463\) 8.40799e6 1.82280 0.911401 0.411519i \(-0.135002\pi\)
0.911401 + 0.411519i \(0.135002\pi\)
\(464\) 834816. 1.44594e6i 0.180010 0.311786i
\(465\) 2.00880e6 + 3.47934e6i 0.430828 + 0.746217i
\(466\) −708564. 1.22727e6i −0.151152 0.261803i
\(467\) −36024.0 + 62395.4i −0.00764363 + 0.0132392i −0.869822 0.493366i \(-0.835766\pi\)
0.862178 + 0.506605i \(0.169100\pi\)
\(468\) −1.36598e6 −0.288291
\(469\) 0 0
\(470\) 17280.0 0.00360827
\(471\) 652905. 1.13086e6i 0.135612 0.234887i
\(472\) −901632. 1.56167e6i −0.186283 0.322652i
\(473\) −2.23643e6 3.87361e6i −0.459623 0.796091i
\(474\) 780120. 1.35121e6i 0.159483 0.276233i
\(475\) 485924. 0.0988176
\(476\) 0 0
\(477\) 1.82299e6 0.366849
\(478\) 550740. 953910.i 0.110250 0.190958i
\(479\) −2.40280e6 4.16178e6i −0.478497 0.828781i 0.521199 0.853435i \(-0.325485\pi\)
−0.999696 + 0.0246541i \(0.992152\pi\)
\(480\) −331776. 574653.i −0.0657267 0.113842i
\(481\) 5.08555e6 8.80843e6i 1.00225 1.73594i
\(482\) 2.33879e6 0.458537
\(483\) 0 0
\(484\) 165520. 0.0321172
\(485\) −5.36234e6 + 9.28785e6i −1.03514 + 1.79292i
\(486\) 118098. + 204552.i 0.0226805 + 0.0392837i
\(487\) −2.20902e6 3.82614e6i −0.422064 0.731036i 0.574077 0.818801i \(-0.305361\pi\)
−0.996141 + 0.0877652i \(0.972027\pi\)
\(488\) −1.12621e6 + 1.95065e6i −0.214077 + 0.370791i
\(489\) 4.77432e6 0.902899
\(490\) 0 0
\(491\) −5.64998e6 −1.05765 −0.528826 0.848730i \(-0.677368\pi\)
−0.528826 + 0.848730i \(0.677368\pi\)
\(492\) −610848. + 1.05802e6i −0.113768 + 0.197052i
\(493\) −6.02633e6 1.04379e7i −1.11670 1.93418i
\(494\) −497488. 861674.i −0.0917203 0.158864i
\(495\) −1.20722e6 + 2.09097e6i −0.221450 + 0.383562i
\(496\) 1.58720e6 0.289686
\(497\) 0 0
\(498\) −925776. −0.167276
\(499\) 4.61172e6 7.98774e6i 0.829109 1.43606i −0.0696286 0.997573i \(-0.522181\pi\)
0.898738 0.438486i \(-0.144485\pi\)
\(500\) −614016. 1.06351e6i −0.109839 0.190246i
\(501\) 1.40557e6 + 2.43451e6i 0.250183 + 0.433329i
\(502\) −369504. + 640000.i −0.0654425 + 0.113350i
\(503\) 1.45562e6 0.256525 0.128262 0.991740i \(-0.459060\pi\)
0.128262 + 0.991740i \(0.459060\pi\)
\(504\) 0 0
\(505\) −3.48106e6 −0.607411
\(506\) −2.39954e6 + 4.15613e6i −0.416632 + 0.721627i
\(507\) −3.32830e6 5.76479e6i −0.575047 0.996010i
\(508\) 14240.0 + 24664.4i 0.00244822 + 0.00424044i
\(509\) 183672. 318129.i 0.0314231 0.0544263i −0.849886 0.526966i \(-0.823329\pi\)
0.881309 + 0.472540i \(0.156663\pi\)
\(510\) −4.79002e6 −0.815477
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −86022.0 + 148994.i −0.0144317 + 0.0249964i
\(514\) 471960. + 817459.i 0.0787948 + 0.136477i
\(515\) −6.60931e6 1.14477e7i −1.09809 1.90195i
\(516\) 777888. 1.34734e6i 0.128615 0.222768i
\(517\) −24840.0 −0.00408719
\(518\) 0 0
\(519\) −675972. −0.110157
\(520\) 2.42842e6 4.20614e6i 0.393835 0.682143i
\(521\) −2.88181e6 4.99144e6i −0.465127 0.805623i 0.534080 0.845434i \(-0.320658\pi\)
−0.999207 + 0.0398104i \(0.987325\pi\)
\(522\) −1.05656e6 1.83002e6i −0.169715 0.293955i
\(523\) −117550. + 203603.i −0.0187918 + 0.0325484i −0.875268 0.483638i \(-0.839315\pi\)
0.856477 + 0.516186i \(0.172649\pi\)
\(524\) −4.24224e6 −0.674943
\(525\) 0 0
\(526\) 977976. 0.154122
\(527\) 5.72880e6 9.92257e6i 0.898539 1.55632i
\(528\) 476928. + 826064.i 0.0744506 + 0.128952i
\(529\) −981030. 1.69919e6i −0.152420 0.264000i
\(530\) −3.24086e6 + 5.61334e6i −0.501154 + 0.868024i
\(531\) −2.28226e6 −0.351259
\(532\) 0 0
\(533\) −8.94214e6 −1.36340
