Properties

Label 3192.1.m.h
Level $3192$
Weight $1$
Character orbit 3192.m
Analytic conductor $1.593$
Analytic rank $0$
Dimension $2$
Projective image $D_{2}$
CM/RM discs -56, -399, 456
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,1,Mod(797,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.797");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3192.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59301552032\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-14}, \sqrt{114})\)
Artin image: $D_4:C_2$
Artin field: Galois closure of 8.0.31952277504.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + q^{2} - i q^{3} + q^{4} + 2 i q^{5} - i q^{6} + q^{7} + q^{8} - q^{9} + 2 i q^{10} - i q^{12} - 2 i q^{13} + q^{14} + 2 q^{15} + q^{16} - q^{18} + i q^{19} + 2 i q^{20} - i q^{21} - i q^{24} + \cdots + q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{7} + 2 q^{8} - 2 q^{9} + 2 q^{14} + 4 q^{15} + 2 q^{16} - 2 q^{18} - 6 q^{25} + 2 q^{28} + 4 q^{30} + 2 q^{32} - 2 q^{36} - 4 q^{39} + 2 q^{49} - 6 q^{50} + 2 q^{56} + 2 q^{57}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3192\mathbb{Z}\right)^\times\).

\(n\) \(799\) \(913\) \(1009\) \(1597\) \(2129\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
797.1
1.00000i
1.00000i
1.00000 1.00000i 1.00000 2.00000i 1.00000i 1.00000 1.00000 −1.00000 2.00000i
797.2 1.00000 1.00000i 1.00000 2.00000i 1.00000i 1.00000 1.00000 −1.00000 2.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.h odd 2 1 CM by \(\Q(\sqrt{-14}) \)
399.h odd 2 1 CM by \(\Q(\sqrt{-399}) \)
456.p even 2 1 RM by \(\Q(\sqrt{114}) \)
7.b odd 2 1 inner
8.b even 2 1 inner
57.d even 2 1 inner
3192.m odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3192.1.m.h yes 2
3.b odd 2 1 3192.1.m.e 2
7.b odd 2 1 inner 3192.1.m.h yes 2
8.b even 2 1 inner 3192.1.m.h yes 2
19.b odd 2 1 3192.1.m.e 2
21.c even 2 1 3192.1.m.e 2
24.h odd 2 1 3192.1.m.e 2
56.h odd 2 1 CM 3192.1.m.h yes 2
57.d even 2 1 inner 3192.1.m.h yes 2
133.c even 2 1 3192.1.m.e 2
152.g odd 2 1 3192.1.m.e 2
168.i even 2 1 3192.1.m.e 2
399.h odd 2 1 CM 3192.1.m.h yes 2
456.p even 2 1 RM 3192.1.m.h yes 2
1064.f even 2 1 3192.1.m.e 2
3192.m odd 2 1 inner 3192.1.m.h yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3192.1.m.e 2 3.b odd 2 1
3192.1.m.e 2 19.b odd 2 1
3192.1.m.e 2 21.c even 2 1
3192.1.m.e 2 24.h odd 2 1
3192.1.m.e 2 133.c even 2 1
3192.1.m.e 2 152.g odd 2 1
3192.1.m.e 2 168.i even 2 1
3192.1.m.e 2 1064.f even 2 1
3192.1.m.h yes 2 1.a even 1 1 trivial
3192.1.m.h yes 2 7.b odd 2 1 inner
3192.1.m.h yes 2 8.b even 2 1 inner
3192.1.m.h yes 2 56.h odd 2 1 CM
3192.1.m.h yes 2 57.d even 2 1 inner
3192.1.m.h yes 2 399.h odd 2 1 CM
3192.1.m.h yes 2 456.p even 2 1 RM
3192.1.m.h yes 2 3192.m odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3192, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 4 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{31} \) Copy content Toggle raw display
\( T_{59} \) Copy content Toggle raw display
\( T_{61} \) Copy content Toggle raw display
\( T_{71} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 1 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T + 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 4 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less