Properties

Label 294.8.a.k.1.1
Level $294$
Weight $8$
Character 294.1
Self dual yes
Analytic conductor $91.841$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,8,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(91.8411974923\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} -27.0000 q^{3} +64.0000 q^{4} -470.000 q^{5} -216.000 q^{6} +512.000 q^{8} +729.000 q^{9} -3760.00 q^{10} -7268.00 q^{11} -1728.00 q^{12} -11382.0 q^{13} +12690.0 q^{15} +4096.00 q^{16} -20842.0 q^{17} +5832.00 q^{18} +13684.0 q^{19} -30080.0 q^{20} -58144.0 q^{22} -46736.0 q^{23} -13824.0 q^{24} +142775. q^{25} -91056.0 q^{26} -19683.0 q^{27} +2774.00 q^{29} +101520. q^{30} +11232.0 q^{31} +32768.0 q^{32} +196236. q^{33} -166736. q^{34} +46656.0 q^{36} -239698. q^{37} +109472. q^{38} +307314. q^{39} -240640. q^{40} -52962.0 q^{41} -874732. q^{43} -465152. q^{44} -342630. q^{45} -373888. q^{46} +451296. q^{47} -110592. q^{48} +1.14220e6 q^{50} +562734. q^{51} -728448. q^{52} -1.94354e6 q^{53} -157464. q^{54} +3.41596e6 q^{55} -369468. q^{57} +22192.0 q^{58} -1.56391e6 q^{59} +812160. q^{60} +3.18369e6 q^{61} +89856.0 q^{62} +262144. q^{64} +5.34954e6 q^{65} +1.56989e6 q^{66} +2.12868e6 q^{67} -1.33389e6 q^{68} +1.26187e6 q^{69} +5.69454e6 q^{71} +373248. q^{72} +2.25388e6 q^{73} -1.91758e6 q^{74} -3.85492e6 q^{75} +875776. q^{76} +2.45851e6 q^{78} +132912. q^{79} -1.92512e6 q^{80} +531441. q^{81} -423696. q^{82} -6.95052e6 q^{83} +9.79574e6 q^{85} -6.99786e6 q^{86} -74898.0 q^{87} -3.72122e6 q^{88} +1.06265e7 q^{89} -2.74104e6 q^{90} -2.99110e6 q^{92} -303264. q^{93} +3.61037e6 q^{94} -6.43148e6 q^{95} -884736. q^{96} -2.40709e6 q^{97} -5.29837e6 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) −27.0000 −0.577350
\(4\) 64.0000 0.500000
\(5\) −470.000 −1.68152 −0.840762 0.541406i \(-0.817892\pi\)
−0.840762 + 0.541406i \(0.817892\pi\)
\(6\) −216.000 −0.408248
\(7\) 0 0
\(8\) 512.000 0.353553
\(9\) 729.000 0.333333
\(10\) −3760.00 −1.18902
\(11\) −7268.00 −1.64642 −0.823210 0.567737i \(-0.807819\pi\)
−0.823210 + 0.567737i \(0.807819\pi\)
\(12\) −1728.00 −0.288675
\(13\) −11382.0 −1.43687 −0.718434 0.695595i \(-0.755141\pi\)
−0.718434 + 0.695595i \(0.755141\pi\)
\(14\) 0 0
\(15\) 12690.0 0.970828
\(16\) 4096.00 0.250000
\(17\) −20842.0 −1.02889 −0.514444 0.857524i \(-0.672002\pi\)
−0.514444 + 0.857524i \(0.672002\pi\)
\(18\) 5832.00 0.235702
\(19\) 13684.0 0.457694 0.228847 0.973462i \(-0.426504\pi\)
0.228847 + 0.973462i \(0.426504\pi\)
\(20\) −30080.0 −0.840762
\(21\) 0 0
\(22\) −58144.0 −1.16419
\(23\) −46736.0 −0.800948 −0.400474 0.916308i \(-0.631154\pi\)
−0.400474 + 0.916308i \(0.631154\pi\)
\(24\) −13824.0 −0.204124
\(25\) 142775. 1.82752
\(26\) −91056.0 −1.01602
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) 2774.00 0.0211210 0.0105605 0.999944i \(-0.496638\pi\)
0.0105605 + 0.999944i \(0.496638\pi\)
\(30\) 101520. 0.686479
\(31\) 11232.0 0.0677160 0.0338580 0.999427i \(-0.489221\pi\)
0.0338580 + 0.999427i \(0.489221\pi\)
\(32\) 32768.0 0.176777
\(33\) 196236. 0.950561
\(34\) −166736. −0.727534
\(35\) 0 0
\(36\) 46656.0 0.166667
\(37\) −239698. −0.777962 −0.388981 0.921246i \(-0.627173\pi\)
−0.388981 + 0.921246i \(0.627173\pi\)
\(38\) 109472. 0.323639
\(39\) 307314. 0.829576
\(40\) −240640. −0.594508
\(41\) −52962.0 −0.120011 −0.0600055 0.998198i \(-0.519112\pi\)
−0.0600055 + 0.998198i \(0.519112\pi\)
\(42\) 0 0
\(43\) −874732. −1.67778 −0.838891 0.544300i \(-0.816795\pi\)
−0.838891 + 0.544300i \(0.816795\pi\)
\(44\) −465152. −0.823210
\(45\) −342630. −0.560508
\(46\) −373888. −0.566355
\(47\) 451296. 0.634043 0.317022 0.948418i \(-0.397317\pi\)
0.317022 + 0.948418i \(0.397317\pi\)
\(48\) −110592. −0.144338
\(49\) 0 0
\(50\) 1.14220e6 1.29225
\(51\) 562734. 0.594029
\(52\) −728448. −0.718434
\(53\) −1.94354e6 −1.79319 −0.896597 0.442846i \(-0.853969\pi\)
−0.896597 + 0.442846i \(0.853969\pi\)
\(54\) −157464. −0.136083
\(55\) 3.41596e6 2.76849
\(56\) 0 0
\(57\) −369468. −0.264250
\(58\) 22192.0 0.0149348
\(59\) −1.56391e6 −0.991355 −0.495677 0.868507i \(-0.665080\pi\)
−0.495677 + 0.868507i \(0.665080\pi\)
\(60\) 812160. 0.485414
\(61\) 3.18369e6 1.79588 0.897938 0.440122i \(-0.145065\pi\)
0.897938 + 0.440122i \(0.145065\pi\)
\(62\) 89856.0 0.0478824
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 5.34954e6 2.41613
\(66\) 1.56989e6 0.672148
\(67\) 2.12868e6 0.864668 0.432334 0.901714i \(-0.357690\pi\)
0.432334 + 0.901714i \(0.357690\pi\)
\(68\) −1.33389e6 −0.514444
\(69\) 1.26187e6 0.462427
\(70\) 0 0
\(71\) 5.69454e6 1.88823 0.944115 0.329617i \(-0.106920\pi\)
0.944115 + 0.329617i \(0.106920\pi\)
\(72\) 373248. 0.117851
\(73\) 2.25388e6 0.678110 0.339055 0.940766i \(-0.389893\pi\)
0.339055 + 0.940766i \(0.389893\pi\)
\(74\) −1.91758e6 −0.550102
\(75\) −3.85492e6 −1.05512
\(76\) 875776. 0.228847
\(77\) 0 0
\(78\) 2.45851e6 0.586599
\(79\) 132912. 0.0303298 0.0151649 0.999885i \(-0.495173\pi\)
0.0151649 + 0.999885i \(0.495173\pi\)
\(80\) −1.92512e6 −0.420381
\(81\) 531441. 0.111111
\(82\) −423696. −0.0848606