\(534\) 1.77703e6 3.07791e6i 0.269676 0.467092i
\(535\) −80568.0 139548.i −0.0121697 0.0210785i
\(536\) −902912. 1.56389e6i −0.135748 0.235122i
\(537\) −1.74023e6 + 3.01417e6i −0.260418 + 0.451057i
\(538\) −6.11117e6 −0.910266
\(539\) 0 0
\(540\) −839808. −0.123935
\(541\) −54505.0 + 94405.4i −0.00800651 + 0.0138677i −0.870001 0.493050i \(-0.835882\pi\)
0.861994 + 0.506918i \(0.169215\pi\)
\(542\) 4.14112e6 + 7.17263e6i 0.605508 + 1.04877i
\(543\) 1.87919e6 + 3.25485e6i 0.273509 + 0.473731i
\(544\) −946176. + 1.63882e6i −0.137080 + 0.237430i
\(545\) −4.33138e6 −0.624647
\(546\) 0 0
\(547\) 1.61953e6 0.231430 0.115715 0.993282i \(-0.463084\pi\)
0.115715 + 0.993282i \(0.463084\pi\)
\(548\) 1.65384e6 2.86453e6i 0.235257 0.407477i
\(549\) 1.42536e6 + 2.46879e6i 0.201833 + 0.349586i
\(550\) −1.70485e6 2.95289e6i −0.240314 0.416237i
\(551\) 769596. 1.33298e6i 0.107990 0.187044i
\(552\) −1.66925e6 −0.233170
\(553\) 0 0
\(554\) 9.62908e6 1.33294
\(555\) 3.12660e6 5.41543e6i 0.430864 0.746278i
\(556\) 1.89469e6 + 3.28170e6i 0.259927 + 0.450206i
\(557\) 3.31493e6 + 5.74163e6i 0.452727 + 0.784146i 0.998554 0.0537514i \(-0.0171178\pi\)
−0.545827 + 0.837898i \(0.683785\pi\)
\(558\) 1.00440e6 1.73967e6i 0.136559 0.236528i
\(559\) 1.13874e7 1.54133
\(560\) 0 0
\(561\) 6.88565e6 0.923714
\(562\) 683772. 1.18433e6i 0.0913210 0.158173i
\(563\) −3.92647e6 6.80085e6i −0.522073 0.904258i −0.999670 0.0256785i \(-0.991825\pi\)
0.477597 0.878579i \(-0.341508\pi\)
\(564\) −4320.00 7482.46i −0.000571855 0.000990482i
\(565\) −252504. + 437350.i −0.0332772 + 0.0576378i
\(566\) −2.31426e6 −0.303648
\(567\) 0 0
\(568\) 425088. 0.0552851
\(569\) 1.24077e6 2.14908e6i 0.160661 0.278274i −0.774445 0.632642i \(-0.781971\pi\)
0.935106 + 0.354368i \(0.115304\pi\)
\(570\) −305856. 529758.i −0.0394303 0.0682952i
\(571\) −5.68376e6 9.84455e6i −0.729533 1.26359i −0.957081 0.289822i \(-0.906404\pi\)
0.227547 0.973767i \(-0.426929\pi\)
\(572\) −3.49085e6 + 6.04633e6i −0.446109 + 0.772683i
\(573\) −8.89245e6 −1.13145
\(574\) 0 0
\(575\) 5.96698e6 0.752636
\(576\) −165888. + 287326.i −0.0208333 + 0.0360844i
\(577\) 4.10252e6 + 7.10578e6i 0.512993 + 0.888530i 0.999886 + 0.0150686i \(0.00479668\pi\)
−0.486893 + 0.873461i \(0.661870\pi\)
\(578\) 3.99049e6 + 6.91174e6i 0.496829 + 0.860533i
\(579\) 1.84166e6 3.18985e6i 0.228304 0.395434i
\(580\) 7.51334e6 0.927392
\(581\) 0 0
\(582\) 5.36234e6 0.656217
\(583\) 4.65874e6 8.06918e6i 0.567672 0.983236i
\(584\) −1.66688e6 2.88712e6i −0.202242 0.350294i
\(585\) −3.07346e6 5.32340e6i −0.371312 0.643130i
\(586\) 1.56108e6 2.70387e6i 0.187794 0.325268i
\(587\) −1.38400e7 −1.65783 −0.828917 0.559371i \(-0.811043\pi\)
−0.828917 + 0.559371i \(0.811043\pi\)
\(588\) 0 0
\(589\) 1.46320e6 0.173786
\(590\) 4.05734e6 7.02753e6i 0.479857 0.831137i
\(591\) 4.15004e6 + 7.18807e6i 0.488746 + 0.846533i
\(592\) −1.23520e6 2.13943e6i −0.144855 0.250896i
\(593\) 2.69476e6 4.66745e6i 0.314690 0.545059i −0.664682 0.747127i \(-0.731433\pi\)
0.979372 + 0.202068i \(0.0647662\pi\)
\(594\) 1.20722e6 0.140385
\(595\) 0 0
\(596\) 7.57930e6 0.874004
\(597\) −852696. + 1.47691e6i −0.0979171 + 0.169597i
\(598\) −6.10898e6 1.05811e7i −0.698580 1.20998i
\(599\) 5.74425e6 + 9.94934e6i 0.654134 + 1.13299i 0.982110 + 0.188307i \(0.0603000\pi\)
−0.327977 + 0.944686i \(0.606367\pi\)
\(600\) 592992. 1.02709e6i 0.0672467 0.116475i
\(601\) −2.79225e6 −0.315333 −0.157666 0.987492i \(-0.550397\pi\)
−0.157666 + 0.987492i \(0.550397\pi\)
