Properties

Label 3042.2.a.s.1.2
Level $3042$
Weight $2$
Character 3042.1
Self dual yes
Analytic conductor $24.290$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2904922949\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3042.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.73205 q^{5} -1.26795 q^{7} -1.00000 q^{8} -1.73205 q^{10} +1.26795 q^{11} +1.26795 q^{14} +1.00000 q^{16} -5.19615 q^{17} -4.73205 q^{19} +1.73205 q^{20} -1.26795 q^{22} +8.19615 q^{23} -2.00000 q^{25} -1.26795 q^{28} +3.00000 q^{29} -9.46410 q^{31} -1.00000 q^{32} +5.19615 q^{34} -2.19615 q^{35} -3.00000 q^{37} +4.73205 q^{38} -1.73205 q^{40} +6.46410 q^{41} -4.19615 q^{43} +1.26795 q^{44} -8.19615 q^{46} -4.73205 q^{47} -5.39230 q^{49} +2.00000 q^{50} -3.00000 q^{53} +2.19615 q^{55} +1.26795 q^{56} -3.00000 q^{58} -13.8564 q^{59} +15.1962 q^{61} +9.46410 q^{62} +1.00000 q^{64} -7.26795 q^{67} -5.19615 q^{68} +2.19615 q^{70} -2.19615 q^{71} -12.1244 q^{73} +3.00000 q^{74} -4.73205 q^{76} -1.60770 q^{77} +8.39230 q^{79} +1.73205 q^{80} -6.46410 q^{82} +5.66025 q^{83} -9.00000 q^{85} +4.19615 q^{86} -1.26795 q^{88} +9.46410 q^{89} +8.19615 q^{92} +4.73205 q^{94} -8.19615 q^{95} -6.00000 q^{97} +5.39230 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 6 q^{7} - 2 q^{8} + 6 q^{11} + 6 q^{14} + 2 q^{16} - 6 q^{19} - 6 q^{22} + 6 q^{23} - 4 q^{25} - 6 q^{28} + 6 q^{29} - 12 q^{31} - 2 q^{32} + 6 q^{35} - 6 q^{37} + 6 q^{38} + 6 q^{41}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.73205 0.774597 0.387298 0.921954i \(-0.373408\pi\)
0.387298 + 0.921954i \(0.373408\pi\)
\(6\) 0 0
\(7\) −1.26795 −0.479240 −0.239620 0.970867i \(-0.577023\pi\)
−0.239620 + 0.970867i \(0.577023\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.73205 −0.547723
\(11\) 1.26795 0.382301 0.191151 0.981561i \(-0.438778\pi\)
0.191151 + 0.981561i \(0.438778\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 1.26795 0.338874
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.19615 −1.26025 −0.630126 0.776493i \(-0.716997\pi\)
−0.630126 + 0.776493i \(0.716997\pi\)
\(18\) 0 0
\(19\) −4.73205 −1.08561 −0.542803 0.839860i \(-0.682637\pi\)
−0.542803 + 0.839860i \(0.682637\pi\)
\(20\) 1.73205 0.387298
\(21\) 0 0
\(22\) −1.26795 −0.270328
\(23\) 8.19615 1.70902 0.854508 0.519438i \(-0.173859\pi\)
0.854508 + 0.519438i \(0.173859\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) −1.26795 −0.239620
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −9.46410 −1.69980 −0.849901 0.526942i \(-0.823339\pi\)
−0.849901 + 0.526942i \(0.823339\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 5.19615 0.891133
\(35\) −2.19615 −0.371218
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 4.73205 0.767640
\(39\) 0 0
\(40\) −1.73205 −0.273861
\(41\) 6.46410 1.00952 0.504762 0.863259i \(-0.331580\pi\)
0.504762 + 0.863259i \(0.331580\pi\)
\(42\) 0 0
\(43\) −4.19615 −0.639907 −0.319954 0.947433i \(-0.603667\pi\)
−0.319954 + 0.947433i \(0.603667\pi\)
\(44\) 1.26795 0.191151
\(45\) 0 0
\(46\) −8.19615 −1.20846
\(47\) −4.73205 −0.690241 −0.345120 0.938558i \(-0.612162\pi\)
−0.345120 + 0.938558i \(0.612162\pi\)
\(48\) 0 0
\(49\) −5.39230 −0.770329
\(50\) 2.00000 0.282843
\(51\) 0 0
\(52\) 0 0
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) 0 0
\(55\) 2.19615 0.296129
\(56\) 1.26795 0.169437
\(57\) 0 0
\(58\) −3.00000 −0.393919
\(59\) −13.8564 −1.80395 −0.901975 0.431788i \(-0.857883\pi\)
−0.901975 + 0.431788i \(0.857883\pi\)
\(60\) 0 0
\(61\) 15.1962 1.94567 0.972834 0.231504i \(-0.0743646\pi\)
0.972834 + 0.231504i \(0.0743646\pi\)
\(62\) 9.46410 1.20194
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −7.26795 −0.887921 −0.443961 0.896046i \(-0.646427\pi\)
−0.443961 + 0.896046i \(0.646427\pi\)
\(68\) −5.19615 −0.630126
\(69\) 0 0
\(70\) 2.19615 0.262490
\(71\) −2.19615 −0.260635 −0.130318 0.991472i \(-0.541600\pi\)
−0.130318 + 0.991472i \(0.541600\pi\)
\(72\) 0 0
\(73\) −12.1244 −1.41905 −0.709524 0.704681i \(-0.751090\pi\)
−0.709524 + 0.704681i \(0.751090\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) −4.73205 −0.542803
\(77\) −1.60770 −0.183214
\(78\) 0 0
\(79\) 8.39230 0.944208 0.472104 0.881543i \(-0.343495\pi\)
0.472104 + 0.881543i \(0.343495\pi\)
\(80\) 1.73205 0.193649
\(81\) 0 0
\(82\) −6.46410 −0.713841
\(83\) 5.66025 0.621294 0.310647 0.950525i \(-0.399454\pi\)
0.310647 + 0.950525i \(0.399454\pi\)
\(84\) 0 0
