Properties

Label 3192.1.hj.b.2309.1
Level $3192$
Weight $1$
Character 3192.2309
Analytic conductor $1.593$
Analytic rank $0$
Dimension $6$
Projective image $D_{18}$
CM discriminant -56
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,1,Mod(629,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 9, 9, 9, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.629");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3192.hj (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59301552032\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

Embedding invariants

Embedding label 2309.1
Root \(-0.766044 + 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 3192.2309
Dual form 3192.1.hj.b.629.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 - 0.984808i) q^{2} +(0.173648 + 0.984808i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(-0.673648 + 1.85083i) q^{5} +(0.939693 - 0.342020i) q^{6} +(0.500000 - 0.866025i) q^{7} +(0.500000 + 0.866025i) q^{8} +(-0.939693 + 0.342020i) q^{9} +(1.93969 + 0.342020i) q^{10} +(-0.500000 - 0.866025i) q^{12} +(-0.439693 + 0.524005i) q^{13} +(-0.939693 - 0.342020i) q^{14} +(-1.93969 - 0.342020i) q^{15} +(0.766044 - 0.642788i) q^{16} +(0.500000 + 0.866025i) q^{18} +(0.173648 + 0.984808i) q^{19} -1.96962i q^{20} +(0.939693 + 0.342020i) q^{21} +(0.673648 + 1.85083i) q^{23} +(-0.766044 + 0.642788i) q^{24} +(-2.20574 - 1.85083i) q^{25} +(0.592396 + 0.342020i) q^{26} +(-0.500000 - 0.866025i) q^{27} +(-0.173648 + 0.984808i) q^{28} +1.96962i q^{30} +(-0.766044 - 0.642788i) q^{32} +(1.26604 + 1.50881i) q^{35} +(0.766044 - 0.642788i) q^{36} +(0.939693 - 0.342020i) q^{38} +(-0.592396 - 0.342020i) q^{39} +(-1.93969 + 0.342020i) q^{40} +(0.173648 - 0.984808i) q^{42} -1.96962i q^{45} +(1.70574 - 0.984808i) q^{46} +(0.766044 + 0.642788i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-1.43969 + 2.49362i) q^{50} +(0.233956 - 0.642788i) q^{52} +(-0.766044 + 0.642788i) q^{54} +1.00000 q^{56} +(-0.939693 + 0.342020i) q^{57} +(-0.266044 - 1.50881i) q^{59} +(1.93969 - 0.342020i) q^{60} +(-1.43969 + 0.524005i) q^{61} +(-0.173648 + 0.984808i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-0.673648 - 1.16679i) q^{65} +(-1.70574 + 0.984808i) q^{69} +(1.26604 - 1.50881i) q^{70} +(-1.43969 - 0.524005i) q^{71} +(-0.766044 - 0.642788i) q^{72} +(1.43969 - 2.49362i) q^{75} +(-0.500000 - 0.866025i) q^{76} +(-0.233956 + 0.642788i) q^{78} +(1.11334 + 1.32683i) q^{79} +(0.673648 + 1.85083i) q^{80} +(0.766044 - 0.642788i) q^{81} +(-1.11334 - 0.642788i) q^{83} -1.00000 q^{84} +(-1.93969 + 0.342020i) q^{90} +(0.233956 + 0.642788i) q^{91} +(-1.26604 - 1.50881i) q^{92} +(-1.93969 - 0.342020i) q^{95} +(0.500000 - 0.866025i) q^{96} +(-0.766044 + 0.642788i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} + 3 q^{7} + 3 q^{8} + 6 q^{10} - 3 q^{12} + 3 q^{13} - 6 q^{15} + 3 q^{18} + 3 q^{23} - 3 q^{25} - 3 q^{27} + 3 q^{35} - 6 q^{40} - 3 q^{49} - 3 q^{50} + 6 q^{52} + 6 q^{56} + 3 q^{59} + 6 q^{60}+ \cdots + 3 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3192\mathbb{Z}\right)^\times\).