\(602\) 0 0
\(603\) −2.28550e6 −0.255969
\(604\) −3.15962e6 + 5.47262e6i −0.352405 + 0.610383i
\(605\) 372420. + 645050.i 0.0413661 + 0.0716482i
\(606\) 870264. + 1.50734e6i 0.0962652 + 0.166736i
\(607\) −356944. + 618245.i −0.0393213 + 0.0681066i −0.885016 0.465560i \(-0.845853\pi\)
0.845695 + 0.533667i \(0.179186\pi\)
\(608\) −241664. −0.0265126
\(609\) 0 0
\(610\) −1.01359e7 −1.10290
\(611\) 31620.0 54767.4i 0.00342656 0.00593498i
\(612\) 1.19750e6 + 2.07414e6i 0.129240 + 0.223851i
\(613\) −1.55486e6 2.69309e6i −0.167124 0.289468i 0.770283 0.637702i \(-0.220115\pi\)
−0.937408 + 0.348234i \(0.886781\pi\)
\(614\) −4.49650e6 + 7.78817e6i −0.481342 + 0.833709i
\(615\) −5.49763e6 −0.586122
\(616\) 0 0
\(617\) 3.62384e6 0.383227 0.191613 0.981470i \(-0.438628\pi\)
0.191613 + 0.981470i \(0.438628\pi\)
\(618\) −3.30466e6 + 5.72383e6i −0.348061 + 0.602859i
\(619\) −2.12598e6 3.68230e6i −0.223014 0.386272i 0.732708 0.680543i \(-0.238256\pi\)
−0.955722 + 0.294272i \(0.904923\pi\)
\(620\) 3.57120e6 + 6.18550e6i 0.373108 + 0.646243i
\(621\) −1.05632e6 + 1.82960e6i −0.109918 + 0.190383i
\(622\) −2.32565e6 −0.241028
\(623\) 0 0
\(624\) −2.42842e6 −0.249667
\(625\) 5.98026e6 1.03581e7i 0.612379 1.06067i
\(626\) −4.00814e6 6.94230e6i −0.408796 0.708056i
\(627\) 439668. + 761527.i 0.0446638 + 0.0773600i
\(628\) 1.16072e6 2.01043e6i 0.117443 0.203418i
\(629\) −1.78332e7 −1.79723
\(630\) 0 0
\(631\) −1.70299e7 −1.70270 −0.851349 0.524600i \(-0.824215\pi\)
−0.851349 + 0.524600i \(0.824215\pi\)
\(632\) 1.38688e6 2.40215e6i 0.138117 0.239225i
\(633\) 2.75121e6 + 4.76524e6i 0.272907 + 0.472689i
\(634\) −2.55664e6 4.42822e6i −0.252607 0.437529i
\(635\) −64080.0 + 110990.i −0.00630650 + 0.0109232i
\(636\) 3.24086e6 0.317701
\(637\) 0 0
\(638\) −1.08004e7 −1.05048
\(639\) 269001. 465923.i 0.0260616 0.0451401i
\(640\) −589824. 1.02161e6i −0.0569210 0.0985901i
\(641\) 904689. + 1.56697e6i 0.0869669 + 0.150631i 0.906228 0.422790i \(-0.138949\pi\)
−0.819261 + 0.573421i \(0.805616\pi\)
\(642\) −40284.0 + 69773.9i −0.00385740 + 0.00668122i
\(643\) 1.53012e7 1.45948 0.729740 0.683725i \(-0.239641\pi\)
0.729740 + 0.683725i \(0.239641\pi\)
\(644\) 0 0
\(645\) 7.00099e6 0.662614
\(646\) −872256. + 1.51079e6i −0.0822361 + 0.142437i
\(647\) −8.37730e6 1.45099e7i −0.786762 1.36271i −0.927941 0.372728i \(-0.878422\pi\)
0.141179 0.989984i \(-0.454911\pi\)
\(648\) 209952. + 363648.i 0.0196419 + 0.0340207i
\(649\) −5.83243e6 + 1.01021e7i −0.543548 + 0.941453i
\(650\) 8.68074e6 0.805886
\(651\) 0 0
\(652\) 8.48768e6 0.781934
\(653\) −7.39295e6 + 1.28050e7i −0.678477 + 1.17516i 0.296963 + 0.954889i \(0.404026\pi\)
−0.975440 + 0.220267i \(0.929307\pi\)
\(654\) 1.08284e6 + 1.87554e6i 0.0989969 + 0.171468i
\(655\) −9.54504e6 1.65325e7i −0.869310 1.50569i
\(656\) −1.08595e6 + 1.88092e6i −0.0985260 + 0.170652i
\(657\) −4.21929e6 −0.381352
\(658\) 0 0
\(659\) 933762. 0.0837573 0.0418786 0.999123i \(-0.486666\pi\)
0.0418786 + 0.999123i \(0.486666\pi\)
\(660\) −2.14618e6 + 3.71729e6i −0.191781 + 0.332174i
\(661\) −3.04862e6 5.28036e6i −0.271394 0.470067i 0.697825 0.716268i \(-0.254151\pi\)
−0.969219 + 0.246201i \(0.920818\pi\)
\(662\) 5.19623e6 + 9.00014e6i 0.460833 + 0.798186i
\(663\) −8.76506e6 + 1.51815e7i −0.774411 + 1.34132i
\(664\) −1.64582e6 −0.144865
\(665\) 0 0
\(666\) −3.12660e6 −0.273141
\(667\) 9.45038e6 1.63685e7i 0.822498 1.42461i
\(668\) 2.49878e6 + 4.32802e6i 0.216664 + 0.375274i