\(85\) −9.00000 −0.976187
\(86\) 4.19615 0.452483
\(87\) 0 0
\(88\) −1.26795 −0.135164
\(89\) 9.46410 1.00319 0.501596 0.865102i \(-0.332746\pi\)
0.501596 + 0.865102i \(0.332746\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.19615 0.854508
\(93\) 0 0
\(94\) 4.73205 0.488074
\(95\) −8.19615 −0.840907
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 5.39230 0.544705
\(99\) 0 0
\(100\) −2.00000 −0.200000
\(101\) −19.3923 −1.92961 −0.964803 0.262973i \(-0.915297\pi\)
−0.964803 + 0.262973i \(0.915297\pi\)
\(102\) 0 0
\(103\) 6.19615 0.610525 0.305263 0.952268i \(-0.401256\pi\)
0.305263 + 0.952268i \(0.401256\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) 2.19615 0.212310 0.106155 0.994350i \(-0.466146\pi\)
0.106155 + 0.994350i \(0.466146\pi\)
\(108\) 0 0
\(109\) 4.39230 0.420707 0.210353 0.977625i \(-0.432539\pi\)
0.210353 + 0.977625i \(0.432539\pi\)
\(110\) −2.19615 −0.209395
\(111\) 0 0
\(112\) −1.26795 −0.119810
\(113\) −0.803848 −0.0756196 −0.0378098 0.999285i \(-0.512038\pi\)
−0.0378098 + 0.999285i \(0.512038\pi\)
\(114\) 0 0
\(115\) 14.1962 1.32380
\(116\) 3.00000 0.278543
\(117\) 0 0
\(118\) 13.8564 1.27559
\(119\) 6.58846 0.603963
\(120\) 0 0
\(121\) −9.39230 −0.853846
\(122\) −15.1962 −1.37579
\(123\) 0 0
\(124\) −9.46410 −0.849901
\(125\) −12.1244 −1.08444
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 4.39230 0.383757 0.191879 0.981419i \(-0.438542\pi\)
0.191879 + 0.981419i \(0.438542\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) 7.26795 0.627855
\(135\) 0 0
\(136\) 5.19615 0.445566
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −2.19615 −0.185609
\(141\) 0 0
\(142\) 2.19615 0.184297
\(143\) 0 0
\(144\) 0 0
\(145\) 5.19615 0.431517
\(146\) 12.1244 1.00342
\(147\) 0 0
\(148\) −3.00000 −0.246598
\(149\) 6.12436 0.501727 0.250863 0.968023i \(-0.419286\pi\)
0.250863 + 0.968023i \(0.419286\pi\)
\(150\) 0 0
\(151\) −10.7321 −0.873362 −0.436681 0.899616i \(-0.643846\pi\)
−0.436681 + 0.899616i \(0.643846\pi\)
\(152\) 4.73205 0.383820
\(153\) 0 0
\(154\) 1.60770 0.129552
\(155\) −16.3923 −1.31666
\(156\) 0 0
\(157\) 7.19615 0.574315 0.287158 0.957883i \(-0.407290\pi\)
0.287158 + 0.957883i \(0.407290\pi\)
\(158\) −8.39230 −0.667656
\(159\) 0 0
\(160\) −1.73205 −0.136931
\(161\) −10.3923 −0.819028
\(162\) 0 0
\(163\) −2.53590 −0.198627 −0.0993134 0.995056i \(-0.531665\pi\)
−0.0993134 + 0.995056i \(0.531665\pi\)
\(164\) 6.46410 0.504762
\(165\) 0 0
\(166\) −5.66025 −0.439321
\(167\) −9.46410 −0.732354 −0.366177 0.930545i \(-0.619334\pi\)
−0.366177 + 0.930545i \(0.619334\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 9.00000 0.690268
\(171\) 0 0
\(172\) −4.19615 −0.319954
\(173\) 4.39230 0.333941 0.166970 0.985962i \(-0.446602\pi\)
0.166970 + 0.985962i \(0.446602\pi\)
\(174\) 0 0
\(175\) 2.53590 0.191696
\(176\) 1.26795 0.0955753
\(177\) 0 0
\(178\) −9.46410 −0.709364
\(179\) −2.19615 −0.164148 −0.0820741 0.996626i \(-0.526154\pi\)
−0.0820741 + 0.996626i \(0.526154\pi\)
\(180\) 0 0
\(181\) 19.5885 1.45600 0.727999 0.685578i \(-0.240450\pi\)
0.727999 + 0.685578i \(0.240450\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.19615 −0.604228
\(185\) −5.19615 −0.382029
\(186\) 0 0
\(187\) −6.58846 −0.481796
\(188\) −4.73205 −0.345120
\(189\) 0 0
\(190\) 8.19615 0.594611
\(191\) 20.7846 1.50392 0.751961 0.659208i \(-0.229108\pi\)
0.751961 + 0.659208i \(0.229108\pi\)
\(192\) 0 0
\(193\) 23.1962 1.66970 0.834848 0.550481i \(-0.185556\pi\)
0.834848 + 0.550481i \(0.185556\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) −5.39230 −0.385165
\(197\) −6.92820 −0.493614 −0.246807 0.969065i \(-0.579381\pi\)
−0.246807 + 0.969065i \(0.579381\pi\)
\(198\) 0 0
\(199\) −22.5885 −1.60125 −0.800627 0.599164i \(-0.795500\pi\)
−0.800627 + 0.599164i \(0.795500\pi\)
\(200\) 2.00000 0.141421
\(201\) 0 0
\(202\) 19.3923 1.36444
\(203\) −3.80385 −0.266978
\(204\) 0 0
\(205\) 11.1962 0.781973
\(206\) −6.19615 −0.431706
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) −24.3923 −1.67924 −0.839618 0.543178i \(-0.817221\pi\)
−0.839618 + 0.543178i \(0.817221\pi\)
\(212\) −3.00000 −0.206041
\(213\) 0 0
\(214\) −2.19615 −0.150126
\(215\) −7.26795 −0.495670
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) −4.39230 −0.297484
\(219\) 0 0
\(220\) 2.19615 0.148065
\(221\) 0 0
\(222\) 0 0
\(223\) 5.07180 0.339633 0.169816 0.985476i \(-0.445683\pi\)
0.169816 + 0.985476i \(0.445683\pi\)