\(n\) \(799\) \(913\) \(1009\) \(1597\) \(2129\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{17}{18}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173648 0.984808i −0.173648 0.984808i
\(3\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(4\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(5\) −0.673648 + 1.85083i −0.673648 + 1.85083i −0.173648 + 0.984808i \(0.555556\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0.939693 0.342020i 0.939693 0.342020i
\(7\) 0.500000 0.866025i 0.500000 0.866025i
\(8\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(9\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(10\) 1.93969 + 0.342020i 1.93969 + 0.342020i
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) −0.500000 0.866025i −0.500000 0.866025i
\(13\) −0.439693 + 0.524005i −0.439693 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) −0.939693 0.342020i −0.939693 0.342020i
\(15\) −1.93969 0.342020i −1.93969 0.342020i
\(16\) 0.766044 0.642788i 0.766044 0.642788i
\(17\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(18\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(19\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(20\) 1.96962i 1.96962i
\(21\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(22\) 0 0
\(23\) 0.673648 + 1.85083i 0.673648 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(24\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(25\) −2.20574 1.85083i −2.20574 1.85083i
\(26\) 0.592396 + 0.342020i 0.592396 + 0.342020i
\(27\) −0.500000 0.866025i −0.500000 0.866025i
\(28\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(29\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(30\) 1.96962i 1.96962i
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) −0.766044 0.642788i −0.766044 0.642788i
\(33\) 0 0
\(34\) 0 0
\(35\) 1.26604 + 1.50881i 1.26604 + 1.50881i
\(36\) 0.766044 0.642788i 0.766044 0.642788i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0.939693 0.342020i 0.939693 0.342020i
\(39\) −0.592396 0.342020i −0.592396 0.342020i
\(40\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(41\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(42\) 0.173648 0.984808i 0.173648 0.984808i
\(43\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(44\) 0 0
\(45\) 1.96962i 1.96962i
\(46\) 1.70574 0.984808i 1.70574 0.984808i
\(47\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(48\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(49\) −0.500000 0.866025i −0.500000 0.866025i
\(50\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(51\) 0 0
\(52\) 0.233956 0.642788i 0.233956 0.642788i
\(53\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(54\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(55\) 0 0
\(56\) 1.00000 1.00000
\(57\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(58\) 0 0
\(59\) −0.266044 1.50881i −0.266044 1.50881i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(60\) 1.93969 0.342020i 1.93969 0.342020i
\(61\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(64\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(65\) −0.673648 1.16679i −0.673648 1.16679i
\(66\) 0 0
\(67\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(68\) 0 0
\(69\) −1.70574 + 0.984808i −1.70574 + 0.984808i
\(70\) 1.26604 1.50881i 1.26604 1.50881i
\(71\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(72\) −0.766044 0.642788i −0.766044 0.642788i
\(73\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(74\) 0 0
\(75\) 1.43969 2.49362i 1.43969 2.49362i
\(76\) −0.500000 0.866025i −0.500000 0.866025i
\(77\) 0 0
\(78\) −0.233956 + 0.642788i −0.233956 + 0.642788i
\(79\) 1.11334 + 1.32683i 1.11334 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(80\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(81\) 0.766044 0.642788i 0.766044 0.642788i
\(82\) 0 0
\(83\) −1.11334 0.642788i −1.11334 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(84\) −1.00000 −1.00000
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(90\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(91\) 0.233956 + 0.642788i 0.233956 + 0.642788i
\(92\) −1.26604 1.50881i −1.26604 1.50881i
\(93\) 0 0
\(94\) 0 0
\(95\) −1.93969 0.342020i −1.93969 0.342020i
\(96\) 0.500000 0.866025i 0.500000 0.866025i
\(97\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(98\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(99\) 0 0
\(100\) 2.70574 + 0.984808i 2.70574 + 0.984808i
\(101\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(102\) 0 0
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) −0.673648 0.118782i −0.673648 0.118782i
\(105\) −1.26604 + 1.50881i −1.26604 + 1.50881i
