Properties

Label 3248.2.a.k.1.1
Level $3248$
Weight $2$
Character 3248.1
Self dual yes
Analytic conductor $25.935$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3248,2,Mod(1,3248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3248 = 2^{4} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9354105765\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 406)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -3.00000 q^{5} +1.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -3.00000 q^{5} +1.00000 q^{7} -2.00000 q^{9} +1.00000 q^{11} -1.00000 q^{13} -3.00000 q^{15} -4.00000 q^{17} +4.00000 q^{19} +1.00000 q^{21} +2.00000 q^{23} +4.00000 q^{25} -5.00000 q^{27} +1.00000 q^{29} +1.00000 q^{31} +1.00000 q^{33} -3.00000 q^{35} +6.00000 q^{37} -1.00000 q^{39} -3.00000 q^{43} +6.00000 q^{45} +9.00000 q^{47} +1.00000 q^{49} -4.00000 q^{51} +3.00000 q^{53} -3.00000 q^{55} +4.00000 q^{57} +6.00000 q^{61} -2.00000 q^{63} +3.00000 q^{65} -2.00000 q^{67} +2.00000 q^{69} +8.00000 q^{71} +4.00000 q^{75} +1.00000 q^{77} +13.0000 q^{79} +1.00000 q^{81} +12.0000 q^{85} +1.00000 q^{87} -14.0000 q^{89} -1.00000 q^{91} +1.00000 q^{93} -12.0000 q^{95} +16.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −3.00000 −0.457496 −0.228748 0.973486i \(-0.573463\pi\)
−0.228748 + 0.973486i \(0.573463\pi\)
\(44\) 0 0
\(45\) 6.00000 0.894427
\(46\) 0 0
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 4.00000 0.461880
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 13.0000 1.46261 0.731307 0.682048i \(-0.238911\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) 1.00000 0.107211
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) −12.0000 −1.23117
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) −3.00000 −0.292770
\(106\) 0 0
\(107\) 14.0000 1.35343 0.676716 0.736245i \(-0.263403\pi\)
0.676716 + 0.736245i \(0.263403\pi\)
\(108\) 0 0
\(109\) 15.0000 1.43674 0.718370 0.695662i \(-0.244889\pi\)
0.718370 + 0.695662i \(0.244889\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) −3.00000 −0.264135
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 0 0
\(135\) 15.0000 1.29099
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 0 0
\(141\) 9.00000 0.757937
\(142\) 0 0
\(143\) −1.00000 −0.0836242
\(144\) 0 0
\(145\) −3.00000 −0.249136
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) −11.0000 −0.901155 −0.450578 0.892737i \(-0.648782\pi\)
−0.450578 + 0.892737i \(0.648782\pi\)
\(150\) 0 0
\(151\) −14.0000 −1.13930 −0.569652 0.821886i \(-0.692922\pi\)
−0.569652 + 0.821886i \(0.692922\pi\)
\(152\) 0 0
\(153\) 8.00000 0.646762
\(154\) 0 0
\(155\) −3.00000 −0.240966
\(156\) 0 0
\(157\) −12.0000 −0.957704 −0.478852 0.877896i \(-0.658947\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(158\) 0 0
\(159\) 3.00000 0.237915
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) 21.0000 1.64485 0.822423 0.568876i \(-0.192621\pi\)
0.822423 + 0.568876i \(0.192621\pi\)
\(164\) 0 0
\(165\) −3.00000 −0.233550
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −8.00000 −0.611775
\(172\) 0 0
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 23.0000 1.70958 0.854788 0.518977i \(-0.173687\pi\)
0.854788 + 0.518977i \(0.173687\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 0 0
\(185\) −18.0000 −1.32339
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 0 0
\(189\) −5.00000 −0.363696
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 12.0000 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(194\) 0 0
\(195\) 3.00000 0.214834
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) 0 0
\(203\) 1.00000 0.0701862
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 9.00000 0.619586 0.309793 0.950804i \(-0.399740\pi\)
0.309793 + 0.950804i \(0.399740\pi\)
\(212\) 0 0
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 9.00000 0.613795
\(216\) 0 0
\(217\) 1.00000 0.0678844
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) −8.00000 −0.533333
\(226\) 0 0
\(227\) −14.0000 −0.929213 −0.464606 0.885517i \(-0.653804\pi\)
