Properties

Label 3192.1.eb.b
Level $3192$
Weight $1$
Character orbit 3192.eb
Analytic conductor $1.593$
Analytic rank $0$
Dimension $12$
Projective image $D_{18}$
CM discriminant -152
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,1,Mod(341,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 5, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.341");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3192.eb (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59301552032\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{36}^{3} q^{2} - \zeta_{36} q^{3} + \zeta_{36}^{6} q^{4} + \zeta_{36}^{4} q^{6} + \zeta_{36}^{8} q^{7} - \zeta_{36}^{9} q^{8} + \zeta_{36}^{2} q^{9} - \zeta_{36}^{7} q^{12} + (\zeta_{36}^{17} + \zeta_{36}) q^{13} + \cdots + \zeta_{36} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 6 q^{16} - 6 q^{25} + 6 q^{38} + 12 q^{39} - 6 q^{42} + 6 q^{47} + 6 q^{54} - 12 q^{64} - 18 q^{74} - 6 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3192\mathbb{Z}\right)^\times\).

\(n\) \(799\) \(913\) \(1009\) \(1597\) \(2129\)
\(\chi(n)\) \(1\) \(-\zeta_{36}^{12}\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
341.1
0.984808 + 0.173648i
−0.342020 0.939693i
−0.642788 + 0.766044i
0.642788 0.766044i
0.342020 + 0.939693i
−0.984808 0.173648i
0.984808 0.173648i
−0.342020 + 0.939693i
−0.642788 0.766044i
0.642788 + 0.766044i
0.342020 0.939693i
−0.984808 + 0.173648i
−0.866025 0.500000i −0.984808 0.173648i 0.500000 + 0.866025i 0 0.766044 + 0.642788i 0.173648 + 0.984808i 1.00000i 0.939693 + 0.342020i 0
341.2 −0.866025 0.500000i 0.342020 + 0.939693i 0.500000 + 0.866025i 0 0.173648 0.984808i −0.939693 0.342020i 1.00000i −0.766044 + 0.642788i 0
341.3 −0.866025 0.500000i 0.642788 0.766044i 0.500000 + 0.866025i 0 −0.939693 + 0.342020i 0.766044 0.642788i 1.00000i −0.173648 0.984808i 0
341.4 0.866025 + 0.500000i −0.642788 + 0.766044i 0.500000 + 0.866025i 0 −0.939693 + 0.342020i 0.766044 0.642788i 1.00000i −0.173648 0.984808i 0
341.5 0.866025 + 0.500000i −0.342020 0.939693i 0.500000 + 0.866025i 0 0.173648 0.984808i −0.939693 0.342020i 1.00000i −0.766044 + 0.642788i 0
341.6 0.866025 + 0.500000i 0.984808 + 0.173648i 0.500000 + 0.866025i 0 0.766044 + 0.642788i 0.173648 + 0.984808i 1.00000i 0.939693 + 0.342020i 0
2621.1 −0.866025 + 0.500000i −0.984808 + 0.173648i 0.500000 0.866025i 0 0.766044 0.642788i 0.173648 0.984808i 1.00000i 0.939693 0.342020i 0
2621.2 −0.866025 + 0.500000i 0.342020 0.939693i 0.500000 0.866025i 0 0.173648 + 0.984808i −0.939693 + 0.342020i 1.00000i −0.766044 0.642788i 0
2621.3 −0.866025 + 0.500000i 0.642788 + 0.766044i 0.500000 0.866025i 0 −0.939693 0.342020i 0.766044 + 0.642788i 1.00000i −0.173648 + 0.984808i 0
2621.4 0.866025 0.500000i −0.642788 0.766044i 0.500000 0.866025i 0 −0.939693 0.342020i 0.766044 + 0.642788i 1.00000i −0.173648 + 0.984808i 0
2621.5 0.866025 0.500000i −0.342020 + 0.939693i 0.500000 0.866025i 0 0.173648 + 0.984808i −0.939693 + 0.342020i 1.00000i −0.766044 0.642788i 0