\(83\) −6.95052e6 −1.33427 −0.667136 0.744936i \(-0.732480\pi\)
−0.667136 + 0.744936i \(0.732480\pi\)
\(84\) 0 0
\(85\) 9.79574e6 1.73010
\(86\) −6.99786e6 −1.18637
\(87\) −74898.0 −0.0121942
\(88\) −3.72122e6 −0.582097
\(89\) 1.06265e7 1.59781 0.798906 0.601456i \(-0.205412\pi\)
0.798906 + 0.601456i \(0.205412\pi\)
\(90\) −2.74104e6 −0.396339
\(91\) 0 0
\(92\) −2.99110e6 −0.400474
\(93\) −303264. −0.0390958
\(94\) 3.61037e6 0.448336
\(95\) −6.43148e6 −0.769623
\(96\) −884736. −0.102062
\(97\) −2.40709e6 −0.267788 −0.133894 0.990996i \(-0.542748\pi\)
−0.133894 + 0.990996i \(0.542748\pi\)
\(98\) 0 0
\(99\) −5.29837e6 −0.548807
\(100\) 9.13760e6 0.913760
\(101\) −7.77575e6 −0.750961 −0.375481 0.926830i \(-0.622522\pi\)
−0.375481 + 0.926830i \(0.622522\pi\)
\(102\) 4.50187e6 0.420042
\(103\) 1.32340e7 1.19333 0.596666 0.802489i \(-0.296492\pi\)
0.596666 + 0.802489i \(0.296492\pi\)
\(104\) −5.82758e6 −0.508010
\(105\) 0 0
\(106\) −1.55483e7 −1.26798
\(107\) −7.20944e6 −0.568930 −0.284465 0.958686i \(-0.591816\pi\)
−0.284465 + 0.958686i \(0.591816\pi\)
\(108\) −1.25971e6 −0.0962250
\(109\) 3.89037e6 0.287739 0.143869 0.989597i \(-0.454045\pi\)
0.143869 + 0.989597i \(0.454045\pi\)
\(110\) 2.73277e7 1.95762
\(111\) 6.47185e6 0.449157
\(112\) 0 0
\(113\) 1.46647e7 0.956091 0.478046 0.878335i \(-0.341345\pi\)
0.478046 + 0.878335i \(0.341345\pi\)
\(114\) −2.95574e6 −0.186853
\(115\) 2.19659e7 1.34681
\(116\) 177536. 0.0105605
\(117\) −8.29748e6 −0.478956
\(118\) −1.25113e7 −0.700994
\(119\) 0 0
\(120\) 6.49728e6 0.343239
\(121\) 3.33367e7 1.71070
\(122\) 2.54695e7 1.26988
\(123\) 1.42997e6 0.0692884
\(124\) 718848. 0.0338580
\(125\) −3.03855e7 −1.39149
\(126\) 0 0
\(127\) 3.87331e6 0.167791 0.0838957 0.996475i \(-0.473264\pi\)
0.0838957 + 0.996475i \(0.473264\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) 2.36178e7 0.968668
\(130\) 4.27963e7 1.70846
\(131\) −2.27476e7 −0.884070 −0.442035 0.896998i \(-0.645743\pi\)
−0.442035 + 0.896998i \(0.645743\pi\)
\(132\) 1.25591e7 0.475280
\(133\) 0 0
\(134\) 1.70295e7 0.611413
\(135\) 9.25101e6 0.323609
\(136\) −1.06711e7 −0.363767
\(137\) −4.22382e7 −1.40341 −0.701703 0.712469i \(-0.747577\pi\)
−0.701703 + 0.712469i \(0.747577\pi\)
\(138\) 1.00950e7 0.326985
\(139\) 2.02320e6 0.0638978 0.0319489 0.999490i \(-0.489829\pi\)
0.0319489 + 0.999490i \(0.489829\pi\)
\(140\) 0 0
\(141\) −1.21850e7 −0.366065
\(142\) 4.55564e7 1.33518
\(143\) 8.27244e7 2.36569
\(144\) 2.98598e6 0.0833333
\(145\) −1.30378e6 −0.0355154
\(146\) 1.80310e7 0.479496
\(147\) 0 0
\(148\) −1.53407e7 −0.388981
\(149\) 6.33017e7 1.56770 0.783851 0.620949i \(-0.213253\pi\)
0.783851 + 0.620949i \(0.213253\pi\)
\(150\) −3.08394e7 −0.746082
\(151\) −5.39626e7 −1.27548 −0.637739 0.770252i \(-0.720130\pi\)
−0.637739 + 0.770252i \(0.720130\pi\)
\(152\) 7.00621e6 0.161819
\(153\) −1.51938e7 −0.342963
\(154\) 0 0
\(155\) −5.27904e6 −0.113866
\(156\) 1.96681e7 0.414788
\(157\) −5.83367e7 −1.20308 −0.601538 0.798844i \(-0.705445\pi\)
−0.601538 + 0.798844i \(0.705445\pi\)
\(158\) 1.06330e6 0.0214464
\(159\) 5.24755e7 1.03530
\(160\) −1.54010e7 −0.297254
\(161\) 0 0
\(162\) 4.25153e6 0.0785674
\(163\) 6.05845e7 1.09573 0.547867 0.836566i \(-0.315440\pi\)
0.547867 + 0.836566i \(0.315440\pi\)
\(164\) −3.38957e6 −0.0600055
\(165\) −9.22309e7 −1.59839
\(166\) −5.56042e7 −0.943472
\(167\) −5.94193e7 −0.987234 −0.493617 0.869680i \(-0.664325\pi\)
−0.493617 + 0.869680i \(0.664325\pi\)
\(168\) 0 0
\(169\) 6.68014e7 1.06459
\(170\) 7.83659e7 1.22336
\(171\) 9.97564e6 0.152565
\(172\) −5.59828e7 −0.838891
\(173\) −5.58566e7 −0.820188 −0.410094 0.912043i \(-0.634504\pi\)
−0.410094 + 0.912043i \(0.634504\pi\)
\(174\) −599184. −0.00862259
\(175\) 0 0
\(176\) −2.97697e7 −0.411605
\(177\) 4.22255e7 0.572359
\(178\) 8.50121e7 1.12982
\(179\) 8.02252e7 1.04550 0.522752 0.852485i \(-0.324906\pi\)
0.522752 + 0.852485i \(0.324906\pi\)
\(180\) −2.19283e7 −0.280254
\(181\) 7.18632e7 0.900807 0.450403 0.892825i \(-0.351280\pi\)
0.450403 + 0.892825i \(0.351280\pi\)
\(182\) 0 0
\(183\) −8.59596e7 −1.03685
\(184\) −2.39288e7 −0.283178
\(185\) 1.12658e8 1.30816
\(186\) −2.42611e6 −0.0276449
\(187\) 1.51480e8 1.69398
\(188\) 2.88829e7 0.317022
\(189\) 0 0
\(190\) −5.14518e7 −0.544206
\(191\) −1.67435e7 −0.173872 −0.0869361 0.996214i \(-0.527708\pi\)
−0.0869361 + 0.996214i \(0.527708\pi\)
\(192\) −7.07789e6 −0.0721688
\(193\) −1.34702e8 −1.34873 −0.674364 0.738399i \(-0.735582\pi\)
−0.674364 + 0.738399i \(0.735582\pi\)
\(194\) −1.92567e7 −0.189355
\(195\) −1.44438e8 −1.39495
\(196\) 0 0
\(197\) −5.89413e7 −0.549273 −0.274636 0.961548i \(-0.588557\pi\)
−0.274636 + 0.961548i \(0.588557\pi\)
\(198\) −4.23870e7 −0.388065
\(199\) −1.31373e8 −1.18174 −0.590869 0.806768i \(-0.701215\pi\)
−0.590869 + 0.806768i \(0.701215\pi\)
\(200\) 7.31008e7 0.646126
\(201\) −5.74745e7 −0.499216
\(202\) −6.22060e7 −0.531010
\(203\) 0 0
\(204\) 3.60150e7 0.297014
\(205\) 2.48921e7 0.201801
\(206\) 1.05872e8 0.843814
\(207\) −3.40705e7 −0.266983
\(208\) −4.66207e7 −0.359217