\(669\) 3.52465e6 + 6.10488e6i 0.304475 + 0.527365i
\(670\) 4.06310e6 7.03750e6i 0.349680 0.605664i
\(671\) 1.45703e7 1.24929
\(672\) 0 0
\(673\) 2.09190e6 0.178034 0.0890171 0.996030i \(-0.471627\pi\)
0.0890171 + 0.996030i \(0.471627\pi\)
\(674\) 6.12380e6 1.06067e7i 0.519243 0.899356i
\(675\) −750506. 1.29991e6i −0.0634008 0.109813i
\(676\) −5.91698e6 1.02485e7i −0.498005 0.862570i
\(677\) −682266. + 1.18172e6i −0.0572113 + 0.0990929i −0.893213 0.449635i \(-0.851554\pi\)
0.836001 + 0.548728i \(0.184888\pi\)
\(678\) 252504. 0.0210957
\(679\) 0 0
\(680\) −8.51558e6 −0.706223
\(681\) −363204. + 629088.i −0.0300112 + 0.0519809i
\(682\) −5.13360e6 8.89166e6i −0.422631 0.732018i
\(683\) −5.77415e6 1.00011e7i −0.473627 0.820346i 0.525917 0.850536i \(-0.323722\pi\)
−0.999544 + 0.0301898i \(0.990389\pi\)
\(684\) −152928. + 264879.i −0.0124982 + 0.0216475i
\(685\) 1.48846e7 1.21202
\(686\) 0 0
\(687\) 1.37464e6 0.111121
\(688\) 1.38291e6 2.39527e6i 0.111384 0.192923i
\(689\) 1.18607e7 + 2.05433e7i 0.951833 + 1.64862i
\(690\) −3.75581e6 6.50525e6i −0.300318 0.520165i
\(691\) −2.08872e6 + 3.61777e6i −0.166412 + 0.288234i −0.937156 0.348911i \(-0.886552\pi\)
0.770744 + 0.637145i \(0.219885\pi\)
\(692\) −1.20173e6 −0.0953984
\(693\) 0 0
\(694\) 5.70199e6 0.449395
\(695\) −8.52610e6 + 1.47676e7i −0.669558 + 1.15971i
\(696\) −1.87834e6 3.25337e6i −0.146977 0.254572i
\(697\) 7.83922e6 + 1.35779e7i 0.611210 + 1.05865i
\(698\) 5.86644e6 1.01610e7i 0.455760 0.789400i
\(699\) −3.18854e6 −0.246830
\(700\) 0 0
\(701\) −1.70278e7 −1.30877 −0.654385 0.756161i \(-0.727073\pi\)
−0.654385 + 0.756161i \(0.727073\pi\)
\(702\) −1.53673e6 + 2.66170e6i −0.117694 + 0.203852i
\(703\) −1.13870e6 1.97229e6i −0.0869002 0.150516i
\(704\) 847872. + 1.46856e6i 0.0644761 + 0.111676i
\(705\) 19440.0 33671.1i 0.00147307 0.00255143i
\(706\) 8.05104e6 0.607911
\(707\) 0 0
\(708\) −4.05734e6 −0.304200
\(709\) −1.13466e7 + 1.96529e7i −0.847715 + 1.46829i 0.0355270 + 0.999369i \(0.488689\pi\)
−0.883242 + 0.468917i \(0.844644\pi\)
\(710\) 956448. + 1.65662e6i 0.0712058 + 0.123332i
\(711\) −1.75527e6 3.04022e6i −0.130218 0.225544i
\(712\) 3.15917e6 5.47184e6i 0.233546 0.404514i
\(713\) 1.79676e7 1.32363
\(714\) 0 0
\(715\) −3.14176e7 −2.29831
\(716\) −3.09374e6 + 5.35852e6i −0.225529 + 0.390627i
\(717\) −1.23916e6 2.14630e6i −0.0900184 0.155916i
\(718\) 8.15420e6 + 1.41235e7i 0.590297 + 1.02242i
\(719\) −2.56272e6 + 4.43876e6i −0.184875 + 0.320213i −0.943535 0.331274i \(-0.892521\pi\)
0.758659 + 0.651488i \(0.225855\pi\)
\(720\) −1.49299e6 −0.107331
\(721\) 0 0
\(722\) 9.68161e6 0.691202
\(723\) 2.63114e6 4.55727e6i 0.187197 0.324234i
\(724\) 3.34078e6 + 5.78641e6i 0.236866 + 0.410263i
\(725\) 6.71440e6 + 1.16297e7i 0.474419 + 0.821718i
\(726\) 186210. 322525.i 0.0131118 0.0227103i
\(727\) −1.54328e7 −1.08295 −0.541476 0.840716i \(-0.682134\pi\)
−0.541476 + 0.840716i \(0.682134\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 7.50096e6 1.29920e7i 0.520966 0.902340i
\(731\) −9.98290e6 1.72909e7i −0.690976 1.19681i
\(732\) 2.53397e6 + 4.38896e6i 0.174793 + 0.302750i
\(733\) 3.42233e6 5.92764e6i 0.235267 0.407495i −0.724083 0.689713i \(-0.757737\pi\)
0.959350 + 0.282218i \(0.0910701\pi\)
\(734\) −2.37901e6 −0.162988
\(735\) 0 0
\(736\) −2.96755e6 −0.201931
\(737\) −5.84071e6 + 1.01164e7i −0.396093 + 0.686053i
\(738\) 1.37441e6 + 2.38054e6i 0.0928912 + 0.160892i
\(739\) −1.49694e6 2.59278e6i −0.100831 0.174645i 0.811196 0.584774i \(-0.198817\pi\)