\(224\) 1.26795 0.0847184
\(225\) 0 0
\(226\) 0.803848 0.0534711
\(227\) −20.1962 −1.34047 −0.670233 0.742151i \(-0.733806\pi\)
−0.670233 + 0.742151i \(0.733806\pi\)
\(228\) 0 0
\(229\) 7.85641 0.519166 0.259583 0.965721i \(-0.416415\pi\)
0.259583 + 0.965721i \(0.416415\pi\)
\(230\) −14.1962 −0.936067
\(231\) 0 0
\(232\) −3.00000 −0.196960
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) −8.19615 −0.534658
\(236\) −13.8564 −0.901975
\(237\) 0 0
\(238\) −6.58846 −0.427066
\(239\) 6.58846 0.426172 0.213086 0.977033i \(-0.431649\pi\)
0.213086 + 0.977033i \(0.431649\pi\)
\(240\) 0 0
\(241\) −11.1962 −0.721208 −0.360604 0.932719i \(-0.617429\pi\)
−0.360604 + 0.932719i \(0.617429\pi\)
\(242\) 9.39230 0.603760
\(243\) 0 0
\(244\) 15.1962 0.972834
\(245\) −9.33975 −0.596694
\(246\) 0 0
\(247\) 0 0
\(248\) 9.46410 0.600971
\(249\) 0 0
\(250\) 12.1244 0.766812
\(251\) −16.3923 −1.03467 −0.517337 0.855782i \(-0.673076\pi\)
−0.517337 + 0.855782i \(0.673076\pi\)
\(252\) 0 0
\(253\) 10.3923 0.653359
\(254\) 4.00000 0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −23.1962 −1.44694 −0.723468 0.690358i \(-0.757453\pi\)
−0.723468 + 0.690358i \(0.757453\pi\)
\(258\) 0 0
\(259\) 3.80385 0.236360
\(260\) 0 0
\(261\) 0 0
\(262\) −4.39230 −0.271357
\(263\) −8.19615 −0.505396 −0.252698 0.967545i \(-0.581318\pi\)
−0.252698 + 0.967545i \(0.581318\pi\)
\(264\) 0 0
\(265\) −5.19615 −0.319197
\(266\) −6.00000 −0.367884
\(267\) 0 0
\(268\) −7.26795 −0.443961
\(269\) 7.60770 0.463849 0.231925 0.972734i \(-0.425498\pi\)
0.231925 + 0.972734i \(0.425498\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −5.19615 −0.315063
\(273\) 0 0
\(274\) 9.00000 0.543710
\(275\) −2.53590 −0.152920
\(276\) 0 0
\(277\) 4.80385 0.288635 0.144318 0.989531i \(-0.453901\pi\)
0.144318 + 0.989531i \(0.453901\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 2.19615 0.131245
\(281\) 17.5359 1.04610 0.523052 0.852301i \(-0.324793\pi\)
0.523052 + 0.852301i \(0.324793\pi\)
\(282\) 0 0
\(283\) −19.8038 −1.17722 −0.588608 0.808418i \(-0.700324\pi\)
−0.588608 + 0.808418i \(0.700324\pi\)
\(284\) −2.19615 −0.130318
\(285\) 0 0
\(286\) 0 0
\(287\) −8.19615 −0.483804
\(288\) 0 0
\(289\) 10.0000 0.588235
\(290\) −5.19615 −0.305129
\(291\) 0 0
\(292\) −12.1244 −0.709524
\(293\) 2.66025 0.155414 0.0777069 0.996976i \(-0.475240\pi\)
0.0777069 + 0.996976i \(0.475240\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 3.00000 0.174371
\(297\) 0 0
\(298\) −6.12436 −0.354774
\(299\) 0 0
\(300\) 0 0
\(301\) 5.32051 0.306669
\(302\) 10.7321 0.617560
\(303\) 0 0
\(304\) −4.73205 −0.271402
\(305\) 26.3205 1.50711
\(306\) 0 0
\(307\) −7.26795 −0.414804 −0.207402 0.978256i \(-0.566501\pi\)
−0.207402 + 0.978256i \(0.566501\pi\)
\(308\) −1.60770 −0.0916069
\(309\) 0 0
\(310\) 16.3923 0.931020
\(311\) 8.19615 0.464761 0.232381 0.972625i \(-0.425349\pi\)
0.232381 + 0.972625i \(0.425349\pi\)
\(312\) 0 0
\(313\) −3.60770 −0.203919 −0.101959 0.994789i \(-0.532511\pi\)
−0.101959 + 0.994789i \(0.532511\pi\)
\(314\) −7.19615 −0.406102
\(315\) 0 0
\(316\) 8.39230 0.472104
\(317\) −18.1244 −1.01797 −0.508983 0.860777i \(-0.669978\pi\)
−0.508983 + 0.860777i \(0.669978\pi\)
\(318\) 0 0
\(319\) 3.80385 0.212975
\(320\) 1.73205 0.0968246
\(321\) 0 0
\(322\) 10.3923 0.579141
\(323\) 24.5885 1.36814
\(324\) 0 0
\(325\) 0 0
\(326\) 2.53590 0.140450
\(327\) 0 0
\(328\) −6.46410 −0.356920
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 5.66025 0.310647
\(333\) 0 0
\(334\) 9.46410 0.517853
\(335\) −12.5885 −0.687781
\(336\) 0 0
\(337\) −31.0000 −1.68868 −0.844339 0.535810i \(-0.820006\pi\)
−0.844339 + 0.535810i \(0.820006\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −9.00000 −0.488094
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) 15.7128 0.848412
\(344\) 4.19615 0.226241
\(345\) 0 0
\(346\) −4.39230 −0.236132
\(347\) −18.5885 −0.997881 −0.498940 0.866636i \(-0.666277\pi\)
−0.498940 + 0.866636i \(0.666277\pi\)
\(348\) 0 0
\(349\) −9.46410 −0.506602 −0.253301 0.967388i \(-0.581516\pi\)
−0.253301 + 0.967388i \(0.581516\pi\)
\(350\) −2.53590 −0.135549
\(351\) 0 0
\(352\) −1.26795 −0.0675819
\(353\) −35.7846 −1.90462 −0.952311 0.305128i \(-0.901301\pi\)
−0.952311 + 0.305128i \(0.901301\pi\)
\(354\) 0 0
\(355\) −3.80385 −0.201887
\(356\) 9.46410 0.501596
\(357\) 0 0
\(358\) 2.19615 0.116070
\(359\) −16.0526 −0.847222 −0.423611 0.905844i \(-0.639238\pi\)
−0.423611 + 0.905844i \(0.639238\pi\)