\(209\) −9.94553e7 −0.753557
\(210\) 0 0
\(211\) −2.96600e7 −0.217362 −0.108681 0.994077i \(-0.534663\pi\)
−0.108681 + 0.994077i \(0.534663\pi\)
\(212\) −1.24386e8 −0.896597
\(213\) −1.53753e8 −1.09017
\(214\) −5.76756e7 −0.402294
\(215\) 4.11124e8 2.82123
\(216\) −1.00777e7 −0.0680414
\(217\) 0 0
\(218\) 3.11230e7 0.203462
\(219\) −6.08547e7 −0.391507
\(220\) 2.18621e8 1.38425
\(221\) 2.37224e8 1.47838
\(222\) 5.17748e7 0.317602
\(223\) −3.16037e8 −1.90841 −0.954203 0.299161i \(-0.903293\pi\)
−0.954203 + 0.299161i \(0.903293\pi\)
\(224\) 0 0
\(225\) 1.04083e8 0.609173
\(226\) 1.17318e8 0.676059
\(227\) −4.76056e7 −0.270127 −0.135063 0.990837i \(-0.543124\pi\)
−0.135063 + 0.990837i \(0.543124\pi\)
\(228\) −2.36460e7 −0.132125
\(229\) 1.04289e8 0.573870 0.286935 0.957950i \(-0.407364\pi\)
0.286935 + 0.957950i \(0.407364\pi\)
\(230\) 1.75727e8 0.952340
\(231\) 0 0
\(232\) 1.42029e6 0.00746738
\(233\) 2.35059e8 1.21739 0.608697 0.793403i \(-0.291693\pi\)
0.608697 + 0.793403i \(0.291693\pi\)
\(234\) −6.63798e7 −0.338673
\(235\) −2.12109e8 −1.06616
\(236\) −1.00090e8 −0.495677
\(237\) −3.58862e6 −0.0175109
\(238\) 0 0
\(239\) 3.74362e7 0.177378 0.0886888 0.996059i \(-0.471732\pi\)
0.0886888 + 0.996059i \(0.471732\pi\)
\(240\) 5.19782e7 0.242707
\(241\) −9.87667e6 −0.0454518 −0.0227259 0.999742i \(-0.507235\pi\)
−0.0227259 + 0.999742i \(0.507235\pi\)
\(242\) 2.66693e8 1.20965
\(243\) −1.43489e7 −0.0641500
\(244\) 2.03756e8 0.897938
\(245\) 0 0
\(246\) 1.14398e7 0.0489943
\(247\) −1.55751e8 −0.657646
\(248\) 5.75078e6 0.0239412
\(249\) 1.87664e8 0.770342
\(250\) −2.43084e8 −0.983935
\(251\) −1.32438e8 −0.528634 −0.264317 0.964436i \(-0.585147\pi\)
−0.264317 + 0.964436i \(0.585147\pi\)
\(252\) 0 0
\(253\) 3.39677e8 1.31870
\(254\) 3.09865e7 0.118646
\(255\) −2.64485e8 −0.998873
\(256\) 1.67772e7 0.0625000
\(257\) −3.32667e8 −1.22249 −0.611243 0.791443i \(-0.709330\pi\)
−0.611243 + 0.791443i \(0.709330\pi\)
\(258\) 1.88942e8 0.684951
\(259\) 0 0
\(260\) 3.42371e8 1.20806
\(261\) 2.02225e6 0.00704032
\(262\) −1.81981e8 −0.625132
\(263\) −9.51228e7 −0.322433 −0.161217 0.986919i \(-0.551542\pi\)
−0.161217 + 0.986919i \(0.551542\pi\)
\(264\) 1.00473e8 0.336074
\(265\) 9.13463e8 3.01530
\(266\) 0 0
\(267\) −2.86916e8 −0.922497
\(268\) 1.36236e8 0.432334
\(269\) 2.68855e8 0.842141 0.421071 0.907028i \(-0.361654\pi\)
0.421071 + 0.907028i \(0.361654\pi\)
\(270\) 7.40081e7 0.228826
\(271\) −4.52884e8 −1.38227 −0.691137 0.722724i \(-0.742890\pi\)
−0.691137 + 0.722724i \(0.742890\pi\)
\(272\) −8.53688e7 −0.257222
\(273\) 0 0
\(274\) −3.37906e8 −0.992358
\(275\) −1.03769e9 −3.00886
\(276\) 8.07598e7 0.231214
\(277\) −1.64709e7 −0.0465628 −0.0232814 0.999729i \(-0.507411\pi\)
−0.0232814 + 0.999729i \(0.507411\pi\)
\(278\) 1.61856e7 0.0451826
\(279\) 8.18813e6 0.0225720
\(280\) 0 0
\(281\) 5.08113e8 1.36612 0.683059 0.730363i \(-0.260649\pi\)
0.683059 + 0.730363i \(0.260649\pi\)
\(282\) −9.74799e7 −0.258847
\(283\) 2.57496e8 0.675333 0.337666 0.941266i \(-0.390362\pi\)
0.337666 + 0.941266i \(0.390362\pi\)
\(284\) 3.64451e8 0.944115
\(285\) 1.73650e8 0.444342
\(286\) 6.61795e8 1.67279
\(287\) 0 0
\(288\) 2.38879e7 0.0589256
\(289\) 2.40503e7 0.0586108
\(290\) −1.04302e7 −0.0251132
\(291\) 6.49914e7 0.154608
\(292\) 1.44248e8 0.339055
\(293\) −7.33847e7 −0.170439 −0.0852195 0.996362i \(-0.527159\pi\)
−0.0852195 + 0.996362i \(0.527159\pi\)
\(294\) 0 0
\(295\) 7.35037e8 1.66699
\(296\) −1.22725e8 −0.275051
\(297\) 1.43056e8 0.316854
\(298\) 5.06414e8 1.10853
\(299\) 5.31949e8 1.15086
\(300\) −2.46715e8 −0.527560
\(301\) 0 0
\(302\) −4.31701e8 −0.901900
\(303\) 2.09945e8 0.433568
\(304\) 5.60497e7 0.114424
\(305\) −1.49633e9 −3.01981
\(306\) −1.21551e8 −0.242511
\(307\) 9.31624e7 0.183762 0.0918811 0.995770i \(-0.470712\pi\)
0.0918811 + 0.995770i \(0.470712\pi\)
\(308\) 0 0
\(309\) −3.57319e8 −0.688971
\(310\) −4.22323e7 −0.0805154
\(311\) −6.10934e8 −1.15168 −0.575842 0.817561i \(-0.695326\pi\)
−0.575842 + 0.817561i \(0.695326\pi\)
\(312\) 1.57345e8 0.293299
\(313\) 2.12231e8 0.391204 0.195602 0.980683i \(-0.437334\pi\)
0.195602 + 0.980683i \(0.437334\pi\)
\(314\) −4.66694e8 −0.850703
\(315\) 0 0
\(316\) 8.50637e6 0.0151649
\(317\) −1.10394e9 −1.94644 −0.973218 0.229885i \(-0.926165\pi\)
−0.973218 + 0.229885i \(0.926165\pi\)
\(318\) 4.19804e8 0.732069
\(319\) −2.01614e7 −0.0347739
\(320\) −1.23208e8 −0.210190
\(321\) 1.94655e8 0.328472
\(322\) 0 0
\(323\) −2.85202e8 −0.470916
\(324\) 3.40122e7 0.0555556
\(325\) −1.62507e9 −2.62590
\(326\) 4.84676e8 0.774800
\(327\) −1.05040e8 −0.166126
\(328\) −2.71165e7 −0.0424303
\(329\) 0 0
\(330\) −7.37847e8 −1.13023
\(331\) −6.70588e8 −1.01638 −0.508192 0.861244i \(-0.669686\pi\)
−0.508192 + 0.861244i \(0.669686\pi\)
\(332\) −4.44834e8 −0.667136
\(333\) −1.74740e8 −0.259321
\(334\) −4.75354e8 −0.698080
\(335\) −1.00048e9 −1.45396
\(336\) 0 0
\(337\) −6.84122e8 −0.973709 −0.486854 0.873483i \(-0.661856\pi\)
−0.486854 + 0.873483i \(0.661856\pi\)
\(338\) 5.34411e8 0.752778
\(339\) −3.95947e8 −0.551999