−0.464606 + 0.885517i \(0.653804\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 1.00000 0.0657952
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) −27.0000 −1.76129
\(236\) 0 0
\(237\) 13.0000 0.844441
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −29.0000 −1.86805 −0.934027 0.357202i \(-0.883731\pi\)
−0.934027 + 0.357202i \(0.883731\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.0000 1.07303 0.536515 0.843891i \(-0.319740\pi\)
0.536515 + 0.843891i \(0.319740\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 12.0000 0.751469
\(256\) 0 0
\(257\) −9.00000 −0.561405 −0.280702 0.959795i \(-0.590567\pi\)
−0.280702 + 0.959795i \(0.590567\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) −5.00000 −0.308313 −0.154157 0.988046i \(-0.549266\pi\)
−0.154157 + 0.988046i \(0.549266\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) −14.0000 −0.856786
\(268\) 0 0
\(269\) −28.0000 −1.70719 −0.853595 0.520937i \(-0.825583\pi\)
−0.853595 + 0.520937i \(0.825583\pi\)
\(270\) 0 0
\(271\) −25.0000 −1.51864 −0.759321 0.650716i \(-0.774469\pi\)
−0.759321 + 0.650716i \(0.774469\pi\)
\(272\) 0 0
\(273\) −1.00000 −0.0605228
\(274\) 0 0
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −21.0000 −1.25275 −0.626377 0.779520i \(-0.715463\pi\)
−0.626377 + 0.779520i \(0.715463\pi\)
\(282\) 0 0
\(283\) 2.00000 0.118888 0.0594438 0.998232i \(-0.481067\pi\)
0.0594438 + 0.998232i \(0.481067\pi\)
\(284\) 0 0
\(285\) −12.0000 −0.710819
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 16.0000 0.937937
\(292\) 0 0
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −5.00000 −0.290129
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) −3.00000 −0.172917
\(302\) 0 0
\(303\) −4.00000 −0.229794
\(304\) 0 0
\(305\) −18.0000 −1.03068
\(306\) 0 0
\(307\) −9.00000 −0.513657 −0.256829 0.966457i \(-0.582678\pi\)
−0.256829 + 0.966457i \(0.582678\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) −20.0000 −1.13410 −0.567048 0.823685i \(-0.691915\pi\)
−0.567048 + 0.823685i \(0.691915\pi\)
\(312\) 0 0
\(313\) −5.00000 −0.282617 −0.141308 0.989966i \(-0.545131\pi\)
−0.141308 + 0.989966i \(0.545131\pi\)
\(314\) 0 0
\(315\) 6.00000 0.338062
\(316\) 0 0
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 0 0
\(319\) 1.00000 0.0559893
\(320\) 0 0
\(321\) 14.0000 0.781404
\(322\) 0 0
\(323\) −16.0000 −0.890264
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 15.0000 0.829502
\(328\) 0 0
\(329\) 9.00000 0.496186
\(330\) 0 0
\(331\) −27.0000 −1.48405 −0.742027 0.670370i \(-0.766135\pi\)
−0.742027 + 0.670370i \(0.766135\pi\)
\(332\) 0 0
\(333\) −12.0000 −0.657596
\(334\) 0 0
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.00000 0.0541530
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −6.00000 −0.323029
\(346\) 0 0
\(347\) −10.0000 −0.536828 −0.268414 0.963304i \(-0.586500\pi\)
−0.268414 + 0.963304i \(0.586500\pi\)
\(348\) 0 0
\(349\) −3.00000 −0.160586 −0.0802932 0.996771i \(-0.525586\pi\)
−0.0802932 + 0.996771i \(0.525586\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) −34.0000 −1.80964 −0.904819 0.425797i \(-0.859994\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) −24.0000 −1.27379
\(356\) 0 0
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) 21.0000 1.10834 0.554169 0.832404i \(-0.313036\pi\)
0.554169 + 0.832404i \(0.313036\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −10.0000 −0.524864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.00000 0.155752
\(372\) 0 0
\(373\) 17.0000 0.880227 0.440113 0.897942i \(-0.354938\pi\)
0.440113 + 0.897942i \(0.354938\pi\)
\(374\) 0 0
\(375\) 3.00000 0.154919
\(376\) 0 0
\(377\) −1.00000 −0.0515026
\(378\) 0 0
\(379\) −36.0000 −1.84920 −0.924598 0.380945i \(-0.875599\pi\)
−0.924598 + 0.380945i \(0.875599\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) −30.0000 −1.53293 −0.766464 0.642287i \(-0.777986\pi\)
−0.766464 + 0.642287i \(0.777986\pi\)
\(384\) 0 0
\(385\) −3.00000 −0.152894
\(386\) 0 0
\(387\) 6.00000 0.304997
\(388\) 0 0
\(389\) −4.00000 −0.202808 −0.101404 0.994845i \(-0.532333\pi\)