\(360\) 0 0
\(361\) 3.39230 0.178542
\(362\) −19.5885 −1.02955
\(363\) 0 0
\(364\) 0 0
\(365\) −21.0000 −1.09919
\(366\) 0 0
\(367\) −13.8038 −0.720555 −0.360277 0.932845i \(-0.617318\pi\)
−0.360277 + 0.932845i \(0.617318\pi\)
\(368\) 8.19615 0.427254
\(369\) 0 0
\(370\) 5.19615 0.270135
\(371\) 3.80385 0.197486
\(372\) 0 0
\(373\) −27.9808 −1.44879 −0.724394 0.689386i \(-0.757881\pi\)
−0.724394 + 0.689386i \(0.757881\pi\)
\(374\) 6.58846 0.340681
\(375\) 0 0
\(376\) 4.73205 0.244037
\(377\) 0 0
\(378\) 0 0
\(379\) −30.2487 −1.55377 −0.776886 0.629641i \(-0.783202\pi\)
−0.776886 + 0.629641i \(0.783202\pi\)
\(380\) −8.19615 −0.420454
\(381\) 0 0
\(382\) −20.7846 −1.06343
\(383\) −23.3205 −1.19162 −0.595811 0.803125i \(-0.703169\pi\)
−0.595811 + 0.803125i \(0.703169\pi\)
\(384\) 0 0
\(385\) −2.78461 −0.141917
\(386\) −23.1962 −1.18065
\(387\) 0 0
\(388\) −6.00000 −0.304604
\(389\) −7.39230 −0.374805 −0.187402 0.982283i \(-0.560007\pi\)
−0.187402 + 0.982283i \(0.560007\pi\)
\(390\) 0 0
\(391\) −42.5885 −2.15379
\(392\) 5.39230 0.272353
\(393\) 0 0
\(394\) 6.92820 0.349038
\(395\) 14.5359 0.731380
\(396\) 0 0
\(397\) −4.39230 −0.220443 −0.110222 0.993907i \(-0.535156\pi\)
−0.110222 + 0.993907i \(0.535156\pi\)
\(398\) 22.5885 1.13226
\(399\) 0 0
\(400\) −2.00000 −0.100000
\(401\) 21.0000 1.04869 0.524345 0.851506i \(-0.324310\pi\)
0.524345 + 0.851506i \(0.324310\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −19.3923 −0.964803
\(405\) 0 0
\(406\) 3.80385 0.188782
\(407\) −3.80385 −0.188550
\(408\) 0 0
\(409\) 20.6603 1.02158 0.510792 0.859704i \(-0.329352\pi\)
0.510792 + 0.859704i \(0.329352\pi\)
\(410\) −11.1962 −0.552939
\(411\) 0 0
\(412\) 6.19615 0.305263
\(413\) 17.5692 0.864525
\(414\) 0 0
\(415\) 9.80385 0.481252
\(416\) 0 0
\(417\) 0 0
\(418\) 6.00000 0.293470
\(419\) 4.39230 0.214578 0.107289 0.994228i \(-0.465783\pi\)
0.107289 + 0.994228i \(0.465783\pi\)
\(420\) 0 0
\(421\) 6.46410 0.315041 0.157521 0.987516i \(-0.449650\pi\)
0.157521 + 0.987516i \(0.449650\pi\)
\(422\) 24.3923 1.18740
\(423\) 0 0
\(424\) 3.00000 0.145693
\(425\) 10.3923 0.504101
\(426\) 0 0
\(427\) −19.2679 −0.932441
\(428\) 2.19615 0.106155
\(429\) 0 0
\(430\) 7.26795 0.350492
\(431\) 38.1962 1.83984 0.919922 0.392101i \(-0.128252\pi\)
0.919922 + 0.392101i \(0.128252\pi\)
\(432\) 0 0
\(433\) 7.78461 0.374104 0.187052 0.982350i \(-0.440107\pi\)
0.187052 + 0.982350i \(0.440107\pi\)
\(434\) −12.0000 −0.576018
\(435\) 0 0
\(436\) 4.39230 0.210353
\(437\) −38.7846 −1.85532
\(438\) 0 0
\(439\) −14.5885 −0.696269 −0.348135 0.937445i \(-0.613185\pi\)
−0.348135 + 0.937445i \(0.613185\pi\)
\(440\) −2.19615 −0.104697
\(441\) 0 0
\(442\) 0 0
\(443\) −16.3923 −0.778822 −0.389411 0.921064i \(-0.627321\pi\)
−0.389411 + 0.921064i \(0.627321\pi\)
\(444\) 0 0
\(445\) 16.3923 0.777070
\(446\) −5.07180 −0.240157
\(447\) 0 0
\(448\) −1.26795 −0.0599050
\(449\) 26.5359 1.25231 0.626153 0.779700i \(-0.284628\pi\)
0.626153 + 0.779700i \(0.284628\pi\)
\(450\) 0 0
\(451\) 8.19615 0.385942
\(452\) −0.803848 −0.0378098
\(453\) 0 0
\(454\) 20.1962 0.947852
\(455\) 0 0
\(456\) 0 0
\(457\) 31.9808 1.49600 0.747998 0.663700i \(-0.231015\pi\)
0.747998 + 0.663700i \(0.231015\pi\)
\(458\) −7.85641 −0.367106
\(459\) 0 0
\(460\) 14.1962 0.661899
\(461\) 31.9808 1.48949 0.744746 0.667348i \(-0.232570\pi\)
0.744746 + 0.667348i \(0.232570\pi\)
\(462\) 0 0
\(463\) 15.8038 0.734467 0.367234 0.930129i \(-0.380305\pi\)
0.367234 + 0.930129i \(0.380305\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) −5.41154 −0.250416 −0.125208 0.992130i \(-0.539960\pi\)
−0.125208 + 0.992130i \(0.539960\pi\)
\(468\) 0 0
\(469\) 9.21539 0.425527
\(470\) 8.19615 0.378060
\(471\) 0 0
\(472\) 13.8564 0.637793
\(473\) −5.32051 −0.244637
\(474\) 0 0
\(475\) 9.46410 0.434243
\(476\) 6.58846 0.301981
\(477\) 0 0
\(478\) −6.58846 −0.301349
\(479\) −0.679492 −0.0310468 −0.0155234 0.999880i \(-0.504941\pi\)
−0.0155234 + 0.999880i \(0.504941\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 11.1962 0.509971
\(483\) 0 0
\(484\) −9.39230 −0.426923
\(485\) −10.3923 −0.471890
\(486\) 0 0
\(487\) 15.1244 0.685350 0.342675 0.939454i \(-0.388667\pi\)
0.342675 + 0.939454i \(0.388667\pi\)
\(488\) −15.1962 −0.687897
\(489\) 0 0
\(490\) 9.33975 0.421927
\(491\) 30.5885 1.38044 0.690219 0.723601i \(-0.257514\pi\)
0.690219 + 0.723601i \(0.257514\pi\)
\(492\) 0 0
\(493\) −15.5885 −0.702069