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(109\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.173648 0.984808i −0.173648 0.984808i
\(113\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(114\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(115\) −3.87939 −3.87939
\(116\) 0 0
\(117\) 0.233956 0.642788i 0.233956 0.642788i
\(118\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(119\) 0 0
\(120\) −0.673648 1.85083i −0.673648 1.85083i
\(121\) 0.500000 0.866025i 0.500000 0.866025i
\(122\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(123\) 0 0
\(124\) 0 0
\(125\) 3.20574 1.85083i 3.20574 1.85083i
\(126\) 1.00000 1.00000
\(127\) −0.439693 + 0.524005i −0.439693 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(129\) 0 0
\(130\) −1.03209 + 0.866025i −1.03209 + 0.866025i
\(131\) −1.26604 + 0.223238i −1.26604 + 0.223238i −0.766044 0.642788i \(-0.777778\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(134\) 0 0
\(135\) 1.93969 0.342020i 1.93969 0.342020i
\(136\) 0 0
\(137\) 0.439693 + 1.20805i 0.439693 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 1.26604 + 1.50881i 1.26604 + 1.50881i
\(139\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(140\) −1.70574 0.984808i −1.70574 0.984808i
\(141\) 0 0
\(142\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(143\) 0 0
\(144\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.766044 0.642788i 0.766044 0.642788i
\(148\) 0 0
\(149\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(150\) −2.70574 0.984808i −2.70574 0.984808i
\(151\) 1.96962i 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(152\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(157\) 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(158\) 1.11334 1.32683i 1.11334 1.32683i
\(159\) 0 0
\(160\) 1.70574 0.984808i 1.70574 0.984808i
\(161\) 1.93969 + 0.342020i 1.93969 + 0.342020i
\(162\) −0.766044 0.642788i −0.766044 0.642788i
\(163\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.439693 + 1.20805i −0.439693 + 1.20805i
\(167\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(168\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(169\) 0.0923963 + 0.524005i 0.0923963 + 0.524005i
\(170\) 0 0
\(171\) −0.500000 0.866025i −0.500000 0.866025i
\(172\) 0 0
\(173\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −2.70574 + 0.984808i −2.70574 + 0.984808i
\(176\) 0 0
\(177\) 1.43969 0.524005i 1.43969 0.524005i
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(181\) −1.26604 0.223238i −1.26604 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(182\) 0.592396 0.342020i 0.592396 0.342020i
\(183\) −0.766044 1.32683i −0.766044 1.32683i
\(184\) −1.26604 + 1.50881i −1.26604 + 1.50881i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.00000 −1.00000
\(190\) 1.96962i 1.96962i
\(191\) 1.28558i 1.28558i 0.766044 + 0.642788i \(0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(192\) −0.939693 0.342020i −0.939693 0.342020i
\(193\) −0.826352 0.984808i −0.826352 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 1.03209 0.866025i 1.03209 0.866025i
\(196\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(197\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(198\) 0 0
\(199\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(200\) 0.500000 2.83564i 0.500000 2.83564i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.26604 1.50881i −1.26604 1.50881i
\(208\) 0.684040i 0.684040i
\(209\) 0 0
\(210\) 1.70574 + 0.984808i 1.70574 + 0.984808i
\(211\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(212\) 0 0
\(213\) 0.266044 1.50881i 0.266044 1.50881i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.500000 0.866025i 0.500000 0.866025i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(224\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(225\) 2.70574 + 0.984808i 2.70574 + 0.984808i
\(226\) −0.0603074 0.342020i −0.0603074 0.342020i
\(227\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(228\) 0.766044 0.642788i 0.766044 0.642788i
\(229\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(230\) 0.673648 + 3.82045i 0.673648 + 3.82045i
\(231\) 0 0
\(232\) 0 0
\(233\) 0.233956 0.642788i 0.233956 0.642788i −0.766044 0.642788i \(-0.777778\pi\)
1.00000 \(0\)
\(234\) −0.673648 0.118782i −0.673648 0.118782i
\(235\) 0 0
\(236\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(237\) −1.11334 + 1.32683i −1.11334 + 1.32683i
\(238\) 0 0
\(239\) 0.592396 0.342020i 0.592396 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(240\) −1.70574 + 0.984808i −1.70574 + 0.984808i
\(241\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(242\) −0.939693 0.342020i −0.939693 0.342020i
\(243\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(244\) 1.17365 0.984808i 1.17365 0.984808i