\(340\) 6.26927e8 0.865050
\(341\) −8.16342e7 −0.111489
\(342\) 7.98051e7 0.107880
\(343\) 0 0
\(344\) −4.47863e8 −0.593185
\(345\) −5.93080e8 −0.777582
\(346\) −4.46853e8 −0.579960
\(347\) 4.37553e8 0.562183 0.281091 0.959681i \(-0.409304\pi\)
0.281091 + 0.959681i \(0.409304\pi\)
\(348\) −4.79347e6 −0.00609709
\(349\) −9.39833e6 −0.0118348 −0.00591741 0.999982i \(-0.501884\pi\)
−0.00591741 + 0.999982i \(0.501884\pi\)
\(350\) 0 0
\(351\) 2.24032e8 0.276525
\(352\) −2.38158e8 −0.291049
\(353\) −1.41472e9 −1.71182 −0.855911 0.517123i \(-0.827003\pi\)
−0.855911 + 0.517123i \(0.827003\pi\)
\(354\) 3.37804e8 0.404719
\(355\) −2.67644e9 −3.17510
\(356\) 6.80097e8 0.798906
\(357\) 0 0
\(358\) 6.41802e8 0.739282
\(359\) −3.07583e8 −0.350858 −0.175429 0.984492i \(-0.556131\pi\)
−0.175429 + 0.984492i \(0.556131\pi\)
\(360\) −1.75427e8 −0.198169
\(361\) −7.06620e8 −0.790516
\(362\) 5.74906e8 0.636967
\(363\) −9.00090e8 −0.987672
\(364\) 0 0
\(365\) −1.05932e9 −1.14026
\(366\) −6.87677e8 −0.733163
\(367\) 1.23127e9 1.30024 0.650119 0.759832i \(-0.274719\pi\)
0.650119 + 0.759832i \(0.274719\pi\)
\(368\) −1.91431e8 −0.200237
\(369\) −3.86093e7 −0.0400037
\(370\) 9.01264e8 0.925010
\(371\) 0 0
\(372\) −1.94089e7 −0.0195479
\(373\) 1.83592e9 1.83177 0.915887 0.401435i \(-0.131488\pi\)
0.915887 + 0.401435i \(0.131488\pi\)
\(374\) 1.21184e9 1.19783
\(375\) 8.20408e8 0.803379
\(376\) 2.31064e8 0.224168
\(377\) −3.15737e7 −0.0303480
\(378\) 0 0
\(379\) −6.48934e8 −0.612298 −0.306149 0.951984i \(-0.599041\pi\)
−0.306149 + 0.951984i \(0.599041\pi\)
\(380\) −4.11615e8 −0.384812
\(381\) −1.04579e8 −0.0968744
\(382\) −1.33948e8 −0.122946
\(383\) 6.80321e8 0.618754 0.309377 0.950939i \(-0.399880\pi\)
0.309377 + 0.950939i \(0.399880\pi\)
\(384\) −5.66231e7 −0.0510310
\(385\) 0 0
\(386\) −1.07762e9 −0.953694
\(387\) −6.37680e8 −0.559261
\(388\) −1.54054e8 −0.133894
\(389\) 2.73705e8 0.235754 0.117877 0.993028i \(-0.462391\pi\)
0.117877 + 0.993028i \(0.462391\pi\)
\(390\) −1.15550e9 −0.986380
\(391\) 9.74072e8 0.824086
\(392\) 0 0
\(393\) 6.14186e8 0.510418
\(394\) −4.71531e8 −0.388394
\(395\) −6.24686e7 −0.0510002
\(396\) −3.39096e8 −0.274403
\(397\) 1.21034e9 0.970825 0.485413 0.874285i \(-0.338669\pi\)
0.485413 + 0.874285i \(0.338669\pi\)
\(398\) −1.05099e9 −0.835615
\(399\) 0 0
\(400\) 5.84806e8 0.456880
\(401\) −5.97102e8 −0.462427 −0.231214 0.972903i \(-0.574270\pi\)
−0.231214 + 0.972903i \(0.574270\pi\)
\(402\) −4.59796e8 −0.352999
\(403\) −1.27843e8 −0.0972989
\(404\) −4.97648e8 −0.375481
\(405\) −2.49777e8 −0.186836
\(406\) 0 0
\(407\) 1.74213e9 1.28085
\(408\) 2.88120e8 0.210021
\(409\) 1.19767e9 0.865578 0.432789 0.901495i \(-0.357530\pi\)
0.432789 + 0.901495i \(0.357530\pi\)
\(410\) 1.99137e8 0.142695
\(411\) 1.14043e9 0.810257
\(412\) 8.46978e8 0.596666
\(413\) 0 0
\(414\) −2.72564e8 −0.188785
\(415\) 3.26675e9 2.24361
\(416\) −3.72965e8 −0.254005
\(417\) −5.46263e7 −0.0368914
\(418\) −7.95642e8 −0.532845
\(419\) 1.68680e9 1.12025 0.560125 0.828408i \(-0.310753\pi\)
0.560125 + 0.828408i \(0.310753\pi\)
\(420\) 0 0
\(421\) −9.60356e8 −0.627256 −0.313628 0.949546i \(-0.601544\pi\)
−0.313628 + 0.949546i \(0.601544\pi\)
\(422\) −2.37280e8 −0.153698
\(423\) 3.28995e8 0.211348
\(424\) −9.95091e8 −0.633990
\(425\) −2.97572e9 −1.88031
\(426\) −1.23002e9 −0.770866
\(427\) 0 0
\(428\) −4.61404e8 −0.284465
\(429\) −2.23356e9 −1.36583
\(430\) 3.28899e9 1.99491
\(431\) −1.03166e8 −0.0620677 −0.0310338 0.999518i \(-0.509880\pi\)
−0.0310338 + 0.999518i \(0.509880\pi\)
\(432\) −8.06216e7 −0.0481125
\(433\) 2.33278e9 1.38091 0.690455 0.723375i \(-0.257410\pi\)
0.690455 + 0.723375i \(0.257410\pi\)
\(434\) 0 0
\(435\) 3.52021e7 0.0205048
\(436\) 2.48984e8 0.143869
\(437\) −6.39535e8 −0.366589
\(438\) −4.86838e8 −0.276837
\(439\) 1.56159e9 0.880928 0.440464 0.897770i \(-0.354814\pi\)
0.440464 + 0.897770i \(0.354814\pi\)
\(440\) 1.74897e9 0.978810
\(441\) 0 0
\(442\) 1.89779e9 1.04537
\(443\) 1.62481e9 0.887951 0.443975 0.896039i \(-0.353568\pi\)
0.443975 + 0.896039i \(0.353568\pi\)
\(444\) 4.14198e8 0.224578
\(445\) −4.99446e9 −2.68676
\(446\) −2.52829e9 −1.34945
\(447\) −1.70915e9 −0.905113
\(448\) 0 0
\(449\) −8.18478e8 −0.426722 −0.213361 0.976973i \(-0.568441\pi\)
−0.213361 + 0.976973i \(0.568441\pi\)
\(450\) 8.32664e8 0.430751
\(451\) 3.84928e8 0.197588
\(452\) 9.38542e8 0.478046
\(453\) 1.45699e9 0.736398
\(454\) −3.80845e8 −0.191008
\(455\) 0 0
\(456\) −1.89168e8 −0.0934264
\(457\) −1.53326e9 −0.751463 −0.375732 0.926728i \(-0.622609\pi\)
−0.375732 + 0.926728i \(0.622609\pi\)
\(458\) 8.34311e8 0.405787
\(459\) 4.10233e8 0.198010
\(460\) 1.40582e9 0.673406
\(461\) −3.43507e9 −1.63299 −0.816494 0.577354i \(-0.804085\pi\)
−0.816494 + 0.577354i \(0.804085\pi\)
\(462\) 0 0
\(463\) 1.73200e9 0.810990 0.405495 0.914097i \(-0.367099\pi\)
0.405495 + 0.914097i \(0.367099\pi\)
\(464\) 1.13623e7 0.00528024
\(465\) 1.42534e8 0.0657406
\(466\) 1.88047e9 0.860827
\(467\) 4.81488e8 0.218764 0.109382 0.994000i \(-0.465113\pi\)
0.109382 + 0.994000i \(0.465113\pi\)