\(494\) 0 0
\(495\) 0 0
\(496\) −9.46410 −0.424951
\(497\) 2.78461 0.124907
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −12.1244 −0.542218
\(501\) 0 0
\(502\) 16.3923 0.731624
\(503\) −12.5885 −0.561292 −0.280646 0.959811i \(-0.590549\pi\)
−0.280646 + 0.959811i \(0.590549\pi\)
\(504\) 0 0
\(505\) −33.5885 −1.49467
\(506\) −10.3923 −0.461994
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) 26.6603 1.18169 0.590847 0.806783i \(-0.298793\pi\)
0.590847 + 0.806783i \(0.298793\pi\)
\(510\) 0 0
\(511\) 15.3731 0.680064
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 23.1962 1.02314
\(515\) 10.7321 0.472911
\(516\) 0 0
\(517\) −6.00000 −0.263880
\(518\) −3.80385 −0.167131
\(519\) 0 0
\(520\) 0 0
\(521\) 29.1962 1.27911 0.639553 0.768747i \(-0.279119\pi\)
0.639553 + 0.768747i \(0.279119\pi\)
\(522\) 0 0
\(523\) 32.5885 1.42499 0.712497 0.701675i \(-0.247564\pi\)
0.712497 + 0.701675i \(0.247564\pi\)
\(524\) 4.39230 0.191879
\(525\) 0 0
\(526\) 8.19615 0.357369
\(527\) 49.1769 2.14218
\(528\) 0 0
\(529\) 44.1769 1.92074
\(530\) 5.19615 0.225706
\(531\) 0 0
\(532\) 6.00000 0.260133
\(533\) 0 0
\(534\) 0 0
\(535\) 3.80385 0.164455
\(536\) 7.26795 0.313928
\(537\) 0 0
\(538\) −7.60770 −0.327991
\(539\) −6.83717 −0.294498
\(540\) 0 0
\(541\) 10.8564 0.466753 0.233377 0.972386i \(-0.425022\pi\)
0.233377 + 0.972386i \(0.425022\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 5.19615 0.222783
\(545\) 7.60770 0.325878
\(546\) 0 0
\(547\) 4.19615 0.179415 0.0897073 0.995968i \(-0.471407\pi\)
0.0897073 + 0.995968i \(0.471407\pi\)
\(548\) −9.00000 −0.384461
\(549\) 0 0
\(550\) 2.53590 0.108131
\(551\) −14.1962 −0.604776
\(552\) 0 0
\(553\) −10.6410 −0.452502
\(554\) −4.80385 −0.204096
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 25.7321 1.09030 0.545151 0.838338i \(-0.316472\pi\)
0.545151 + 0.838338i \(0.316472\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −2.19615 −0.0928044
\(561\) 0 0
\(562\) −17.5359 −0.739707
\(563\) 32.7846 1.38171 0.690853 0.722995i \(-0.257235\pi\)
0.690853 + 0.722995i \(0.257235\pi\)
\(564\) 0 0
\(565\) −1.39230 −0.0585747
\(566\) 19.8038 0.832418
\(567\) 0 0
\(568\) 2.19615 0.0921485
\(569\) −8.78461 −0.368270 −0.184135 0.982901i \(-0.558948\pi\)
−0.184135 + 0.982901i \(0.558948\pi\)
\(570\) 0 0
\(571\) −24.1962 −1.01258 −0.506289 0.862364i \(-0.668983\pi\)
−0.506289 + 0.862364i \(0.668983\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 8.19615 0.342101
\(575\) −16.3923 −0.683606
\(576\) 0 0
\(577\) 19.7321 0.821456 0.410728 0.911758i \(-0.365275\pi\)
0.410728 + 0.911758i \(0.365275\pi\)
\(578\) −10.0000 −0.415945
\(579\) 0 0
\(580\) 5.19615 0.215758
\(581\) −7.17691 −0.297749
\(582\) 0 0
\(583\) −3.80385 −0.157539
\(584\) 12.1244 0.501709
\(585\) 0 0
\(586\) −2.66025 −0.109894
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 44.7846 1.84532
\(590\) 24.0000 0.988064
\(591\) 0 0
\(592\) −3.00000 −0.123299
\(593\) −19.1436 −0.786133 −0.393067 0.919510i \(-0.628586\pi\)
−0.393067 + 0.919510i \(0.628586\pi\)
\(594\) 0 0
\(595\) 11.4115 0.467828
\(596\) 6.12436 0.250863
\(597\) 0 0
\(598\) 0 0
\(599\) −16.3923 −0.669771 −0.334886 0.942259i \(-0.608698\pi\)
−0.334886 + 0.942259i \(0.608698\pi\)
\(600\) 0 0
\(601\) −19.7846 −0.807031 −0.403516 0.914973i \(-0.632212\pi\)
−0.403516 + 0.914973i \(0.632212\pi\)
\(602\) −5.32051 −0.216848
\(603\) 0 0
\(604\) −10.7321 −0.436681
\(605\) −16.2679 −0.661386
\(606\) 0 0
\(607\) −7.21539 −0.292864 −0.146432 0.989221i \(-0.546779\pi\)
−0.146432 + 0.989221i \(0.546779\pi\)
\(608\) 4.73205 0.191910
\(609\) 0 0
\(610\) −26.3205 −1.06569
\(611\) 0 0
\(612\) 0 0
\(613\) 13.1436 0.530865 0.265432 0.964129i \(-0.414485\pi\)
0.265432 + 0.964129i \(0.414485\pi\)
\(614\) 7.26795 0.293311
\(615\) 0 0
\(616\) 1.60770 0.0647759
\(617\) 31.3923 1.26381 0.631903 0.775047i \(-0.282274\pi\)
0.631903 + 0.775047i \(0.282274\pi\)
\(618\) 0 0
\(619\) 28.3923 1.14118 0.570592 0.821234i \(-0.306714\pi\)
0.570592 + 0.821234i \(0.306714\pi\)
\(620\) −16.3923 −0.658331
\(621\) 0 0
\(622\) −8.19615 −0.328636
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 3.60770 0.144192
\(627\) 0 0
\(628\) 7.19615 0.287158
\(629\) 15.5885 0.621552
\(630\) 0 0
\(631\) 1.85641 0.0739024 0.0369512 0.999317i \(-0.488235\pi\)
0.0369512 + 0.999317i \(0.488235\pi\)
\(632\) −8.39230 −0.333828
\(633\) 0 0
\(634\) 18.1244 0.719810
\(635\) −6.92820 −0.274937