\(245\) 1.93969 0.342020i 1.93969 0.342020i
\(246\) 0 0
\(247\) −0.592396 0.342020i −0.592396 0.342020i
\(248\) 0 0
\(249\) 0.439693 1.20805i 0.439693 1.20805i
\(250\) −2.37939 2.83564i −2.37939 2.83564i
\(251\) 0.233956 + 0.642788i 0.233956 + 0.642788i 1.00000 \(0\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(252\) −0.173648 0.984808i −0.173648 0.984808i
\(253\) 0 0
\(254\) 0.592396 + 0.342020i 0.592396 + 0.342020i
\(255\) 0 0
\(256\) 0.173648 0.984808i 0.173648 0.984808i
\(257\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.03209 + 0.866025i 1.03209 + 0.866025i
\(261\) 0 0
\(262\) 0.439693 + 1.20805i 0.439693 + 1.20805i
\(263\) 0.439693 + 0.524005i 0.439693 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.173648 0.984808i 0.173648 0.984808i
\(267\) 0 0
\(268\) 0 0
\(269\) 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i \(-0.222222\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(270\) −0.673648 1.85083i −0.673648 1.85083i
\(271\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(272\) 0 0
\(273\) −0.592396 + 0.342020i −0.592396 + 0.342020i
\(274\) 1.11334 0.642788i 1.11334 0.642788i
\(275\) 0 0
\(276\) 1.26604 1.50881i 1.26604 1.50881i
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 0.500000 0.866025i 0.500000 0.866025i
\(279\) 0 0
\(280\) −0.673648 + 1.85083i −0.673648 + 1.85083i
\(281\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(282\) 0 0
\(283\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(284\) 1.53209 1.53209
\(285\) 1.96962i 1.96962i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(289\) 0.939693 0.342020i 0.939693 0.342020i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(294\) −0.766044 0.642788i −0.766044 0.642788i
\(295\) 2.97178 + 0.524005i 2.97178 + 0.524005i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.26604 0.460802i −1.26604 0.460802i
\(300\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(301\) 0 0
\(302\) 1.93969 0.342020i 1.93969 0.342020i
\(303\) 0 0
\(304\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(305\) 3.01763i 3.01763i
\(306\) 0 0
\(307\) −0.826352 0.984808i −0.826352 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0.684040i 0.684040i
\(313\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(314\) 0.0603074 0.342020i 0.0603074 0.342020i
\(315\) −1.70574 0.984808i −1.70574 0.984808i
\(316\) −1.50000 0.866025i −1.50000 0.866025i
\(317\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.26604 1.50881i −1.26604 1.50881i
\(321\) 0 0
\(322\) 1.96962i 1.96962i
\(323\) 0 0
\(324\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(325\) 1.93969 0.342020i 1.93969 0.342020i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 1.26604 + 0.223238i 1.26604 + 0.223238i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0.939693 0.342020i 0.939693 0.342020i
\(337\) 0.233956 0.642788i 0.233956 0.642788i −0.766044 0.642788i \(-0.777778\pi\)
1.00000 \(0\)
\(338\) 0.500000 0.181985i 0.500000 0.181985i
\(339\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(340\) 0 0
\(341\) 0 0
\(342\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(343\) −1.00000 −1.00000
\(344\) 0 0
\(345\) −0.673648 3.82045i −0.673648 3.82045i
\(346\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(347\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(348\) 0 0
\(349\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(350\) 1.43969 + 2.49362i 1.43969 + 2.49362i
\(351\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) −0.766044 1.32683i −0.766044 1.32683i
\(355\) 1.93969 2.31164i 1.93969 2.31164i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.70574 + 0.300767i −1.70574 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(360\) 1.70574 0.984808i 1.70574 0.984808i
\(361\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(362\) 1.28558i 1.28558i
\(363\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(364\) −0.439693 0.524005i −0.439693 0.524005i
\(365\) 0 0
\(366\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(367\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(368\) 1.70574 + 0.984808i 1.70574 + 0.984808i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(374\) 0 0
\(375\) 2.37939 + 2.83564i 2.37939 + 2.83564i
\(376\) 0 0
\(377\) 0 0
\(378\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 1.93969 0.342020i 1.93969 0.342020i
\(381\) −0.592396 0.342020i −0.592396 0.342020i
\(382\) 1.26604 0.223238i 1.26604 0.223238i
\(383\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(384\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(385\) 0 0
\(386\) −0.826352 + 0.984808i −0.826352 + 0.984808i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(390\) −1.03209 0.866025i −1.03209 0.866025i
