Properties

Label 3248.1.dt.b
Level $3248$
Weight $1$
Character orbit 3248.dt
Analytic conductor $1.621$
Analytic rank $0$
Dimension $12$
Projective image $D_{28}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3248,1,Mod(27,3248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3248, base_ring=CyclotomicField(28))
 
chi = DirichletCharacter(H, H._module([14, 7, 14, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3248.27");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3248 = 2^{4} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3248.dt (of order \(28\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.62096316103\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{28})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{28}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{28} + \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{28}^{6} q^{2} + \zeta_{28}^{12} q^{4} + \zeta_{28}^{12} q^{7} - \zeta_{28}^{4} q^{8} + \zeta_{28}^{10} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{28}^{6} q^{2} + \zeta_{28}^{12} q^{4} + \zeta_{28}^{12} q^{7} - \zeta_{28}^{4} q^{8} + \zeta_{28}^{10} q^{9} + (\zeta_{28}^{7} + \zeta_{28}) q^{11} - \zeta_{28}^{4} q^{14} - \zeta_{28}^{10} q^{16} - \zeta_{28}^{2} q^{18} + (\zeta_{28}^{13} + \zeta_{28}^{7}) q^{22} + ( - \zeta_{28}^{11} - \zeta_{28}) q^{23} + \zeta_{28}^{9} q^{25} - \zeta_{28}^{10} q^{28} - \zeta_{28}^{2} q^{29} + \zeta_{28}^{2} q^{32} - \zeta_{28}^{8} q^{36} + (\zeta_{28}^{11} + \zeta_{28}^{9}) q^{37} - 2 \zeta_{28}^{6} q^{43} + (\zeta_{28}^{13} - \zeta_{28}^{5}) q^{44} + ( - \zeta_{28}^{7} + \zeta_{28}^{3}) q^{46} - \zeta_{28}^{10} q^{49} - \zeta_{28} q^{50} + (\zeta_{28}^{12} + \zeta_{28}^{11}) q^{53} + \zeta_{28}^{2} q^{56} - \zeta_{28}^{8} q^{58} - \zeta_{28}^{8} q^{63} + \zeta_{28}^{8} q^{64} + (\zeta_{28}^{12} + \zeta_{28}) q^{67} + (\zeta_{28}^{5} - \zeta_{28}^{3}) q^{71} + q^{72} + ( - \zeta_{28}^{3} - \zeta_{28}) q^{74} + (\zeta_{28}^{13} - \zeta_{28}^{5}) q^{77} + ( - \zeta_{28}^{13} - 1) q^{79} - \zeta_{28}^{6} q^{81} - 2 \zeta_{28}^{12} q^{86} + ( - \zeta_{28}^{11} - \zeta_{28}^{5}) q^{88} + ( - \zeta_{28}^{13} + \zeta_{28}^{9}) q^{92} + \zeta_{28}^{2} q^{98} + (\zeta_{28}^{11} - \zeta_{28}^{3}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - 2 q^{4} - 2 q^{7} + 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} - 2 q^{4} - 2 q^{7} + 2 q^{8} + 2 q^{9} + 2 q^{14} - 2 q^{16} - 2 q^{18} - 2 q^{28} - 2 q^{29} + 2 q^{32} + 2 q^{36} - 4 q^{43} - 2 q^{49} - 2 q^{53} + 2 q^{56} + 2 q^{58} + 2 q^{63} - 2 q^{64} - 2 q^{67} + 12 q^{72} - 12 q^{79} - 2 q^{81} + 4 q^{86} + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3248\mathbb{Z}\right)^\times\).