\(636\) 0 0
\(637\) 0 0
\(638\) −3.80385 −0.150596
\(639\) 0 0
\(640\) −1.73205 −0.0684653
\(641\) 41.1962 1.62715 0.813575 0.581460i \(-0.197518\pi\)
0.813575 + 0.581460i \(0.197518\pi\)
\(642\) 0 0
\(643\) −27.7128 −1.09289 −0.546443 0.837496i \(-0.684019\pi\)
−0.546443 + 0.837496i \(0.684019\pi\)
\(644\) −10.3923 −0.409514
\(645\) 0 0
\(646\) −24.5885 −0.967420
\(647\) 49.1769 1.93334 0.966672 0.256018i \(-0.0824107\pi\)
0.966672 + 0.256018i \(0.0824107\pi\)
\(648\) 0 0
\(649\) −17.5692 −0.689652
\(650\) 0 0
\(651\) 0 0
\(652\) −2.53590 −0.0993134
\(653\) −13.1769 −0.515653 −0.257826 0.966191i \(-0.583006\pi\)
−0.257826 + 0.966191i \(0.583006\pi\)
\(654\) 0 0
\(655\) 7.60770 0.297257
\(656\) 6.46410 0.252381
\(657\) 0 0
\(658\) −6.00000 −0.233904
\(659\) 37.1769 1.44821 0.724103 0.689691i \(-0.242254\pi\)
0.724103 + 0.689691i \(0.242254\pi\)
\(660\) 0 0
\(661\) −9.00000 −0.350059 −0.175030 0.984563i \(-0.556002\pi\)
−0.175030 + 0.984563i \(0.556002\pi\)
\(662\) 12.0000 0.466393
\(663\) 0 0
\(664\) −5.66025 −0.219660
\(665\) 10.3923 0.402996
\(666\) 0 0
\(667\) 24.5885 0.952069
\(668\) −9.46410 −0.366177
\(669\) 0 0
\(670\) 12.5885 0.486335
\(671\) 19.2679 0.743831
\(672\) 0 0
\(673\) 1.00000 0.0385472 0.0192736 0.999814i \(-0.493865\pi\)
0.0192736 + 0.999814i \(0.493865\pi\)
\(674\) 31.0000 1.19408
\(675\) 0 0
\(676\) 0 0
\(677\) 16.3923 0.630007 0.315004 0.949090i \(-0.397994\pi\)
0.315004 + 0.949090i \(0.397994\pi\)
\(678\) 0 0
\(679\) 7.60770 0.291957
\(680\) 9.00000 0.345134
\(681\) 0 0
\(682\) 12.0000 0.459504
\(683\) −27.7128 −1.06040 −0.530201 0.847872i \(-0.677883\pi\)
−0.530201 + 0.847872i \(0.677883\pi\)
\(684\) 0 0
\(685\) −15.5885 −0.595604
\(686\) −15.7128 −0.599918
\(687\) 0 0
\(688\) −4.19615 −0.159977
\(689\) 0 0
\(690\) 0 0
\(691\) −25.5167 −0.970700 −0.485350 0.874320i \(-0.661308\pi\)
−0.485350 + 0.874320i \(0.661308\pi\)
\(692\) 4.39230 0.166970
\(693\) 0 0
\(694\) 18.5885 0.705608
\(695\) −6.92820 −0.262802
\(696\) 0 0
\(697\) −33.5885 −1.27225
\(698\) 9.46410 0.358222
\(699\) 0 0
\(700\) 2.53590 0.0958479
\(701\) 16.3923 0.619129 0.309564 0.950878i \(-0.399817\pi\)
0.309564 + 0.950878i \(0.399817\pi\)
\(702\) 0 0
\(703\) 14.1962 0.535418
\(704\) 1.26795 0.0477876
\(705\) 0 0
\(706\) 35.7846 1.34677
\(707\) 24.5885 0.924744
\(708\) 0 0
\(709\) 45.2487 1.69935 0.849676 0.527306i \(-0.176798\pi\)
0.849676 + 0.527306i \(0.176798\pi\)
\(710\) 3.80385 0.142756
\(711\) 0 0
\(712\) −9.46410 −0.354682
\(713\) −77.5692 −2.90499
\(714\) 0 0
\(715\) 0 0
\(716\) −2.19615 −0.0820741
\(717\) 0 0
\(718\) 16.0526 0.599076
\(719\) −31.6077 −1.17877 −0.589384 0.807853i \(-0.700630\pi\)
−0.589384 + 0.807853i \(0.700630\pi\)
\(720\) 0 0
\(721\) −7.85641 −0.292588
\(722\) −3.39230 −0.126249
\(723\) 0 0
\(724\) 19.5885 0.727999
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −13.8038 −0.511956 −0.255978 0.966683i \(-0.582398\pi\)
−0.255978 + 0.966683i \(0.582398\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 21.0000 0.777245
\(731\) 21.8038 0.806444
\(732\) 0 0
\(733\) −20.3205 −0.750555 −0.375278 0.926912i \(-0.622453\pi\)
−0.375278 + 0.926912i \(0.622453\pi\)
\(734\) 13.8038 0.509509
\(735\) 0 0
\(736\) −8.19615 −0.302114
\(737\) −9.21539 −0.339453
\(738\) 0 0
\(739\) 5.07180 0.186569 0.0932845 0.995639i \(-0.470263\pi\)
0.0932845 + 0.995639i \(0.470263\pi\)
\(740\) −5.19615 −0.191014
\(741\) 0 0
\(742\) −3.80385 −0.139644
\(743\) −16.3923 −0.601375 −0.300688 0.953723i \(-0.597216\pi\)
−0.300688 + 0.953723i \(0.597216\pi\)
\(744\) 0 0
\(745\) 10.6077 0.388636
\(746\) 27.9808 1.02445
\(747\) 0 0
\(748\) −6.58846 −0.240898
\(749\) −2.78461 −0.101747
\(750\) 0 0
\(751\) 26.9808 0.984542 0.492271 0.870442i \(-0.336167\pi\)
0.492271 + 0.870442i \(0.336167\pi\)
\(752\) −4.73205 −0.172560
\(753\) 0 0
\(754\) 0 0
\(755\) −18.5885 −0.676503
\(756\) 0 0
\(757\) −22.7846 −0.828121 −0.414060 0.910249i \(-0.635890\pi\)
−0.414060 + 0.910249i \(0.635890\pi\)
\(758\) 30.2487 1.09868
\(759\) 0 0
\(760\) 8.19615 0.297306
\(761\) 16.3923 0.594221 0.297110 0.954843i \(-0.403977\pi\)
0.297110 + 0.954843i \(0.403977\pi\)
\(762\) 0 0
\(763\) −5.56922 −0.201619
\(764\) 20.7846 0.751961
\(765\) 0 0
\(766\) 23.3205 0.842604
\(767\) 0 0
\(768\) 0 0
\(769\) 21.7128 0.782984 0.391492 0.920181i \(-0.371959\pi\)
0.391492 + 0.920181i \(0.371959\pi\)
\(770\) 2.78461 0.100350
\(771\) 0 0
\(772\) 23.1962 0.834848