\(468\) −5.31039e8 −0.239478
\(469\) 0 0
\(470\) −1.69687e9 −0.753888
\(471\) 1.57509e9 0.694596
\(472\) −8.00721e8 −0.350497
\(473\) 6.35755e9 2.76233
\(474\) −2.87090e7 −0.0123821
\(475\) 1.95373e9 0.836445
\(476\) 0 0
\(477\) −1.41684e9 −0.597732
\(478\) 2.99489e8 0.125425
\(479\) 1.65939e9 0.689882 0.344941 0.938624i \(-0.387899\pi\)
0.344941 + 0.938624i \(0.387899\pi\)
\(480\) 4.15826e8 0.171620
\(481\) 2.72824e9 1.11783
\(482\) −7.90134e7 −0.0321393
\(483\) 0 0
\(484\) 2.13355e9 0.855349
\(485\) 1.13133e9 0.450292
\(486\) −1.14791e8 −0.0453609
\(487\) 1.72017e9 0.674868 0.337434 0.941349i \(-0.390441\pi\)
0.337434 + 0.941349i \(0.390441\pi\)
\(488\) 1.63005e9 0.634938
\(489\) −1.63578e9 −0.632622
\(490\) 0 0
\(491\) −6.67098e8 −0.254334 −0.127167 0.991881i \(-0.540588\pi\)
−0.127167 + 0.991881i \(0.540588\pi\)
\(492\) 9.15183e7 0.0346442
\(493\) −5.78157e7 −0.0217311
\(494\) −1.24601e9 −0.465026
\(495\) 2.49023e9 0.922831
\(496\) 4.60063e7 0.0169290
\(497\) 0 0
\(498\) 1.50131e9 0.544714
\(499\) −5.45977e8 −0.196708 −0.0983541 0.995151i \(-0.531358\pi\)
−0.0983541 + 0.995151i \(0.531358\pi\)
\(500\) −1.94467e9 −0.695747
\(501\) 1.60432e9 0.569980
\(502\) −1.05951e9 −0.373801
\(503\) −4.13284e9 −1.44797 −0.723987 0.689813i \(-0.757693\pi\)
−0.723987 + 0.689813i \(0.757693\pi\)
\(504\) 0 0
\(505\) 3.65460e9 1.26276
\(506\) 2.71742e9 0.932459
\(507\) −1.80364e9 −0.614641
\(508\) 2.47892e8 0.0838957
\(509\) 1.91213e9 0.642695 0.321348 0.946961i \(-0.395864\pi\)
0.321348 + 0.946961i \(0.395864\pi\)
\(510\) −2.11588e9 −0.706310
\(511\) 0 0
\(512\) 1.34218e8 0.0441942
\(513\) −2.69342e8 −0.0880833
\(514\) −2.66134e9 −0.864428
\(515\) −6.21999e9 −2.00662
\(516\) 1.51154e9 0.484334
\(517\) −3.28002e9 −1.04390
\(518\) 0 0
\(519\) 1.50813e9 0.473536
\(520\) 2.73896e9 0.854230
\(521\) −6.21174e7 −0.0192434 −0.00962169 0.999954i \(-0.503063\pi\)
−0.00962169 + 0.999954i \(0.503063\pi\)
\(522\) 1.61780e7 0.00497826
\(523\) −6.82075e8 −0.208486 −0.104243 0.994552i \(-0.533242\pi\)
−0.104243 + 0.994552i \(0.533242\pi\)
\(524\) −1.45585e9 −0.442035
\(525\) 0 0
\(526\) −7.60983e8 −0.227995
\(527\) −2.34097e8 −0.0696722
\(528\) 8.03783e8 0.237640
\(529\) −1.22057e9 −0.358483
\(530\) 7.30770e9 2.13214
\(531\) −1.14009e9 −0.330452
\(532\) 0 0
\(533\) 6.02813e8 0.172440
\(534\) −2.29533e9 −0.652304
\(535\) 3.38844e9 0.956668
\(536\) 1.08989e9 0.305706
\(537\) −2.16608e9 −0.603621
\(538\) 2.15084e9 0.595484
\(539\) 0 0
\(540\) 5.92065e8 0.161805
\(541\) 2.20541e8 0.0598824 0.0299412 0.999552i \(-0.490468\pi\)
0.0299412 + 0.999552i \(0.490468\pi\)
\(542\) −3.62307e9 −0.977415
\(543\) −1.94031e9 −0.520081
\(544\) −6.82951e8 −0.181883
\(545\) −1.82848e9 −0.483840
\(546\) 0 0
\(547\) 5.39461e9 1.40930 0.704652 0.709553i \(-0.251103\pi\)
0.704652 + 0.709553i \(0.251103\pi\)
\(548\) −2.70324e9 −0.701703
\(549\) 2.32091e9 0.598625
\(550\) −8.30151e9 −2.12759
\(551\) 3.79594e7 0.00966694
\(552\) 6.46078e8 0.163493
\(553\) 0 0
\(554\) −1.31768e8 −0.0329249
\(555\) −3.04177e9 −0.755267
\(556\) 1.29485e8 0.0319489
\(557\) −1.22387e9 −0.300083 −0.150041 0.988680i \(-0.547941\pi\)
−0.150041 + 0.988680i \(0.547941\pi\)
\(558\) 6.55050e7 0.0159608
\(559\) 9.95620e9 2.41075
\(560\) 0 0
\(561\) −4.08995e9 −0.978021
\(562\) 4.06491e9 0.965992
\(563\) 3.67094e9 0.866957 0.433479 0.901164i \(-0.357286\pi\)
0.433479 + 0.901164i \(0.357286\pi\)
\(564\) −7.79839e8 −0.183033
\(565\) −6.89242e9 −1.60769
\(566\) 2.05997e9 0.477532
\(567\) 0 0
\(568\) 2.91561e9 0.667590
\(569\) 5.00370e9 1.13867 0.569335 0.822105i \(-0.307201\pi\)
0.569335 + 0.822105i \(0.307201\pi\)
\(570\) 1.38920e9 0.314197
\(571\) 1.51166e9 0.339803 0.169902 0.985461i \(-0.445655\pi\)
0.169902 + 0.985461i \(0.445655\pi\)
\(572\) 5.29436e9 1.18284
\(573\) 4.52075e8 0.100385
\(574\) 0 0
\(575\) −6.67273e9 −1.46375
\(576\) 1.91103e8 0.0416667
\(577\) 4.39120e9 0.951629 0.475814 0.879546i \(-0.342153\pi\)
0.475814 + 0.879546i \(0.342153\pi\)
\(578\) 1.92402e8 0.0414441
\(579\) 3.63696e9 0.778688
\(580\) −8.34419e7 −0.0177577
\(581\) 0 0
\(582\) 5.19931e8 0.109324
\(583\) 1.41256e10 2.95235
\(584\) 1.15399e9 0.239748
\(585\) 3.89981e9 0.805376
\(586\) −5.87078e8 −0.120519
\(587\) 6.47628e9 1.32158 0.660789 0.750572i \(-0.270222\pi\)
0.660789 + 0.750572i \(0.270222\pi\)
\(588\) 0 0
\(589\) 1.53699e8 0.0309932
\(590\) 5.88029e9 1.17874
\(591\) 1.59142e9 0.317123
\(592\) −9.81803e8 −0.194490
\(593\) −5.28184e8 −0.104014 −0.0520072 0.998647i \(-0.516562\pi\)
−0.0520072 + 0.998647i \(0.516562\pi\)
\(594\) 1.14445e9 0.224049
\(595\) 0 0
\(596\) 4.05131e9 0.783851
\(597\) 3.54708e9 0.682277
\(598\) 4.25559e9 0.813778
\(599\) −9.03423e9 −1.71750 −0.858751 0.512394i \(-0.828759\pi\)
−0.858751 + 0.512394i \(0.828759\pi\)
\(600\) −1.97372e9 −0.373041
\(601\) −5.03992e9 −0.947028 −0.473514 0.880786i \(-0.657015\pi\)
−0.473514 + 0.880786i \(0.657015\pi\)
\(602\) 0 0
\(603\) 1.55181e9 0.288223
\(604\) −3.45360e9 −0.637739
\(605\) −1.56682e10 −2.87658
\(606\) 1.67956e9 0.306579
\(607\) −5.96562e9 −1.08267 −0.541334 0.840808i \(-0.682080\pi\)