−0.912027 + 0.410129i \(0.865484\pi\)
\(740\) 5.55840e6 9.62743e6i 0.373139 0.646295i
\(741\) −2.23870e6 −0.149779
\(742\) 0 0
\(743\) 2.23250e7 1.48361 0.741804 0.670617i \(-0.233971\pi\)
0.741804 + 0.670617i \(0.233971\pi\)
\(744\) 1.78560e6 3.09275e6i 0.118264 0.204839i
\(745\) 1.70534e7 + 2.95374e7i 1.12569 + 1.94976i
\(746\) 4.09044e6 + 7.08486e6i 0.269106 + 0.466105i
\(747\) −1.04150e6 + 1.80393e6i −0.0682900 + 0.118282i
\(748\) 1.22412e7 0.799960
\(749\) 0 0
\(750\) −2.76307e6 −0.179366
\(751\) 7.07202e6 1.22491e7i 0.457555 0.792509i −0.541276 0.840845i \(-0.682059\pi\)
0.998831 + 0.0483363i \(0.0153919\pi\)
\(752\) −7680.00 13302.2i −0.000495241 0.000857783i
\(753\) 831384. + 1.44000e6i 0.0534336 + 0.0925497i
\(754\) 1.37484e7 2.38129e7i 0.880690 1.52540i
\(755\) −2.84365e7 −1.81556
\(756\) 0 0
\(757\) −8.15367e6 −0.517147 −0.258573 0.965992i \(-0.583252\pi\)
−0.258573 + 0.965992i \(0.583252\pi\)
\(758\) −6.44396e6 + 1.11613e7i −0.407361 + 0.705571i
\(759\) 5.39897e6 + 9.35130e6i 0.340178 + 0.589206i
\(760\) −543744. 941792.i −0.0341476 0.0591454i
\(761\) 1.12873e6 1.95501e6i 0.0706524 0.122374i −0.828535 0.559937i \(-0.810825\pi\)
0.899187 + 0.437564i \(0.144159\pi\)
\(762\) 64080.0 0.00399793
\(763\) 0 0
\(764\) −1.58088e7 −0.979863
\(765\) −5.38877e6 + 9.33362e6i −0.332917 + 0.576629i
\(766\) −3.45931e6 5.99170e6i −0.213019 0.368959i
\(767\) −1.48488e7 2.57188e7i −0.911384 1.57856i
\(768\) −294912. + 510803.i −0.0180422 + 0.0312500i
\(769\) −748774. −0.0456599 −0.0228299 0.999739i \(-0.507268\pi\)
−0.0228299 + 0.999739i \(0.507268\pi\)
\(770\) 0 0
\(771\) 2.12382e6 0.128671
\(772\) 3.27406e6 5.67085e6i 0.197717 0.342456i
\(773\) 4.73113e6 + 8.19455e6i 0.284784 + 0.493261i 0.972557 0.232666i \(-0.0747447\pi\)
−0.687773 + 0.725926i \(0.741411\pi\)
\(774\) −1.75025e6 3.03152e6i −0.105014 0.181890i
\(775\) −6.38290e6 + 1.10555e7i −0.381737 + 0.661187i
\(776\) 9.53306e6 0.568300
\(777\) 0 0
\(778\) 6.99674e6 0.414426
\(779\) −1.00111e6 + 1.73398e6i −0.0591070 + 0.102376i
\(780\) −5.46394e6 9.46381e6i −0.321565 0.556967i
\(781\) −1.37489e6 2.38139e6i −0.0806569 0.139702i
\(782\) −1.07110e7 + 1.85520e7i −0.626345 + 1.08486i
\(783\) −4.75454e6 −0.277143
\(784\) 0 0
\(785\) 1.04465e7 0.605056
\(786\) −4.77252e6 + 8.26625e6i −0.275544 + 0.477257i
\(787\) 9.98170e6 + 1.72888e7i 0.574470 + 0.995012i 0.996099 + 0.0882432i \(0.0281253\pi\)
−0.421629 + 0.906769i \(0.638541\pi\)
\(788\) 7.37784e6 + 1.27788e7i 0.423266 + 0.733119i
\(789\) 1.10022e6 1.90564e6i 0.0629199 0.108981i
\(790\) 1.24819e7 0.711564
\(791\) 0 0
\(792\) 2.14618e6 0.121577
\(793\) −1.85472e7 + 3.21248e7i −1.04736 + 1.81408i
\(794\) 3.76409e6 + 6.51960e6i 0.211889 + 0.367003i
\(795\) 7.29194e6 + 1.26300e7i 0.409190 + 0.708739i
\(796\) −1.51590e6 + 2.62562e6i −0.0847987 + 0.146876i
\(797\) −4.05368e6 −0.226050 −0.113025 0.993592i \(-0.536054\pi\)
−0.113025 + 0.993592i \(0.536054\pi\)
\(798\) 0 0
\(799\) −110880. −0.00614450
\(800\) 1.05421e6 1.82594e6i 0.0582373 0.100870i
\(801\) −3.99832e6 6.92530e6i −0.220189 0.381379i
\(802\) 8.36248e6 + 1.44842e7i 0.459091 + 0.795169i
\(803\) −1.07826e7 + 1.86761e7i −0.590114 + 1.02211i
\(804\) −4.06310e6 −0.221676
\(805\) 0 0
\(806\) 2.61392e7 1.41728
\(807\) −6.87506e6 + 1.19080e7i −0.371615 + 0.643656i
\(808\) 1.54714e6 + 2.67972e6i 0.0833681 + 0.144398i
\(809\) −9.27160e6 1.60589e7i −0.498062 0.862669i 0.501935 0.864905i \(-0.332622\pi\)
−0.999997 + 0.00223609i \(0.999288\pi\)