2621.6 0.866025 0.500000i 0.984808 0.173648i 0.500000 0.866025i 0 0.766044 0.642788i 0.173648 0.984808i 1.00000i 0.939693 0.342020i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 341.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
152.g odd 2 1 CM by \(\Q(\sqrt{-38}) \)
8.b even 2 1 inner
19.b odd 2 1 inner
21.g even 6 1 inner
168.ba even 6 1 inner
399.s odd 6 1 inner
3192.eb odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3192.1.eb.b yes 12
3.b odd 2 1 3192.1.eb.a 12
7.d odd 6 1 3192.1.eb.a 12
8.b even 2 1 inner 3192.1.eb.b yes 12
19.b odd 2 1 inner 3192.1.eb.b yes 12
21.g even 6 1 inner 3192.1.eb.b yes 12
24.h odd 2 1 3192.1.eb.a 12
56.j odd 6 1 3192.1.eb.a 12
57.d even 2 1 3192.1.eb.a 12
133.o even 6 1 3192.1.eb.a 12
152.g odd 2 1 CM 3192.1.eb.b yes 12
168.ba even 6 1 inner 3192.1.eb.b yes 12
399.s odd 6 1 inner 3192.1.eb.b yes 12
456.p even 2 1 3192.1.eb.a 12
1064.cf even 6 1 3192.1.eb.a 12
3192.eb odd 6 1 inner 3192.1.eb.b yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3192.1.eb.a 12 3.b odd 2 1
3192.1.eb.a 12 7.d odd 6 1
3192.1.eb.a 12 24.h odd 2 1
3192.1.eb.a 12 56.j odd 6 1
3192.1.eb.a 12 57.d even 2 1
3192.1.eb.a 12 133.o even 6 1
3192.1.eb.a 12 456.p even 2 1
3192.1.eb.a 12 1064.cf even 6 1
3192.1.eb.b yes 12 1.a even 1 1 trivial
3192.1.eb.b yes 12 8.b even 2 1 inner
3192.1.eb.b yes 12 19.b odd 2 1 inner
3192.1.eb.b yes 12 21.g even 6 1 inner
3192.1.eb.b yes 12 152.g odd 2 1 CM
3192.1.eb.b yes 12 168.ba even 6 1 inner
3192.1.eb.b yes 12 399.s odd 6 1 inner
3192.1.eb.b yes 12 3192.eb odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{17}^{6} + 3T_{17}^{4} - 2T_{17}^{3} + 9T_{17}^{2} - 3T_{17} + 1 \) acting on \(S_{1}^{\mathrm{new}}(3192, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{12} - T^{6} + 1 \) Copy content Toggle raw display
$5$ \( T^{12} \) Copy content Toggle raw display
$7$ \( (T^{6} + T^{3} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{12} \) Copy content Toggle raw display
$13$ \( (T^{6} + 6 T^{4} + 9 T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} + 3 T^{4} - 2 T^{3} + \cdots + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - T^{2} + 1)^{3} \) Copy content Toggle raw display
$23$ \( (T^{6} - 3 T^{4} + 9 T^{2} + \cdots + 3)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} + 6 T^{4} + 9 T^{2} + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( (T^{4} + 3 T^{2} + 9)^{3} \) Copy content Toggle raw display
$41$ \( T^{12} \) Copy content Toggle raw display
$43$ \( T^{12} \) Copy content Toggle raw display
$47$ \( (T^{2} - T + 1)^{6} \) Copy content Toggle raw display
$53$ \( T^{12} - 6 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{12} + 6 T^{10} + \cdots + 9 \) Copy content Toggle raw display
$61$ \( T^{12} \) Copy content Toggle raw display
$67$ \( T^{12} + 6 T^{10} + \cdots + 9 \) Copy content Toggle raw display
$71$ \( T^{12} \) Copy content Toggle raw display
$73$ \( (T^{6} - 3 T^{4} + 9 T^{2} + \cdots + 3)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( T^{12} \) Copy content Toggle raw display
$89$ \( T^{12} \) Copy content Toggle raw display
$97$ \( T^{12} \) Copy content Toggle raw display
show more
show less