\(773\) −9.21539 −0.331455 −0.165727 0.986172i \(-0.552997\pi\)
−0.165727 + 0.986172i \(0.552997\pi\)
\(774\) 0 0
\(775\) 18.9282 0.679921
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) 7.39230 0.265027
\(779\) −30.5885 −1.09595
\(780\) 0 0
\(781\) −2.78461 −0.0996412
\(782\) 42.5885 1.52296
\(783\) 0 0
\(784\) −5.39230 −0.192582
\(785\) 12.4641 0.444863
\(786\) 0 0
\(787\) 21.4641 0.765113 0.382556 0.923932i \(-0.375044\pi\)
0.382556 + 0.923932i \(0.375044\pi\)
\(788\) −6.92820 −0.246807
\(789\) 0 0
\(790\) −14.5359 −0.517164
\(791\) 1.01924 0.0362399
\(792\) 0 0
\(793\) 0 0
\(794\) 4.39230 0.155877
\(795\) 0 0
\(796\) −22.5885 −0.800627
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 24.5885 0.869877
\(800\) 2.00000 0.0707107
\(801\) 0 0
\(802\) −21.0000 −0.741536
\(803\) −15.3731 −0.542504
\(804\) 0 0
\(805\) −18.0000 −0.634417
\(806\) 0 0
\(807\) 0 0
\(808\) 19.3923 0.682219
\(809\) 36.8038 1.29395 0.646977 0.762509i \(-0.276033\pi\)
0.646977 + 0.762509i \(0.276033\pi\)
\(810\) 0 0
\(811\) 16.3923 0.575612 0.287806 0.957689i \(-0.407074\pi\)
0.287806 + 0.957689i \(0.407074\pi\)
\(812\) −3.80385 −0.133489
\(813\) 0 0
\(814\) 3.80385 0.133325
\(815\) −4.39230 −0.153856
\(816\) 0 0
\(817\) 19.8564 0.694688
\(818\) −20.6603 −0.722369
\(819\) 0 0
\(820\) 11.1962 0.390987
\(821\) 28.6410 0.999578 0.499789 0.866147i \(-0.333411\pi\)
0.499789 + 0.866147i \(0.333411\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) −6.19615 −0.215853
\(825\) 0 0
\(826\) −17.5692 −0.611311
\(827\) 44.1051 1.53369 0.766843 0.641835i \(-0.221827\pi\)
0.766843 + 0.641835i \(0.221827\pi\)
\(828\) 0 0
\(829\) 39.9808 1.38859 0.694295 0.719691i \(-0.255716\pi\)
0.694295 + 0.719691i \(0.255716\pi\)
\(830\) −9.80385 −0.340297
\(831\) 0 0
\(832\) 0 0
\(833\) 28.0192 0.970809
\(834\) 0 0
\(835\) −16.3923 −0.567279
\(836\) −6.00000 −0.207514
\(837\) 0 0
\(838\) −4.39230 −0.151730
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −6.46410 −0.222768
\(843\) 0 0
\(844\) −24.3923 −0.839618
\(845\) 0 0
\(846\) 0 0
\(847\) 11.9090 0.409197
\(848\) −3.00000 −0.103020
\(849\) 0 0
\(850\) −10.3923 −0.356453
\(851\) −24.5885 −0.842881
\(852\) 0 0
\(853\) −9.00000 −0.308154 −0.154077 0.988059i \(-0.549240\pi\)
−0.154077 + 0.988059i \(0.549240\pi\)
\(854\) 19.2679 0.659336
\(855\) 0 0
\(856\) −2.19615 −0.0750629
\(857\) −18.3731 −0.627612 −0.313806 0.949487i \(-0.601604\pi\)
−0.313806 + 0.949487i \(0.601604\pi\)
\(858\) 0 0
\(859\) −20.5885 −0.702469 −0.351235 0.936288i \(-0.614238\pi\)
−0.351235 + 0.936288i \(0.614238\pi\)
\(860\) −7.26795 −0.247835
\(861\) 0 0
\(862\) −38.1962 −1.30097
\(863\) 49.5167 1.68557 0.842783 0.538253i \(-0.180915\pi\)
0.842783 + 0.538253i \(0.180915\pi\)
\(864\) 0 0
\(865\) 7.60770 0.258669
\(866\) −7.78461 −0.264532
\(867\) 0 0
\(868\) 12.0000 0.407307
\(869\) 10.6410 0.360972
\(870\) 0 0
\(871\) 0 0
\(872\) −4.39230 −0.148742
\(873\) 0 0
\(874\) 38.7846 1.31191
\(875\) 15.3731 0.519705
\(876\) 0 0
\(877\) −22.6077 −0.763408 −0.381704 0.924285i \(-0.624663\pi\)
−0.381704 + 0.924285i \(0.624663\pi\)
\(878\) 14.5885 0.492337
\(879\) 0 0
\(880\) 2.19615 0.0740323
\(881\) 13.9808 0.471024 0.235512 0.971871i \(-0.424323\pi\)
0.235512 + 0.971871i \(0.424323\pi\)
\(882\) 0 0
\(883\) 16.7846 0.564847 0.282424 0.959290i \(-0.408862\pi\)
0.282424 + 0.959290i \(0.408862\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 16.3923 0.550710
\(887\) −48.0000 −1.61168 −0.805841 0.592132i \(-0.798286\pi\)
−0.805841 + 0.592132i \(0.798286\pi\)
\(888\) 0 0
\(889\) 5.07180 0.170103
\(890\) −16.3923 −0.549471
\(891\) 0 0
\(892\) 5.07180 0.169816
\(893\) 22.3923 0.749330
\(894\) 0 0
\(895\) −3.80385 −0.127149
\(896\) 1.26795 0.0423592
\(897\) 0 0
\(898\) −26.5359 −0.885514
\(899\) −28.3923 −0.946936
\(900\) 0 0
\(901\) 15.5885 0.519327
\(902\) −8.19615 −0.272902
\(903\) 0 0
\(904\) 0.803848 0.0267356
\(905\) 33.9282 1.12781
\(906\) 0 0
\(907\) 21.1769 0.703168 0.351584 0.936156i \(-0.385643\pi\)
0.351584 + 0.936156i \(0.385643\pi\)
\(908\) −20.1962 −0.670233
\(909\) 0 0
\(910\) 0 0
\(911\) 25.1769 0.834148 0.417074 0.908872i \(-0.363056\pi\)
0.417074 + 0.908872i \(0.363056\pi\)
\(912\) 0 0
\(913\) 7.17691 0.237521
\(914\) −31.9808 −1.05783
\(915\) 0 0
\(916\) 7.85641 0.259583
\(917\) −5.56922 −0.183912
\(918\) 0 0
\(919\) 11.6077 0.382903 0.191451 0.981502i \(-0.438681\pi\)
0.191451 + 0.981502i \(0.438681\pi\)