−0.541334 + 0.840808i \(0.682080\pi\)
\(608\) 4.48397e8 0.0809097
\(609\) 0 0
\(610\) −1.19707e10 −2.13533
\(611\) −5.13665e9 −0.911037
\(612\) −9.72404e8 −0.171481
\(613\) 5.42350e9 0.950973 0.475487 0.879723i \(-0.342272\pi\)
0.475487 + 0.879723i \(0.342272\pi\)
\(614\) 7.45299e8 0.129939
\(615\) −6.72088e8 −0.116510
\(616\) 0 0
\(617\) 2.18073e9 0.373770 0.186885 0.982382i \(-0.440161\pi\)
0.186885 + 0.982382i \(0.440161\pi\)
\(618\) −2.85855e9 −0.487176
\(619\) 5.35735e9 0.907889 0.453945 0.891030i \(-0.350016\pi\)
0.453945 + 0.891030i \(0.350016\pi\)
\(620\) −3.37859e8 −0.0569330
\(621\) 9.19905e8 0.154142
\(622\) −4.88747e9 −0.814363
\(623\) 0 0
\(624\) 1.25876e9 0.207394
\(625\) 3.12689e9 0.512309
\(626\) 1.69785e9 0.276623
\(627\) 2.68529e9 0.435066
\(628\) −3.73355e9 −0.601538
\(629\) 4.99579e9 0.800436
\(630\) 0 0
\(631\) 1.14559e10 1.81521 0.907607 0.419822i \(-0.137907\pi\)
0.907607 + 0.419822i \(0.137907\pi\)
\(632\) 6.80509e7 0.0107232
\(633\) 8.00821e8 0.125494
\(634\) −8.83156e9 −1.37634
\(635\) −1.82046e9 −0.282145
\(636\) 3.35843e9 0.517651
\(637\) 0 0
\(638\) −1.61291e8 −0.0245889
\(639\) 4.15132e9 0.629410
\(640\) −9.85661e8 −0.148627
\(641\) 1.01287e10 1.51898 0.759491 0.650518i \(-0.225448\pi\)
0.759491 + 0.650518i \(0.225448\pi\)
\(642\) 1.55724e9 0.232265
\(643\) 4.99152e9 0.740448 0.370224 0.928943i \(-0.379281\pi\)
0.370224 + 0.928943i \(0.379281\pi\)
\(644\) 0 0
\(645\) −1.11003e10 −1.62884
\(646\) −2.28162e9 −0.332988
\(647\) 5.54237e9 0.804508 0.402254 0.915528i \(-0.368227\pi\)
0.402254 + 0.915528i \(0.368227\pi\)
\(648\) 2.72098e8 0.0392837
\(649\) 1.13665e10 1.63219
\(650\) −1.30005e10 −1.85680
\(651\) 0 0
\(652\) 3.87741e9 0.547867
\(653\) −7.42589e9 −1.04364 −0.521822 0.853054i \(-0.674748\pi\)
−0.521822 + 0.853054i \(0.674748\pi\)
\(654\) −8.40321e8 −0.117469
\(655\) 1.06914e10 1.48658
\(656\) −2.16932e8 −0.0300027
\(657\) 1.64308e9 0.226037
\(658\) 0 0
\(659\) 8.68127e8 0.118164 0.0590819 0.998253i \(-0.481183\pi\)
0.0590819 + 0.998253i \(0.481183\pi\)
\(660\) −5.90278e9 −0.799195
\(661\) −3.36920e9 −0.453755 −0.226878 0.973923i \(-0.572852\pi\)
−0.226878 + 0.973923i \(0.572852\pi\)
\(662\) −5.36470e9 −0.718692
\(663\) −6.40504e9 −0.853541
\(664\) −3.55867e9 −0.471736
\(665\) 0 0
\(666\) −1.39792e9 −0.183367
\(667\) −1.29646e8 −0.0169168
\(668\) −3.80284e9 −0.493617
\(669\) 8.53299e9 1.10182
\(670\) −8.00385e9 −1.02810
\(671\) −2.31391e10 −2.95677
\(672\) 0 0
\(673\) −3.43406e9 −0.434265 −0.217133 0.976142i \(-0.569670\pi\)
−0.217133 + 0.976142i \(0.569670\pi\)
\(674\) −5.47298e9 −0.688516
\(675\) −2.81024e9 −0.351706
\(676\) 4.27529e9 0.532295
\(677\) −1.28899e10 −1.59658 −0.798289 0.602275i \(-0.794261\pi\)
−0.798289 + 0.602275i \(0.794261\pi\)
\(678\) −3.16758e9 −0.390323
\(679\) 0 0
\(680\) 5.01542e9 0.611682
\(681\) 1.28535e9 0.155958
\(682\) −6.53073e8 −0.0788346
\(683\) −6.52012e9 −0.783039 −0.391519 0.920170i \(-0.628050\pi\)
−0.391519 + 0.920170i \(0.628050\pi\)
\(684\) 6.38441e8 0.0762824
\(685\) 1.98520e10 2.35986
\(686\) 0 0
\(687\) −2.81580e9 −0.331324
\(688\) −3.58290e9 −0.419445
\(689\) 2.21213e10 2.57658
\(690\) −4.74464e9 −0.549834
\(691\) 1.51264e10 1.74407 0.872035 0.489444i \(-0.162800\pi\)
0.872035 + 0.489444i \(0.162800\pi\)
\(692\) −3.57482e9 −0.410094
\(693\) 0 0
\(694\) 3.50042e9 0.397523
\(695\) −9.50902e8 −0.107446
\(696\) −3.83478e7 −0.00431130
\(697\) 1.10383e9 0.123478
\(698\) −7.51866e7 −0.00836848
\(699\) −6.34659e9 −0.702862
\(700\) 0 0
\(701\) −8.52704e9 −0.934943 −0.467472 0.884008i \(-0.654835\pi\)
−0.467472 + 0.884008i \(0.654835\pi\)
\(702\) 1.79226e9 0.195533
\(703\) −3.28003e9 −0.356069
\(704\) −1.90526e9 −0.205802
\(705\) 5.72695e9 0.615547
\(706\) −1.13177e10 −1.21044
\(707\) 0 0
\(708\) 2.70243e9 0.286180
\(709\) −9.84579e9 −1.03750 −0.518751 0.854925i \(-0.673603\pi\)
−0.518751 + 0.854925i \(0.673603\pi\)
\(710\) −2.14115e10 −2.24514
\(711\) 9.68928e7 0.0101099
\(712\) 5.44077e9 0.564912
\(713\) −5.24939e8 −0.0542370
\(714\) 0 0
\(715\) −3.88805e10 −3.97796
\(716\) 5.13441e9 0.522752
\(717\) −1.01078e9 −0.102409
\(718\) −2.46066e9 −0.248094
\(719\) −4.02796e9 −0.404142 −0.202071 0.979371i \(-0.564767\pi\)
−0.202071 + 0.979371i \(0.564767\pi\)
\(720\) −1.40341e9 −0.140127
\(721\) 0 0
\(722\) −5.65296e9 −0.558979
\(723\) 2.66670e8 0.0262416
\(724\) 4.59925e9 0.450403
\(725\) 3.96058e8 0.0385990
\(726\) −7.20072e9 −0.698389
\(727\) 5.95463e9 0.574757 0.287379 0.957817i \(-0.407216\pi\)
0.287379 + 0.957817i \(0.407216\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) −8.47458e9 −0.806284
\(731\) 1.82312e10 1.72625
\(732\) −5.50142e9 −0.518425
\(733\) −1.65545e10 −1.55257 −0.776286 0.630381i \(-0.782899\pi\)
−0.776286 + 0.630381i \(0.782899\pi\)
\(734\) 9.85018e9 0.919407
\(735\) 0 0
\(736\) −1.53145e9 −0.141589
\(737\) −1.54713e10 −1.42361
\(738\) −3.08874e8 −0.0282869
\(739\) 1.14446e10 1.04315 0.521574 0.853206i \(-0.325345\pi\)
0.521574 + 0.853206i \(0.325345\pi\)
\(740\) 7.21012e9 0.654081