\(391\) 0 0
\(392\) 0.500000 0.866025i 0.500000 0.866025i
\(393\) −0.439693 1.20805i −0.439693 1.20805i
\(394\) 0 0
\(395\) −3.20574 + 1.16679i −3.20574 + 1.16679i
\(396\) 0 0
\(397\) 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(398\) 0 0
\(399\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(400\) −2.87939 −2.87939
\(401\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(410\) 0 0
\(411\) −1.11334 + 0.642788i −1.11334 + 0.642788i
\(412\) 0 0
\(413\) −1.43969 0.524005i −1.43969 0.524005i
\(414\) −1.26604 + 1.50881i −1.26604 + 1.50881i
\(415\) 1.93969 1.62760i 1.93969 1.62760i
\(416\) 0.673648 0.118782i 0.673648 0.118782i
\(417\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(418\) 0 0
\(419\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0.673648 1.85083i 0.673648 1.85083i
\(421\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −1.53209 −1.53209
\(427\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(432\) −0.939693 0.342020i −0.939693 0.342020i
\(433\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.70574 + 0.984808i −1.70574 + 0.984808i
\(438\) 0 0
\(439\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(440\) 0 0
\(441\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(442\) 0 0
\(443\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(449\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(450\) 0.500000 2.83564i 0.500000 2.83564i
\(451\) 0 0
\(452\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(453\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(454\) −0.326352 1.85083i −0.326352 1.85083i
\(455\) −1.34730 −1.34730
\(456\) −0.766044 0.642788i −0.766044 0.642788i
\(457\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(458\) −0.326352 1.85083i −0.326352 1.85083i
\(459\) 0 0
\(460\) 3.64543 1.32683i 3.64543 1.32683i
\(461\) −0.233956 + 0.642788i −0.233956 + 0.642788i 0.766044 + 0.642788i \(0.222222\pi\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.673648 0.118782i −0.673648 0.118782i
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0.684040i 0.684040i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(472\) 1.17365 0.984808i 1.17365 0.984808i
\(473\) 0 0
\(474\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(475\) 1.43969 2.49362i 1.43969 2.49362i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.439693 0.524005i −0.439693 0.524005i
\(479\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(480\) 1.26604 + 1.50881i 1.26604 + 1.50881i
\(481\) 0 0
\(482\) 0 0
\(483\) 1.96962i 1.96962i
\(484\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(485\) 0 0
\(486\) 0.500000 0.866025i 0.500000 0.866025i
\(487\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) −1.17365 0.984808i −1.17365 0.984808i
\(489\) 0 0
\(490\) −0.673648 1.85083i −0.673648 1.85083i
\(491\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.233956 + 0.642788i −0.233956 + 0.642788i
\(495\) 0 0
\(496\) 0 0
\(497\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(498\) −1.26604 0.223238i −1.26604 0.223238i
\(499\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(500\) −2.37939 + 2.83564i −2.37939 + 2.83564i
\(501\) 0 0
\(502\) 0.592396 0.342020i 0.592396 0.342020i
\(503\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(504\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.500000 + 0.181985i −0.500000 + 0.181985i
\(508\) 0.233956 0.642788i 0.233956 0.642788i
\(509\) −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0.766044 0.642788i 0.766044 0.642788i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.326352 0.118782i 0.326352 0.118782i
\(520\) 0.673648 1.16679i 0.673648 1.16679i
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 1.70574 + 0.300767i 1.70574 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(524\) 1.11334 0.642788i 1.11334 0.642788i
\(525\) −1.43969 2.49362i −1.43969 2.49362i
\(526\) 0.439693 0.524005i 0.439693 0.524005i
\(527\) 0 0
\(528\) 0 0
\(529\) −2.20574 + 1.85083i −2.20574 + 1.85083i
\(530\) 0 0
\(531\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(532\) −1.00000 −1.00000
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −1.53209 1.28558i −1.53209 1.28558i
\(539\) 0 0
\(540\) −1.70574 + 0.984808i −1.70574 + 0.984808i
\(541\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(542\) 0 0
\(543\) 1.28558i 1.28558i
\(544\) 0 0
\(545\) 0 0
\(546\) 0.439693 + 0.524005i 0.439693 + 0.524005i
\(547\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(548\) −0.826352 0.984808i −0.826352 0.984808i
\(549\) 1.17365 0.984808i 1.17365 0.984808i
\(550\) 0 0
\(551\) 0 0
\(552\) −1.70574 0.984808i −1.70574 0.984808i
