Properties

Label 32.6.a.a
Level $32$
Weight $6$
Character orbit 32.a
Self dual yes
Analytic conductor $5.132$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [32,6,Mod(1,32)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(32, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("32.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 32.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.13228223402\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 8 q^{3} + 14 q^{5} - 208 q^{7} - 179 q^{9} - 536 q^{11} + 694 q^{13} - 112 q^{15} - 1278 q^{17} + 1112 q^{19} + 1664 q^{21} + 3216 q^{23} - 2929 q^{25} + 3376 q^{27} + 2918 q^{29} - 2624 q^{31} + 4288 q^{33}+ \cdots + 95944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −8.00000 0 14.0000 0 −208.000 0 −179.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 32.6.a.a 1
3.b odd 2 1 288.6.a.d 1
4.b odd 2 1 32.6.a.c yes 1
5.b even 2 1 800.6.a.e 1
5.c odd 4 2 800.6.c.a 2
8.b even 2 1 64.6.a.e 1
8.d odd 2 1 64.6.a.c 1
12.b even 2 1 288.6.a.e 1
16.e even 4 2 256.6.b.h 2
16.f odd 4 2 256.6.b.b 2
20.d odd 2 1 800.6.a.a 1
20.e even 4 2 800.6.c.b 2
24.f even 2 1 576.6.a.v 1
24.h odd 2 1 576.6.a.u 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.6.a.a 1 1.a even 1 1 trivial
32.6.a.c yes 1 4.b odd 2 1
64.6.a.c 1 8.d odd 2 1
64.6.a.e 1 8.b even 2 1
256.6.b.b 2 16.f odd 4 2
256.6.b.h 2 16.e even 4 2
288.6.a.d 1 3.b odd 2 1
288.6.a.e 1 12.b even 2 1
576.6.a.u 1 24.h odd 2 1
576.6.a.v 1 24.f even 2 1
800.6.a.a 1 20.d odd 2 1
800.6.a.e 1 5.b even 2 1
800.6.c.a 2 5.c odd 4 2
800.6.c.b 2 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 8 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(32))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 8 \) Copy content Toggle raw display
$5$ \( T - 14 \) Copy content Toggle raw display
$7$ \( T + 208 \) Copy content Toggle raw display
$11$ \( T + 536 \) Copy content Toggle raw display
$13$ \( T - 694 \) Copy content Toggle raw display
$17$ \( T + 1278 \) Copy content Toggle raw display
$19$ \( T - 1112 \) Copy content Toggle raw display
$23$ \( T - 3216 \) Copy content Toggle raw display
$29$ \( T - 2918 \) Copy content Toggle raw display
$31$ \( T + 2624 \) Copy content Toggle raw display
$37$ \( T + 9458 \) Copy content Toggle raw display
$41$ \( T - 170 \) Copy content Toggle raw display
$43$ \( T + 19928 \) Copy content Toggle raw display
$47$ \( T - 32 \) Copy content Toggle raw display
$53$ \( T + 22178 \) Copy content Toggle raw display
$59$ \( T - 41480 \) Copy content Toggle raw display
$61$ \( T - 15462 \) Copy content Toggle raw display
$67$ \( T + 20744 \) Copy content Toggle raw display
$71$ \( T - 28592 \) Copy content Toggle raw display
$73$ \( T + 53670 \) Copy content Toggle raw display
$79$ \( T + 69152 \) Copy content Toggle raw display
$83$ \( T + 37800 \) Copy content Toggle raw display
$89$ \( T + 126806 \) Copy content Toggle raw display
$97$ \( T - 62290 \) Copy content Toggle raw display
show more
show less