\(741\) 4.20528e9 0.379692
\(742\) 0 0
\(743\) −4.25895e8 −0.0380927 −0.0190464 0.999819i \(-0.506063\pi\)
−0.0190464 + 0.999819i \(0.506063\pi\)
\(744\) −1.55271e8 −0.0138225
\(745\) −2.97518e10 −2.63613
\(746\) 1.46873e10 1.29526
\(747\) −5.06693e9 −0.444757
\(748\) 9.69470e9 0.846991
\(749\) 0 0
\(750\) 6.56327e9 0.568075
\(751\) −2.95035e8 −0.0254176 −0.0127088 0.999919i \(-0.504045\pi\)
−0.0127088 + 0.999919i \(0.504045\pi\)
\(752\) 1.84851e9 0.158511
\(753\) 3.57583e9 0.305207
\(754\) −2.52589e8 −0.0214593
\(755\) 2.53624e10 2.14475
\(756\) 0 0
\(757\) 1.87377e10 1.56994 0.784968 0.619537i \(-0.212680\pi\)
0.784968 + 0.619537i \(0.212680\pi\)
\(758\) −5.19147e9 −0.432960
\(759\) −9.17129e9 −0.761349
\(760\) −3.29292e9 −0.272103
\(761\) −4.07496e9 −0.335179 −0.167590 0.985857i \(-0.553598\pi\)
−0.167590 + 0.985857i \(0.553598\pi\)
\(762\) −8.36635e8 −0.0685005
\(763\) 0 0
\(764\) −1.07159e9 −0.0869361
\(765\) 7.14109e9 0.576700
\(766\) 5.44257e9 0.437525
\(767\) 1.78004e10 1.42445
\(768\) −4.52985e8 −0.0360844
\(769\) −1.19604e10 −0.948425 −0.474213 0.880410i \(-0.657267\pi\)
−0.474213 + 0.880410i \(0.657267\pi\)
\(770\) 0 0
\(771\) 8.98201e9 0.705803
\(772\) −8.62094e9 −0.674364
\(773\) −4.67303e8 −0.0363890 −0.0181945 0.999834i \(-0.505792\pi\)
−0.0181945 + 0.999834i \(0.505792\pi\)
\(774\) −5.10144e9 −0.395457
\(775\) 1.60365e9 0.123752
\(776\) −1.23243e9 −0.0946774
\(777\) 0 0
\(778\) 2.18964e9 0.166703
\(779\) −7.24732e8 −0.0549283
\(780\) −9.24401e9 −0.697476
\(781\) −4.13879e10 −3.10882
\(782\) 7.79257e9 0.582716
\(783\) −5.46006e7 −0.00406473
\(784\) 0 0
\(785\) 2.74182e10 2.02300
\(786\) 4.91349e9 0.360920
\(787\) 8.07987e9 0.590871 0.295436 0.955363i \(-0.404535\pi\)
0.295436 + 0.955363i \(0.404535\pi\)
\(788\) −3.77224e9 −0.274636
\(789\) 2.56832e9 0.186157
\(790\) −4.99749e8 −0.0360626
\(791\) 0 0
\(792\) −2.71277e9 −0.194032
\(793\) −3.62368e10 −2.58044
\(794\) 9.68273e9 0.686477
\(795\) −2.46635e10 −1.74088
\(796\) −8.40789e9 −0.590869
\(797\) 1.48799e10 1.04111 0.520555 0.853828i \(-0.325725\pi\)
0.520555 + 0.853828i \(0.325725\pi\)
\(798\) 0 0
\(799\) −9.40591e9 −0.652360
\(800\) 4.67845e9 0.323063
\(801\) 7.74673e9 0.532604
\(802\) −4.77682e9 −0.326985
\(803\) −1.63812e10 −1.11645
\(804\) −3.67837e9 −0.249608
\(805\) 0 0
\(806\) −1.02274e9 −0.0688007
\(807\) −7.25908e9 −0.486211
\(808\) −3.98118e9 −0.265505
\(809\) 7.15132e9 0.474861 0.237431 0.971405i \(-0.423695\pi\)
0.237431 + 0.971405i \(0.423695\pi\)
\(810\) −1.99822e9 −0.132113
\(811\) −2.13058e9 −0.140257 −0.0701286 0.997538i \(-0.522341\pi\)
−0.0701286 + 0.997538i \(0.522341\pi\)
\(812\) 0 0
\(813\) 1.22279e10 0.798056
\(814\) 1.39370e10 0.905699
\(815\) −2.84747e10 −1.84250
\(816\) 2.30496e9 0.148507
\(817\) −1.19698e10 −0.767911
\(818\) 9.58137e9 0.612056
\(819\) 0 0
\(820\) 1.59310e9 0.100901
\(821\) 2.04052e9 0.128688 0.0643442 0.997928i \(-0.479504\pi\)
0.0643442 + 0.997928i \(0.479504\pi\)
\(822\) 9.12345e9 0.572938
\(823\) 2.99139e10 1.87057 0.935283 0.353900i \(-0.115145\pi\)
0.935283 + 0.353900i \(0.115145\pi\)
\(824\) 6.77582e9 0.421907
\(825\) 2.80176e10 1.73717
\(826\) 0 0
\(827\) 1.05103e10 0.646170 0.323085 0.946370i \(-0.395280\pi\)
0.323085 + 0.946370i \(0.395280\pi\)
\(828\) −2.18051e9 −0.133491
\(829\) −1.91146e10 −1.16526 −0.582632 0.812736i \(-0.697977\pi\)
−0.582632 + 0.812736i \(0.697977\pi\)
\(830\) 2.61340e10 1.58647
\(831\) 4.44716e8 0.0268831
\(832\) −2.98372e9 −0.179608
\(833\) 0 0
\(834\) −4.37010e8 −0.0260862
\(835\) 2.79271e10 1.66006
\(836\) −6.36514e9 −0.376778
\(837\) −2.21079e8 −0.0130319
\(838\) 1.34944e10 0.792136
\(839\) −2.31635e9 −0.135406 −0.0677028 0.997706i \(-0.521567\pi\)
−0.0677028 + 0.997706i \(0.521567\pi\)
\(840\) 0 0
\(841\) −1.72422e10 −0.999554
\(842\) −7.68284e9 −0.443537
\(843\) −1.37191e10 −0.788729
\(844\) −1.89824e9 −0.108681
\(845\) −3.13967e10 −1.79013
\(846\) 2.63196e9 0.149445
\(847\) 0 0
\(848\) −7.96073e9 −0.448299
\(849\) −6.95239e9 −0.389904
\(850\) −2.38057e10 −1.32958
\(851\) 1.12025e10 0.623107
\(852\) −9.84017e9 −0.545085
\(853\) 8.57597e8 0.0473110 0.0236555 0.999720i \(-0.492470\pi\)
0.0236555 + 0.999720i \(0.492470\pi\)
\(854\) 0 0
\(855\) −4.68855e9 −0.256541
\(856\) −3.69124e9 −0.201147
\(857\) 2.73865e10 1.48629 0.743146 0.669130i \(-0.233333\pi\)
0.743146 + 0.669130i \(0.233333\pi\)
\(858\) −1.78685e10 −0.965788
\(859\) 1.01916e10 0.548611 0.274306 0.961643i \(-0.411552\pi\)
0.274306 + 0.961643i \(0.411552\pi\)
\(860\) 2.63119e10 1.41061
\(861\) 0 0
\(862\) −8.25327e8 −0.0438885
\(863\) 3.70675e9 0.196316 0.0981578 0.995171i \(-0.468705\pi\)
0.0981578 + 0.995171i \(0.468705\pi\)
\(864\) −6.44973e8 −0.0340207
\(865\) 2.62526e10 1.37916
\(866\) 1.86622e10 0.976451
\(867\) −6.49358e8 −0.0338390
\(868\) 0 0
\(869\) −9.66004e8 −0.0499356
\(870\) 2.81616e8 0.0144991
\(871\) −2.42287e10 −1.24241
\(872\) 1.99187e9 0.101731
\(873\) −1.75477e9 −0.0892627
\(874\) −5.11628e9 −0.259218
\(875\) 0 0
\(876\) −3.89470e9 −0.195754
\(877\) 2.18681e9 0.109474 0.0547372 0.998501i \(-0.482568\pi\)