\(553\) 1.70574 0.300767i 1.70574 0.300767i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.939693 0.342020i −0.939693 0.342020i
\(557\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.93969 + 0.342020i 1.93969 + 0.342020i
\(561\) 0 0
\(562\) −0.500000 0.866025i −0.500000 0.866025i
\(563\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(564\) 0 0
\(565\) −0.233956 + 0.642788i −0.233956 + 0.642788i
\(566\) 1.76604 0.642788i 1.76604 0.642788i
\(567\) −0.173648 0.984808i −0.173648 0.984808i
\(568\) −0.266044 1.50881i −0.266044 1.50881i
\(569\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(570\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −1.26604 + 0.223238i −1.26604 + 0.223238i
\(574\) 0 0
\(575\) 1.93969 5.32926i 1.93969 5.32926i
\(576\) 0.173648 0.984808i 0.173648 0.984808i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) −0.500000 0.866025i −0.500000 0.866025i
\(579\) 0.826352 0.984808i 0.826352 0.984808i
\(580\) 0 0
\(581\) −1.11334 + 0.642788i −1.11334 + 0.642788i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.03209 + 0.866025i 1.03209 + 0.866025i
\(586\) 1.43969 1.20805i 1.43969 1.20805i
\(587\) 1.70574 0.300767i 1.70574 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(588\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(589\) 0 0
\(590\) 3.01763i 3.01763i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −0.233956 + 1.32683i −0.233956 + 1.32683i
\(599\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i 0.939693 + 0.342020i \(0.111111\pi\)
−1.00000 \(\pi\)
\(600\) 2.87939 2.87939
\(601\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −0.673648 1.85083i −0.673648 1.85083i
\(605\) 1.26604 + 1.50881i 1.26604 + 1.50881i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0.500000 0.866025i 0.500000 0.866025i
\(609\) 0 0
\(610\) −2.97178 + 0.524005i −2.97178 + 0.524005i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(614\) −0.826352 + 0.984808i −0.826352 + 0.984808i
\(615\) 0 0
\(616\) 0 0
\(617\) −1.26604 0.223238i −1.26604 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(618\) 0 0
\(619\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(620\) 0 0
\(621\) 1.26604 1.50881i 1.26604 1.50881i
\(622\) 0 0
\(623\) 0 0
\(624\) −0.673648 + 0.118782i −0.673648 + 0.118782i
\(625\) 0.766044 + 4.34445i 0.766044 + 4.34445i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.347296 −0.347296
\(629\) 0 0
\(630\) −0.673648 + 1.85083i −0.673648 + 1.85083i
\(631\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(632\) −0.592396 + 1.62760i −0.592396 + 1.62760i
\(633\) 0 0
\(634\) 0 0
\(635\) −0.673648 1.16679i −0.673648 1.16679i
\(636\) 0 0
\(637\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(638\) 0 0
\(639\) 1.53209 1.53209
\(640\) −1.26604 + 1.50881i −1.26604 + 1.50881i
\(641\) 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) 0 0
\(643\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(644\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(649\) 0 0
\(650\) −0.673648 1.85083i −0.673648 1.85083i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 0.439693 2.49362i 0.439693 2.49362i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(660\) 0 0
\(661\) −0.673648 1.85083i −0.673648 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 1.28558i 1.28558i
\(665\) −1.26604 + 1.50881i −1.26604 + 1.50881i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −0.500000 0.866025i −0.500000 0.866025i
\(673\) 1.11334 0.642788i 1.11334 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(674\) −0.673648 0.118782i −0.673648 0.118782i
\(675\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(676\) −0.266044 0.460802i −0.266044 0.460802i
\(677\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(678\) 0.326352 0.118782i 0.326352 0.118782i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(685\) −2.53209 −2.53209
\(686\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(687\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(688\) 0 0
\(689\) 0 0
\(690\) −3.64543 + 1.32683i −3.64543 + 1.32683i
\(691\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(692\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(693\) 0 0
\(694\) 0 0
\(695\) −1.70574 + 0.984808i −1.70574 + 0.984808i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(699\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(700\) 2.20574 1.85083i 2.20574 1.85083i
\(701\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(702\) 0.684040i 0.684040i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(709\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(710\) −2.61334 1.50881i −2.61334 1.50881i