\(810\) −944784. + 1.63641e6i −0.0505964 + 0.0876356i
\(811\) 1.63648e7 0.873690 0.436845 0.899537i \(-0.356096\pi\)
0.436845 + 0.899537i \(0.356096\pi\)
\(812\) 0 0
\(813\) 1.86350e7 0.988790
\(814\) −7.99020e6 + 1.38394e7i −0.422665 + 0.732078i
\(815\) 1.90973e7 + 3.30775e7i 1.00711 + 1.74437i
\(816\) 2.12890e6 + 3.68736e6i 0.111926 + 0.193861i
\(817\) 1.27487e6 2.20814e6i 0.0668208 0.115737i
\(818\) 1.88673e6 0.0985884
\(819\) 0 0
\(820\) −9.77357e6 −0.507596
\(821\) 2.72507e6 4.71996e6i 0.141098 0.244388i −0.786813 0.617192i \(-0.788270\pi\)
0.927910 + 0.372804i \(0.121603\pi\)
\(822\) −3.72114e6 6.44520e6i −0.192086 0.332703i
\(823\) 1.09577e7 + 1.89792e7i 0.563921 + 0.976740i 0.997149 + 0.0754554i \(0.0240410\pi\)
−0.433228 + 0.901284i \(0.642626\pi\)
\(824\) −5.87494e6 + 1.01757e7i −0.301429 + 0.522091i
\(825\) −7.67183e6 −0.392432
\(826\) 0 0
\(827\) 8.11859e6 0.412778 0.206389 0.978470i \(-0.433829\pi\)
0.206389 + 0.978470i \(0.433829\pi\)
\(828\) −1.87790e6 + 3.25263e6i −0.0951914 + 0.164876i
\(829\) −8.03308e6 1.39137e7i −0.405972 0.703163i 0.588462 0.808525i \(-0.299733\pi\)
−0.994434 + 0.105361i \(0.966400\pi\)
\(830\) −3.70310e6 6.41396e6i −0.186582 0.323170i
\(831\) 1.08327e7 1.87628e7i 0.544170 0.942530i
\(832\) −4.31718e6 −0.216218
\(833\) 0 0
\(834\) 8.52610e6 0.424458
\(835\) −1.12445e7 + 1.94761e7i −0.558117 + 0.966687i
\(836\) 781632. + 1.35383e6i 0.0386800 + 0.0669958i
\(837\) −2.25990e6 3.91426e6i −0.111500 0.193124i
\(838\) −7.08187e6 + 1.22662e7i −0.348368 + 0.603391i
\(839\) −2.63504e7 −1.29236 −0.646178 0.763186i \(-0.723634\pi\)
−0.646178 + 0.763186i \(0.723634\pi\)
\(840\) 0 0
\(841\) 2.20253e7 1.07382
\(842\) 5.45525e6 9.44877e6i 0.265176 0.459299i
\(843\) −1.53849e6 2.66474e6i −0.0745633 0.129147i
\(844\) 4.89104e6 + 8.47153e6i 0.236344 + 0.409360i
\(845\) 2.66264e7 4.61183e7i 1.28284 2.22194i
\(846\) −19440.0 −0.000933835
\(847\) 0 0
\(848\) 5.76154e6 0.275137
\(849\) −2.60354e6 + 4.50946e6i −0.123964 + 0.214712i
\(850\) −7.61006e6 1.31810e7i −0.361278 0.625751i
\(851\) −1.39829e7 2.42190e7i −0.661869 1.14639i
\(852\) 478224. 828308.i 0.0225700 0.0390925i
\(853\) 2.78129e7 1.30880 0.654400 0.756148i \(-0.272921\pi\)
0.654400 + 0.756148i \(0.272921\pi\)
\(854\) 0 0
\(855\) −1.37635e6 −0.0643894
\(856\) −71616.0 + 124043.i −0.00334061 + 0.00578610i
\(857\) 1.34681e6 + 2.33275e6i 0.0626406 + 0.108497i 0.895645 0.444770i \(-0.146714\pi\)
−0.833004 + 0.553266i \(0.813381\pi\)
\(858\) 7.85441e6 + 1.36042e7i 0.364246 + 0.630893i
\(859\) 9.41945e6 1.63150e7i 0.435555 0.754403i −0.561786 0.827283i \(-0.689886\pi\)
0.997341 + 0.0728798i \(0.0232189\pi\)
\(860\) 1.24462e7 0.573840
\(861\) 0 0
\(862\) 1.90607e7 0.873716
\(863\) 6.43151e6 1.11397e7i 0.293959 0.509151i −0.680784 0.732485i \(-0.738361\pi\)
0.974742 + 0.223334i \(0.0716939\pi\)
\(864\) 373248. + 646484.i 0.0170103 + 0.0294628i
\(865\) −2.70389e6 4.68327e6i −0.122871 0.212818i
\(866\) 1.38060e7 2.39127e7i 0.625566 1.08351i
\(867\) 1.79572e7 0.811319
\(868\) 0 0
\(869\) −1.79428e7 −0.806009
\(870\) 8.45251e6 1.46402e7i 0.378606 0.655765i
\(871\) −1.48698e7 2.57553e7i −0.664142 1.15033i
\(872\) 1.92506e6 + 3.33429e6i 0.0857338 + 0.148495i
\(873\) 6.03264e6 1.04488e7i 0.267899 0.464015i
\(874\) −2.73571e6 −0.121141
\(875\) 0 0
\(876\) −7.50096e6 −0.330260
\(877\) 7.94056e6 1.37535e7i 0.348620 0.603827i −0.637385 0.770546i \(-0.719984\pi\)
0.986005 + 0.166718i \(0.0533171\pi\)