\(920\) −14.1962 −0.468033
\(921\) 0 0
\(922\) −31.9808 −1.05323
\(923\) 0 0
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) −15.8038 −0.519347
\(927\) 0 0
\(928\) −3.00000 −0.0984798
\(929\) −55.3923 −1.81736 −0.908681 0.417491i \(-0.862910\pi\)
−0.908681 + 0.417491i \(0.862910\pi\)
\(930\) 0 0
\(931\) 25.5167 0.836275
\(932\) 18.0000 0.589610
\(933\) 0 0
\(934\) 5.41154 0.177071
\(935\) −11.4115 −0.373197
\(936\) 0 0
\(937\) −15.3923 −0.502845 −0.251422 0.967877i \(-0.580898\pi\)
−0.251422 + 0.967877i \(0.580898\pi\)
\(938\) −9.21539 −0.300893
\(939\) 0 0
\(940\) −8.19615 −0.267329
\(941\) −38.7846 −1.26434 −0.632171 0.774829i \(-0.717836\pi\)
−0.632171 + 0.774829i \(0.717836\pi\)
\(942\) 0 0
\(943\) 52.9808 1.72529
\(944\) −13.8564 −0.450988
\(945\) 0 0
\(946\) 5.32051 0.172985
\(947\) −29.0718 −0.944706 −0.472353 0.881409i \(-0.656595\pi\)
−0.472353 + 0.881409i \(0.656595\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −9.46410 −0.307056
\(951\) 0 0
\(952\) −6.58846 −0.213533
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 0 0
\(955\) 36.0000 1.16493
\(956\) 6.58846 0.213086
\(957\) 0 0
\(958\) 0.679492 0.0219534
\(959\) 11.4115 0.368498
\(960\) 0 0
\(961\) 58.5692 1.88933
\(962\) 0 0
\(963\) 0 0
\(964\) −11.1962 −0.360604
\(965\) 40.1769 1.29334
\(966\) 0 0
\(967\) 39.1244 1.25815 0.629077 0.777343i \(-0.283433\pi\)
0.629077 + 0.777343i \(0.283433\pi\)
\(968\) 9.39230 0.301880
\(969\) 0 0
\(970\) 10.3923 0.333677
\(971\) −49.1769 −1.57816 −0.789081 0.614289i \(-0.789443\pi\)
−0.789081 + 0.614289i \(0.789443\pi\)
\(972\) 0 0
\(973\) 5.07180 0.162594
\(974\) −15.1244 −0.484616
\(975\) 0 0
\(976\) 15.1962 0.486417
\(977\) 10.8564 0.347327 0.173664 0.984805i \(-0.444439\pi\)
0.173664 + 0.984805i \(0.444439\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) −9.33975 −0.298347
\(981\) 0 0
\(982\) −30.5885 −0.976117
\(983\) 20.7846 0.662926 0.331463 0.943468i \(-0.392458\pi\)
0.331463 + 0.943468i \(0.392458\pi\)
\(984\) 0 0
\(985\) −12.0000 −0.382352
\(986\) 15.5885 0.496438
\(987\) 0 0
\(988\) 0 0
\(989\) −34.3923 −1.09361
\(990\) 0 0
\(991\) −43.3731 −1.37779 −0.688895 0.724861i \(-0.741904\pi\)
−0.688895 + 0.724861i \(0.741904\pi\)
\(992\) 9.46410 0.300486
\(993\) 0 0
\(994\) −2.78461 −0.0883225
\(995\) −39.1244 −1.24033
\(996\) 0 0
\(997\) 2.80385 0.0887987 0.0443994 0.999014i \(-0.485863\pi\)
0.0443994 + 0.999014i \(0.485863\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.s.1.2 2
3.2 odd 2 1014.2.a.j.1.1 2
12.11 even 2 8112.2.a.bx.1.1 2
13.5 odd 4 3042.2.b.l.1351.3 4
13.6 odd 12 234.2.l.a.127.2 4
13.8 odd 4 3042.2.b.l.1351.2 4
13.11 odd 12 234.2.l.a.199.2 4
13.12 even 2 3042.2.a.v.1.1 2
39.2 even 12 1014.2.i.f.823.2 4
39.5 even 4 1014.2.b.d.337.2 4
39.8 even 4 1014.2.b.d.337.3 4
39.11 even 12 78.2.i.b.43.1 4
39.17 odd 6 1014.2.e.j.991.2 4
39.20 even 12 1014.2.i.f.361.2 4
39.23 odd 6 1014.2.e.j.529.2 4
39.29 odd 6 1014.2.e.h.529.1 4
39.32 even 12 78.2.i.b.49.1 yes 4
39.35 odd 6 1014.2.e.h.991.1 4
39.38 odd 2 1014.2.a.h.1.2 2
52.11 even 12 1872.2.by.k.433.1 4
52.19 even 12 1872.2.by.k.1297.1 4
156.11 odd 12 624.2.bv.d.433.1 4
156.71 odd 12 624.2.bv.d.49.1 4
156.155 even 2 8112.2.a.bq.1.2 2
195.32 odd 12 1950.2.y.a.49.2 4
195.89 even 12 1950.2.bc.c.901.2 4
195.128 odd 12 1950.2.y.a.199.2 4
195.149 even 12 1950.2.bc.c.751.2 4
195.167 odd 12 1950.2.y.h.199.1 4
195.188 odd 12 1950.2.y.h.49.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.i.b.43.1 4 39.11 even 12
78.2.i.b.49.1 yes 4 39.32 even 12
234.2.l.a.127.2 4 13.6 odd 12
234.2.l.a.199.2 4 13.11 odd 12
624.2.bv.d.49.1 4 156.71 odd 12
624.2.bv.d.433.1 4 156.11 odd 12
1014.2.a.h.1.2 2 39.38 odd 2
1014.2.a.j.1.1 2 3.2 odd 2
1014.2.b.d.337.2 4 39.5 even 4
1014.2.b.d.337.3 4 39.8 even 4
1014.2.e.h.529.1 4 39.29 odd 6
1014.2.e.h.991.1 4 39.35 odd 6
1014.2.e.j.529.2 4 39.23 odd 6
1014.2.e.j.991.2 4 39.17 odd 6
1014.2.i.f.361.2 4 39.20 even 12
1014.2.i.f.823.2 4 39.2 even 12
1872.2.by.k.433.1 4 52.11 even 12
1872.2.by.k.1297.1 4 52.19 even 12
1950.2.y.a.49.2 4 195.32 odd 12
1950.2.y.a.199.2 4 195.128 odd 12
1950.2.y.h.49.1 4 195.188 odd 12
1950.2.y.h.199.1 4 195.167 odd 12
1950.2.bc.c.751.2 4 195.149 even 12
1950.2.bc.c.901.2 4 195.89 even 12
3042.2.a.s.1.2 2 1.1 even 1 trivial
3042.2.a.v.1.1 2 13.12 even 2
3042.2.b.l.1351.2 4 13.8 odd 4
3042.2.b.l.1351.3 4 13.5 odd 4
8112.2.a.bq.1.2 2 156.155 even 2
8112.2.a.bx.1.1 2 12.11 even 2