\(711\) −1.50000 0.866025i −1.50000 0.866025i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.439693 + 0.524005i 0.439693 + 0.524005i
\(718\) 0.592396 + 1.62760i 0.592396 + 1.62760i
\(719\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(720\) −1.26604 1.50881i −1.26604 1.50881i
\(721\) 0 0
\(722\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(723\) 0 0
\(724\) 1.26604 0.223238i 1.26604 0.223238i
\(725\) 0 0
\(726\) 0.173648 0.984808i 0.173648 0.984808i
\(727\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(728\) −0.439693 + 0.524005i −0.439693 + 0.524005i
\(729\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(730\) 0 0
\(731\) 0 0
\(732\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(733\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(734\) 0 0
\(735\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(736\) 0.673648 1.85083i 0.673648 1.85083i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(740\) 0 0
\(741\) 0.233956 0.642788i 0.233956 0.642788i
\(742\) 0 0
\(743\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.26604 + 0.223238i 1.26604 + 0.223238i
\(748\) 0 0
\(749\) 0 0
\(750\) 2.37939 2.83564i 2.37939 2.83564i
\(751\) −1.70574 0.300767i −1.70574 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(752\) 0 0
\(753\) −0.592396 + 0.342020i −0.592396 + 0.342020i
\(754\) 0 0
\(755\) −3.64543 1.32683i −3.64543 1.32683i
\(756\) 0.939693 0.342020i 0.939693 0.342020i
\(757\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −0.673648 1.85083i −0.673648 1.85083i
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) −0.233956 + 0.642788i −0.233956 + 0.642788i
\(763\) 0 0
\(764\) −0.439693 1.20805i −0.439693 1.20805i
\(765\) 0 0
\(766\) 0 0
\(767\) 0.907604 + 0.524005i 0.907604 + 0.524005i
\(768\) 1.00000 1.00000
\(769\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.11334 + 0.642788i 1.11334 + 0.642788i
\(773\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.939693 0.342020i −0.939693 0.342020i
\(785\) −0.439693 + 0.524005i −0.439693 + 0.524005i
\(786\) −1.11334 + 0.642788i −1.11334 + 0.642788i
\(787\) 1.70574 0.984808i 1.70574 0.984808i 0.766044 0.642788i \(-0.222222\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(788\) 0 0
\(789\) −0.439693 + 0.524005i −0.439693 + 0.524005i
\(790\) 1.70574 + 2.95442i 1.70574 + 2.95442i
\(791\) 0.173648 0.300767i 0.173648 0.300767i
\(792\) 0 0
\(793\) 0.358441 0.984808i 0.358441 0.984808i
\(794\) 1.87939 0.684040i 1.87939 0.684040i
\(795\) 0 0
\(796\) 0 0
\(797\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(798\) 1.00000 1.00000
\(799\) 0 0
\(800\) 0.500000 + 2.83564i 0.500000 + 2.83564i
\(801\) 0 0
\(802\) 1.76604 0.642788i 1.76604 0.642788i
\(803\) 0 0
\(804\) 0 0
\(805\) −1.93969 + 3.35965i −1.93969 + 3.35965i
\(806\) 0 0
\(807\) 1.53209 + 1.28558i 1.53209 + 1.28558i
\(808\) 0 0
\(809\) 0.592396 0.342020i 0.592396 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(810\) 1.70574 0.984808i 1.70574 0.984808i
\(811\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −0.439693 0.524005i −0.439693 0.524005i
\(820\) 0 0
\(821\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(822\) 0.826352 + 0.984808i 0.826352 + 0.984808i
\(823\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(827\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(828\) 1.70574 + 0.984808i 1.70574 + 0.984808i
\(829\) −1.70574 0.984808i −1.70574 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
−0.766044 0.642788i \(-0.777778\pi\)
\(830\) −1.93969 1.62760i −1.93969 1.62760i
\(831\) 0 0
\(832\) −0.233956 0.642788i −0.233956 0.642788i
\(833\) 0 0
\(834\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 1.70574 0.300767i 1.70574 0.300767i
\(839\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(840\) −1.93969 0.342020i −1.93969 0.342020i
\(841\) −0.939693 0.342020i −0.939693 0.342020i
\(842\) 0 0
\(843\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(844\) 0 0
\(845\) −1.03209 0.181985i −1.03209 0.181985i
\(846\) 0 0
\(847\) −0.500000 0.866025i −0.500000 0.866025i
\(848\) 0 0
\(849\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(850\) 0 0
\(851\) 0 0
\(852\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(853\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(854\) 1.53209 1.53209
\(855\) 1.93969 0.342020i 1.93969 0.342020i
\(856\) 0 0
\(857\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(858\) 0 0
\(859\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.500000 0.866025i 0.500000 0.866025i
\(863\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(865\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(866\) 0 0
\(867\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 1.26604 + 1.50881i 1.26604 + 1.50881i