\(878\) 1.08025e7 + 1.87105e7i 0.472921 + 0.819123i
\(879\) −3.51243e6 6.08371e6i −0.153333 0.265580i
\(880\) −3.81542e6 + 6.60851e6i −0.166087 + 0.287671i
\(881\) 1.73681e7 0.753899 0.376950 0.926234i \(-0.376973\pi\)
0.376950 + 0.926234i \(0.376973\pi\)
\(882\) 0 0
\(883\) 2.23513e7 0.964721 0.482361 0.875973i \(-0.339780\pi\)
0.482361 + 0.875973i \(0.339780\pi\)
\(884\) −1.55823e7 + 2.69894e7i −0.670659 + 1.16162i
\(885\) −9.12902e6 1.58119e7i −0.391802 0.678620i
\(886\) −8.11727e6 1.40595e7i −0.347397 0.601709i
\(887\) 4.45570e6 7.71750e6i 0.190155 0.329358i −0.755147 0.655556i \(-0.772434\pi\)
0.945301 + 0.326198i \(0.105768\pi\)
\(888\) −5.55840e6 −0.236547
\(889\) 0 0
\(890\) 2.84325e7 1.20321
\(891\) 1.35813e6 2.35234e6i 0.0573121 0.0992674i
\(892\) 6.26605e6 + 1.08531e7i 0.263683 + 0.456712i
\(893\) −7080.00 12262.9i −0.000297101 0.000514595i
\(894\) 8.52671e6 1.47687e7i 0.356810 0.618014i
\(895\) −2.78437e7 −1.16190
\(896\) 0 0
\(897\) −2.74904e7 −1.14078
\(898\) 425988. 737833.i 0.0176281 0.0305328i
\(899\) 2.02182e7 + 3.50189e7i 0.834340 + 1.44512i
\(900\) −1.33423e6 2.31096e6i −0.0549067 0.0951011i
\(901\) 2.07955e7 3.60189e7i 0.853411 1.47815i
\(902\) 1.40495e7 0.574969
\(903\) 0 0
\(904\) 448896. 0.0182694
\(905\) −1.50335e7 + 2.60388e7i −0.610154 + 1.05682i
\(906\) 7.10914e6 + 1.23134e7i 0.287737 + 0.498376i
\(907\) 2.26663e6 + 3.92593e6i 0.0914878 + 0.158462i 0.908137 0.418672i \(-0.137504\pi\)
−0.816650 + 0.577134i \(0.804171\pi\)
\(908\) −645696. + 1.11838e6i −0.0259904 + 0.0450167i
\(909\) 3.91619e6 0.157200
\(910\) 0 0
\(911\) −9.83085e6 −0.392460 −0.196230 0.980558i \(-0.562870\pi\)
−0.196230 + 0.980558i \(0.562870\pi\)
\(912\) −271872. + 470896.i −0.0108237 + 0.0187473i
\(913\) 5.32321e6 + 9.22007e6i 0.211347 + 0.366064i
\(914\) −1.83230e6 3.17364e6i −0.0725489 0.125658i
\(915\) −1.14029e7 + 1.97503e7i −0.450257 + 0.779869i
\(916\) 2.44381e6 0.0962340
\(917\) 0 0
\(918\) 5.38877e6 0.211049
\(919\) 2.41024e7 4.17467e7i 0.941396 1.63055i 0.178584 0.983925i \(-0.442848\pi\)
0.762812 0.646621i \(-0.223818\pi\)
\(920\) −6.67699e6 1.15649e7i −0.260083 0.450476i
\(921\) 1.01171e7 + 1.75234e7i 0.393014 + 0.680721i
\(922\) −8.31670e6 + 1.44049e7i −0.322199 + 0.558064i
\(923\) 7.00067e6 0.270480
\(924\) 0 0
\(925\) 1.98694e7 0.763536
\(926\) 1.68160e7 2.91261e7i 0.644458 1.11623i
\(927\) 7.43548e6 + 1.28786e7i 0.284190 + 0.492232i
\(928\) −3.33926e6 5.78377e6i −0.127286 0.220466i
\(929\) 3.38509e6 5.86314e6i 0.128686 0.222890i −0.794482 0.607288i \(-0.792257\pi\)
0.923168 + 0.384398i \(0.125591\pi\)
\(930\) 1.60704e7 0.609283
\(931\) 0 0
\(932\) −5.66851e6 −0.213761
\(933\) −2.61635e6 + 4.53166e6i −0.0983994 + 0.170433i
\(934\) 144096. + 249582.i 0.00540486 + 0.00936150i
\(935\) 2.75426e7 + 4.77052e7i 1.03033 + 1.78458i
\(936\) −2.73197e6 + 4.73191e6i −0.101926 + 0.176541i
\(937\) 1.25127e7 0.465590 0.232795 0.972526i \(-0.425213\pi\)
0.232795 + 0.972526i \(0.425213\pi\)
\(938\) 0 0
\(939\) −1.80366e7 −0.667562
\(940\) 34560.0 59859.7i 0.00127572 0.00220961i
\(941\) 6.93293e6 + 1.20082e7i 0.255236 + 0.442082i 0.964960 0.262398i \(-0.0845134\pi\)
−0.709723 + 0.704481i \(0.751180\pi\)
\(942\) −2.61162e6 4.52346e6i −0.0958921 0.166090i
\(943\) −1.22933e7 + 2.12926e7i −0.450184 + 0.779741i
\(944\) −7.21306e6 −0.263445
\(945\) 0 0
\(946\) −1.78914e7 −0.650006
\(947\) −2.44644e6 + 4.23735e6i −0.0886460 + 0.153539i −0.906939 0.421262i \(-0.861587\pi\)