0.0547372 + 0.998501i \(0.482568\pi\)
\(878\) 1.24927e10 0.622910
\(879\) 1.98139e9 0.0984030
\(880\) 1.39918e10 0.692123
\(881\) 9.10532e9 0.448621 0.224310 0.974518i \(-0.427987\pi\)
0.224310 + 0.974518i \(0.427987\pi\)
\(882\) 0 0
\(883\) 1.99391e10 0.974639 0.487319 0.873224i \(-0.337975\pi\)
0.487319 + 0.873224i \(0.337975\pi\)
\(884\) 1.51823e10 0.739188
\(885\) −1.98460e10 −0.962435
\(886\) 1.29985e10 0.627876
\(887\) 7.24425e9 0.348547 0.174273 0.984697i \(-0.444242\pi\)
0.174273 + 0.984697i \(0.444242\pi\)
\(888\) 3.31359e9 0.158801
\(889\) 0 0
\(890\) −3.99557e10 −1.89982
\(891\) −3.86251e9 −0.182936
\(892\) −2.02264e10 −0.954203
\(893\) 6.17553e9 0.290198
\(894\) −1.36732e10 −0.640012
\(895\) −3.77059e10 −1.75804
\(896\) 0 0
\(897\) −1.43626e10 −0.664447
\(898\) −6.54782e9 −0.301738
\(899\) 3.11576e7 0.00143023
\(900\) 6.66131e9 0.304587
\(901\) 4.05072e10 1.84500
\(902\) 3.07942e9 0.139716
\(903\) 0 0
\(904\) 7.50834e9 0.338029
\(905\) −3.37757e10 −1.51473
\(906\) 1.16559e10 0.520712
\(907\) 8.75334e9 0.389537 0.194768 0.980849i \(-0.437605\pi\)
0.194768 + 0.980849i \(0.437605\pi\)
\(908\) −3.04676e9 −0.135063
\(909\) −5.66852e9 −0.250320
\(910\) 0 0
\(911\) 1.99869e10 0.875853 0.437926 0.899011i \(-0.355713\pi\)
0.437926 + 0.899011i \(0.355713\pi\)
\(912\) −1.51334e9 −0.0660625
\(913\) 5.05164e10 2.19677
\(914\) −1.22660e10 −0.531365
\(915\) 4.04010e10 1.74349
\(916\) 6.67449e9 0.286935
\(917\) 0 0
\(918\) 3.28186e9 0.140014
\(919\) −9.93075e9 −0.422063 −0.211032 0.977479i \(-0.567682\pi\)
−0.211032 + 0.977479i \(0.567682\pi\)
\(920\) 1.12466e10 0.476170
\(921\) −2.51538e9 −0.106095
\(922\) −2.74806e10 −1.15470
\(923\) −6.48153e10 −2.71314
\(924\) 0 0
\(925\) −3.42229e10 −1.42174
\(926\) 1.38560e10 0.573457
\(927\) 9.64760e9 0.397778
\(928\) 9.08984e7 0.00373369
\(929\) −1.95908e10 −0.801671 −0.400836 0.916150i \(-0.631280\pi\)
−0.400836 + 0.916150i \(0.631280\pi\)
\(930\) 1.14027e9 0.0464856
\(931\) 0 0
\(932\) 1.50438e10 0.608697
\(933\) 1.64952e10 0.664925
\(934\) 3.85190e9 0.154690
\(935\) −7.11954e10 −2.84847
\(936\) −4.24831e9 −0.169337
\(937\) −4.20286e10 −1.66900 −0.834500 0.551009i \(-0.814243\pi\)
−0.834500 + 0.551009i \(0.814243\pi\)
\(938\) 0 0
\(939\) −5.73024e9 −0.225862
\(940\) −1.35750e10 −0.533079
\(941\) 9.95430e9 0.389446 0.194723 0.980858i \(-0.437619\pi\)
0.194723 + 0.980858i \(0.437619\pi\)
\(942\) 1.26007e10 0.491154
\(943\) 2.47523e9 0.0961225
\(944\) −6.40577e9 −0.247839
\(945\) 0 0
\(946\) 5.08604e10 1.95326
\(947\) −2.43450e10 −0.931503 −0.465751 0.884916i \(-0.654216\pi\)
−0.465751 + 0.884916i \(0.654216\pi\)
\(948\) −2.29672e8 −0.00875546
\(949\) −2.56536e10 −0.974355
\(950\) 1.56299e10 0.591456
\(951\) 2.98065e10 1.12378
\(952\) 0 0
\(953\) 1.71198e10 0.640727 0.320364 0.947295i \(-0.396195\pi\)
0.320364 + 0.947295i \(0.396195\pi\)
\(954\) −1.13347e10 −0.422660
\(955\) 7.86946e9 0.292370
\(956\) 2.39592e9 0.0886888
\(957\) 5.44359e8 0.0200767
\(958\) 1.32751e10 0.487821
\(959\) 0 0
\(960\) 3.32661e9 0.121353
\(961\) −2.73865e10 −0.995415
\(962\) 2.18259e10 0.790424
\(963\) −5.25568e9 −0.189643
\(964\) −6.32107e8 −0.0227259
\(965\) 6.33100e10 2.26792
\(966\) 0 0
\(967\) −5.29443e10 −1.88290 −0.941448 0.337157i \(-0.890535\pi\)
−0.941448 + 0.337157i \(0.890535\pi\)
\(968\) 1.70684e10 0.604823
\(969\) 7.70045e9 0.271884
\(970\) 9.05066e9 0.318404
\(971\) 2.44723e10 0.857841 0.428920 0.903342i \(-0.358894\pi\)
0.428920 + 0.903342i \(0.358894\pi\)
\(972\) −9.18330e8 −0.0320750
\(973\) 0 0
\(974\) 1.37613e10 0.477204
\(975\) 4.38768e10 1.51607
\(976\) 1.30404e10 0.448969
\(977\) −3.21678e10 −1.10355 −0.551774 0.833994i \(-0.686049\pi\)
−0.551774 + 0.833994i \(0.686049\pi\)
\(978\) −1.30863e10 −0.447331
\(979\) −7.72335e10 −2.63067
\(980\) 0 0
\(981\) 2.83608e9 0.0959130
\(982\) −5.33678e9 −0.179841
\(983\) −1.85564e10 −0.623097 −0.311549 0.950230i \(-0.600848\pi\)
−0.311549 + 0.950230i \(0.600848\pi\)
\(984\) 7.32147e8 0.0244971
\(985\) 2.77024e10 0.923615
\(986\) −4.62526e8 −0.0153662
\(987\) 0 0
\(988\) −9.96808e9 −0.328823
\(989\) 4.08815e10 1.34382
\(990\) 1.99219e10 0.652540
\(991\) 1.60149e10 0.522716 0.261358 0.965242i \(-0.415830\pi\)
0.261358 + 0.965242i \(0.415830\pi\)
\(992\) 3.68050e8 0.0119706
\(993\) 1.81059e10 0.586809
\(994\) 0 0
\(995\) 6.17454e10 1.98712
\(996\) 1.20105e10 0.385171
\(997\) −3.20965e10 −1.02571 −0.512855 0.858475i \(-0.671412\pi\)
−0.512855 + 0.858475i \(0.671412\pi\)
\(998\) −4.36782e9 −0.139094
\(999\) 4.71798e9 0.149719
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.8.a.k.1.1 1
7.2 even 3 294.8.e.f.67.1 2
7.3 odd 6 294.8.e.a.79.1 2
7.4 even 3 294.8.e.f.79.1 2
7.5 odd 6 294.8.e.a.67.1 2
7.6 odd 2 42.8.a.f.1.1 1
21.20 even 2 126.8.a.a.1.1 1
28.27 even 2 336.8.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.8.a.f.1.1 1 7.6 odd 2
126.8.a.a.1.1 1 21.20 even 2
294.8.a.k.1.1 1 1.1 even 1 trivial
294.8.e.a.67.1 2 7.5 odd 6
294.8.e.a.79.1 2 7.3 odd 6
294.8.e.f.67.1 2 7.2 even 3
294.8.e.f.79.1 2 7.4 even 3
336.8.a.f.1.1 1 28.27 even 2