\(875\) 3.70167i 3.70167i
\(876\) 0 0
\(877\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(878\) 0 0
\(879\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) 0.500000 0.866025i 0.500000 0.866025i
\(883\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(884\) 0 0
\(885\) 3.01763i 3.01763i
\(886\) 0 0
\(887\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(888\) 0 0
\(889\) 0.233956 + 0.642788i 0.233956 + 0.642788i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0.766044 0.642788i 0.766044 0.642788i
\(897\) 0.233956 1.32683i 0.233956 1.32683i
\(898\) −1.43969 0.524005i −1.43969 0.524005i
\(899\) 0 0
\(900\) −2.87939 −2.87939
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(905\) 1.26604 2.19285i 1.26604 2.19285i
\(906\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(907\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(908\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(909\) 0 0
\(910\) 0.233956 + 1.32683i 0.233956 + 1.32683i
\(911\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(912\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(913\) 0 0
\(914\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(915\) 2.97178 0.524005i 2.97178 0.524005i
\(916\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(917\) −0.439693 + 1.20805i −0.439693 + 1.20805i
\(918\) 0 0
\(919\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(920\) −1.93969 3.35965i −1.93969 3.35965i
\(921\) 0.826352 0.984808i 0.826352 0.984808i
\(922\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(923\) 0.907604 0.524005i 0.907604 0.524005i
\(924\) 0 0
\(925\) 0 0
\(926\) −1.43969 0.524005i −1.43969 0.524005i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(930\) 0 0
\(931\) 0.766044 0.642788i 0.766044 0.642788i
\(932\) 0.684040i 0.684040i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.673648 0.118782i 0.673648 0.118782i
\(937\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(942\) 0.347296 0.347296
\(943\) 0 0
\(944\) −1.17365 0.984808i −1.17365 0.984808i
\(945\) 0.673648 1.85083i 0.673648 1.85083i
\(946\) 0 0
\(947\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(948\) 0.592396 1.62760i 0.592396 1.62760i
\(949\) 0 0
\(950\) −2.70574 0.984808i −2.70574 0.984808i
\(951\) 0 0
\(952\) 0 0
\(953\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(954\) 0 0
\(955\) −2.37939 0.866025i −2.37939 0.866025i
\(956\) −0.439693 + 0.524005i −0.439693 + 0.524005i
\(957\) 0 0
\(958\) 0 0
\(959\) 1.26604 + 0.223238i 1.26604 + 0.223238i
\(960\) 1.26604 1.50881i 1.26604 1.50881i
\(961\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.37939 0.866025i 2.37939 0.866025i
\(966\) 1.93969 0.342020i 1.93969 0.342020i
\(967\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(968\) 1.00000 1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(972\) −0.939693 0.342020i −0.939693 0.342020i
\(973\) 0.939693 0.342020i 0.939693 0.342020i
\(974\) 0 0
\(975\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(976\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(977\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.70574 + 0.984808i −1.70574 + 0.984808i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(989\) 0 0
\(990\) 0 0
\(991\) 1.26604 + 1.50881i 1.26604 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(995\) 0 0
\(996\) 1.28558i 1.28558i
\(997\) 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3192.1.hj.b.2309.1 yes 6
3.2 odd 2 3192.1.hj.c.2309.1 yes 6
7.6 odd 2 3192.1.hj.d.2309.1 yes 6
8.5 even 2 3192.1.hj.d.2309.1 yes 6
19.2 odd 18 3192.1.hj.c.629.1 yes 6
21.20 even 2 3192.1.hj.a.2309.1 yes 6
24.5 odd 2 3192.1.hj.a.2309.1 yes 6
56.13 odd 2 CM 3192.1.hj.b.2309.1 yes 6
57.2 even 18 inner 3192.1.hj.b.629.1 yes 6
133.97 even 18 3192.1.hj.a.629.1 6
152.21 odd 18 3192.1.hj.a.629.1 6
168.125 even 2 3192.1.hj.c.2309.1 yes 6
399.230 odd 18 3192.1.hj.d.629.1 yes 6
456.173 even 18 3192.1.hj.d.629.1 yes 6
1064.629 even 18 3192.1.hj.c.629.1 yes 6
3192.629 odd 18 inner 3192.1.hj.b.629.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3192.1.hj.a.629.1 6 133.97 even 18
3192.1.hj.a.629.1 6 152.21 odd 18
3192.1.hj.a.2309.1 yes 6 21.20 even 2
3192.1.hj.a.2309.1 yes 6 24.5 odd 2
3192.1.hj.b.629.1 yes 6 57.2 even 18 inner
3192.1.hj.b.629.1 yes 6 3192.629 odd 18 inner
3192.1.hj.b.2309.1 yes 6 1.1 even 1 trivial
3192.1.hj.b.2309.1 yes 6 56.13 odd 2 CM
3192.1.hj.c.629.1 yes 6 19.2 odd 18
3192.1.hj.c.629.1 yes 6 1064.629 even 18
3192.1.hj.c.2309.1 yes 6 3.2 odd 2
3192.1.hj.c.2309.1 yes 6 168.125 even 2
3192.1.hj.d.629.1 yes 6 399.230 odd 18
3192.1.hj.d.629.1 yes 6 456.173 even 18
3192.1.hj.d.2309.1 yes 6 7.6 odd 2
3192.1.hj.d.2309.1 yes 6 8.5 even 2