0.818293 + 0.574801i \(0.194921\pi\)
\(948\) −3.12048e6 5.40483e6i −0.112772 0.195327i
\(949\) −2.74514e7 4.75473e7i −0.989463 1.71380i
\(950\) 971848. 1.68329e6i 0.0349373 0.0605132i
\(951\) −1.15049e7 −0.412506
\(952\) 0 0
\(953\) −1.40055e7 −0.499535 −0.249768 0.968306i \(-0.580354\pi\)
−0.249768 + 0.968306i \(0.580354\pi\)
\(954\) 3.64597e6 6.31501e6i 0.129701 0.224648i
\(955\) −3.55698e7 6.16087e7i −1.26204 2.18592i
\(956\) −2.20296e6 3.81564e6i −0.0779582 0.135028i
\(957\) −1.21505e7 + 2.10453e7i −0.428858 + 0.742804i
\(958\) −1.92224e7 −0.676697
\(959\) 0 0
\(960\) −2.65421e6 −0.0929516
\(961\) −4.90542e6 + 8.49644e6i −0.171344 + 0.296776i
\(962\) −2.03422e7 3.52337e7i −0.708696 1.22750i
\(963\) 90639.0 + 156991.i 0.00314956 + 0.00545519i
\(964\) 4.67758e6 8.10181e6i 0.162117 0.280795i
\(965\) 2.94666e7 1.01862
\(966\) 0 0
\(967\) −1.02386e7 −0.352106 −0.176053 0.984381i \(-0.556333\pi\)
−0.176053 + 0.984381i \(0.556333\pi\)
\(968\) 331040. 573378.i 0.0113551 0.0196677i
\(969\) 1.96258e6 + 3.39928e6i 0.0671455 + 0.116299i
\(970\) 2.14494e7 + 3.71514e7i 0.731957 + 1.26779i
\(971\) −5.87261e6 + 1.01717e7i −0.199886 + 0.346214i −0.948491 0.316803i \(-0.897391\pi\)
0.748605 + 0.663016i \(0.230724\pi\)
\(972\) 944784. 0.0320750
\(973\) 0 0
\(974\) −1.76722e7 −0.596888
\(975\) 9.76584e6 1.69149e7i 0.329002 0.569847i
\(976\) 4.50483e6 + 7.80260e6i 0.151375 + 0.262189i
\(977\) −1.13097e7 1.95890e7i −0.379067 0.656564i 0.611860 0.790966i \(-0.290422\pi\)
−0.990927 + 0.134403i \(0.957088\pi\)
\(978\) 9.54864e6 1.65387e7i 0.319223 0.552911i
\(979\) −4.08717e7 −1.36291
\(980\) 0 0
\(981\) 4.87280e6 0.161661
\(982\) −1.13000e7 + 1.95721e7i −0.373937 + 0.647677i
\(983\) −1.39787e7 2.42119e7i −0.461407 0.799180i 0.537625 0.843184i \(-0.319322\pi\)
−0.999031 + 0.0440045i \(0.985988\pi\)
\(984\) 2.44339e6 + 4.23208e6i 0.0804462 + 0.139337i
\(985\) −3.32003e7 + 5.75046e7i −1.09031 + 1.88848i
\(986\) −4.82106e7 −1.57925
\(987\) 0 0
\(988\) −3.97990e6 −0.129712
\(989\) 1.56550e7 2.71152e7i 0.508935 0.881501i
\(990\) 4.82890e6 + 8.36389e6i 0.156589 + 0.271219i
\(991\) 8.32375e6 + 1.44172e7i 0.269237 + 0.466332i 0.968665 0.248371i \(-0.0798952\pi\)
−0.699428 + 0.714703i \(0.746562\pi\)
\(992\) 3.17440e6 5.49822e6i 0.102419 0.177396i
\(993\) 2.33830e7 0.752537
\(994\) 0 0
\(995\) −1.36431e7 −0.436874
\(996\) −1.85155e6 + 3.20698e6i −0.0591409 + 0.102435i
\(997\) 2.58640e7 + 4.47978e7i 0.824058 + 1.42731i 0.902637 + 0.430403i \(0.141629\pi\)
−0.0785783 + 0.996908i \(0.525038\pi\)
\(998\) −1.84469e7 3.19509e7i −0.586269 1.01545i
\(999\) −3.51742e6 + 6.09236e6i −0.111509 + 0.193140i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.6.e.l.79.1 2
7.2 even 3 42.6.a.c.1.1 1
7.3 odd 6 294.6.e.n.67.1 2
7.4 even 3 inner 294.6.e.l.67.1 2
7.5 odd 6 294.6.a.c.1.1 1
7.6 odd 2 294.6.e.n.79.1 2
21.2 odd 6 126.6.a.l.1.1 1
21.5 even 6 882.6.a.n.1.1 1
28.23 odd 6 336.6.a.b.1.1 1
35.2 odd 12 1050.6.g.b.799.1 2
35.9 even 6 1050.6.a.g.1.1 1
35.23 odd 12 1050.6.g.b.799.2 2
84.23 even 6 1008.6.a.ba.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.c.1.1 1 7.2 even 3
126.6.a.l.1.1 1 21.2 odd 6
294.6.a.c.1.1 1 7.5 odd 6
294.6.e.l.67.1 2 7.4 even 3 inner
294.6.e.l.79.1 2 1.1 even 1 trivial
294.6.e.n.67.1 2 7.3 odd 6
294.6.e.n.79.1 2 7.6 odd 2
336.6.a.b.1.1 1 28.23 odd 6
882.6.a.n.1.1 1 21.5 even 6
1008.6.a.ba.1.1 1 84.23 even 6
1050.6.a.g.1.1 1 35.9 even 6
1050.6.g.b.799.1 2 35.2 odd 12
1050.6.g.b.799.2 2 35.23 odd 12