\(n\) \(465\) \(785\) \(2031\) \(2437\)
\(\chi(n)\) \(-1\) \(-\zeta_{28}^{9}\) \(-1\) \(\zeta_{28}^{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
27.1
0.781831 0.623490i
−0.433884 0.900969i
−0.781831 0.623490i
0.781831 + 0.623490i
0.433884 + 0.900969i
−0.781831 + 0.623490i
−0.974928 0.222521i
0.433884 0.900969i
0.974928 0.222521i
−0.974928 + 0.222521i
−0.433884 + 0.900969i
0.974928 + 0.222521i
−0.623490 + 0.781831i 0 −0.222521 0.974928i 0 0 −0.222521 0.974928i 0.900969 + 0.433884i 0.900969 0.433884i 0
195.1 0.900969 + 0.433884i 0 0.623490 + 0.781831i 0 0 0.623490 + 0.781831i 0.222521 + 0.974928i 0.222521 0.974928i 0
363.1 −0.623490 0.781831i 0 −0.222521 + 0.974928i 0 0 −0.222521 + 0.974928i 0.900969 0.433884i 0.900969 + 0.433884i 0
1203.1 −0.623490 0.781831i 0 −0.222521 + 0.974928i 0 0 −0.222521 + 0.974928i 0.900969 0.433884i 0.900969 + 0.433884i 0
1371.1 0.900969 + 0.433884i 0 0.623490 + 0.781831i 0 0 0.623490 + 0.781831i 0.222521 + 0.974928i 0.222521 0.974928i 0
1539.1 −0.623490 + 0.781831i 0 −0.222521 0.974928i 0 0 −0.222521 0.974928i 0.900969 + 0.433884i 0.900969 0.433884i 0
1875.1 0.222521 + 0.974928i 0 −0.900969 + 0.433884i 0 0 −0.900969 + 0.433884i −0.623490 0.781831i −0.623490 + 0.781831i 0
2099.1 0.900969 0.433884i 0 0.623490 0.781831i 0 0 0.623490 0.781831i 0.222521 0.974928i 0.222521 + 0.974928i 0
2323.1 0.222521 0.974928i 0 −0.900969 0.433884i 0 0 −0.900969 0.433884i −0.623490 + 0.781831i −0.623490 0.781831i 0
2491.1 0.222521 0.974928i 0 −0.900969 0.433884i 0 0 −0.900969 0.433884i −0.623490 + 0.781831i −0.623490 0.781831i 0
2715.1 0.900969 0.433884i 0 0.623490 0.781831i 0 0 0.623490 0.781831i 0.222521 0.974928i 0.222521 + 0.974928i 0
2939.1 0.222521 + 0.974928i 0 −0.900969 + 0.433884i 0 0 −0.900969 + 0.433884i −0.623490 0.781831i −0.623490 + 0.781831i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 27.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
464.bm even 28 1 inner
3248.dt odd 28 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3248.1.dt.b 12
7.b odd 2 1 CM 3248.1.dt.b 12
16.f odd 4 1 3248.1.ep.b yes 12
29.f odd 28 1 3248.1.ep.b yes 12
112.j even 4 1 3248.1.ep.b yes 12
203.r even 28 1 3248.1.ep.b yes 12
464.bm even 28 1 inner 3248.1.dt.b 12
3248.dt odd 28 1 inner 3248.1.dt.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3248.1.dt.b 12 1.a even 1 1 trivial
3248.1.dt.b 12 7.b odd 2 1 CM
3248.1.dt.b 12 464.bm even 28 1 inner
3248.1.dt.b 12 3248.dt odd 28 1 inner
3248.1.ep.b yes 12 16.f odd 4 1
3248.1.ep.b yes 12 29.f odd 28 1
3248.1.ep.b yes 12 112.j even 4 1
3248.1.ep.b yes 12 203.r even 28 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{12} + 7T_{11}^{10} + 21T_{11}^{8} + 35T_{11}^{6} + 49T_{11}^{4} - 49T_{11}^{2} + 49 \) acting on \(S_{1}^{\mathrm{new}}(3248, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} \) Copy content Toggle raw display
$7$ \( (T^{6} + T^{5} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{12} + 7 T^{10} + \cdots + 49 \) Copy content Toggle raw display
$13$ \( T^{12} \) Copy content Toggle raw display
$17$ \( T^{12} \) Copy content Toggle raw display
$19$ \( T^{12} \) Copy content Toggle raw display
$23$ \( T^{12} + 14 T^{8} + \cdots + 49 \) Copy content Toggle raw display
$29$ \( (T^{6} + T^{5} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( T^{12} + 14 T^{8} + \cdots + 49 \) Copy content Toggle raw display
$41$ \( T^{12} \) Copy content Toggle raw display
$43$ \( (T^{6} + 2 T^{5} + 4 T^{4} + \cdots + 64)^{2} \) Copy content Toggle raw display
$47$ \( T^{12} \) Copy content Toggle raw display
$53$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{12} \) Copy content Toggle raw display
$61$ \( T^{12} \) Copy content Toggle raw display
$67$ \( T^{12} + 2 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{12} - 4 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{12} \) Copy content Toggle raw display
$79$ \( T^{12} + 12 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{12} \) Copy content Toggle raw display
$89$ \( T^{12} \) Copy content Toggle raw display
$97$ \( T^{12} \) Copy content Toggle raw display
show more
show less