−0.101404 + 0.994845i \(0.532333\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −39.0000 −1.96230
\(396\) 0 0
\(397\) 11.0000 0.552074 0.276037 0.961147i \(-0.410979\pi\)
0.276037 + 0.961147i \(0.410979\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) 39.0000 1.94757 0.973784 0.227477i \(-0.0730475\pi\)
0.973784 + 0.227477i \(0.0730475\pi\)
\(402\) 0 0
\(403\) −1.00000 −0.0498135
\(404\) 0 0
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 28.0000 1.38451 0.692255 0.721653i \(-0.256617\pi\)
0.692255 + 0.721653i \(0.256617\pi\)
\(410\) 0 0
\(411\) −10.0000 −0.493264
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 14.0000 0.685583
\(418\) 0 0
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 0 0
\(423\) −18.0000 −0.875190
\(424\) 0 0
\(425\) −16.0000 −0.776114
\(426\) 0 0
\(427\) 6.00000 0.290360
\(428\) 0 0
\(429\) −1.00000 −0.0482805
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) −3.00000 −0.143839
\(436\) 0 0
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) −2.00000 −0.0954548 −0.0477274 0.998860i \(-0.515198\pi\)
−0.0477274 + 0.998860i \(0.515198\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 0 0
\(443\) −20.0000 −0.950229 −0.475114 0.879924i \(-0.657593\pi\)
−0.475114 + 0.879924i \(0.657593\pi\)
\(444\) 0 0
\(445\) 42.0000 1.99099
\(446\) 0 0
\(447\) −11.0000 −0.520282
\(448\) 0 0
\(449\) −16.0000 −0.755087 −0.377543 0.925992i \(-0.623231\pi\)
−0.377543 + 0.925992i \(0.623231\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −14.0000 −0.657777
\(454\) 0 0
\(455\) 3.00000 0.140642
\(456\) 0 0
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 0 0
\(459\) 20.0000 0.933520
\(460\) 0 0
\(461\) −28.0000 −1.30409 −0.652045 0.758180i \(-0.726089\pi\)
−0.652045 + 0.758180i \(0.726089\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) −3.00000 −0.139122
\(466\) 0 0
\(467\) −13.0000 −0.601568 −0.300784 0.953692i \(-0.597248\pi\)
−0.300784 + 0.953692i \(0.597248\pi\)
\(468\) 0 0
\(469\) −2.00000 −0.0923514
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) 0 0
\(473\) −3.00000 −0.137940
\(474\) 0 0
\(475\) 16.0000 0.734130
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) −21.0000 −0.959514 −0.479757 0.877401i \(-0.659275\pi\)
−0.479757 + 0.877401i \(0.659275\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) 2.00000 0.0910032
\(484\) 0 0
\(485\) −48.0000 −2.17957
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 0 0
\(489\) 21.0000 0.949653
\(490\) 0 0
\(491\) −9.00000 −0.406164 −0.203082 0.979162i \(-0.565096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) 6.00000 0.269680
\(496\) 0 0
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) 38.0000 1.70111 0.850557 0.525883i \(-0.176265\pi\)
0.850557 + 0.525883i \(0.176265\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) 11.0000 0.490466 0.245233 0.969464i \(-0.421136\pi\)
0.245233 + 0.969464i \(0.421136\pi\)
\(504\) 0 0
\(505\) 12.0000 0.533993
\(506\) 0 0
\(507\) −12.0000 −0.532939
\(508\) 0 0
\(509\) −7.00000 −0.310270 −0.155135 0.987893i \(-0.549581\pi\)
−0.155135 + 0.987893i \(0.549581\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −20.0000 −0.883022
\(514\) 0 0
\(515\) 12.0000 0.528783
\(516\) 0 0
\(517\) 9.00000 0.395820
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 25.0000 1.09527 0.547635 0.836717i \(-0.315528\pi\)
0.547635 + 0.836717i \(0.315528\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 0 0
\(525\) 4.00000 0.174574
\(526\) 0 0
\(527\) −4.00000 −0.174243
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −42.0000 −1.81582
\(536\) 0 0
\(537\) 24.0000 1.03568
\(538\) 0 0
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 0 0
\(543\) 23.0000 0.987024
\(544\) 0 0
\(545\) −45.0000 −1.92759
\(546\) 0 0
\(547\) 14.0000 0.598597 0.299298 0.954160i \(-0.403247\pi\)
0.299298 + 0.954160i \(0.403247\pi\)
\(548\) 0 0
\(549\) −12.0000 −0.512148
\(550\) 0 0
\(551\) 4.00000 0.170406
\(552\) 0 0
\(553\) 13.0000 0.552816
\(554\) 0 0
\(555\) −18.0000 −0.764057
\(556\) 0 0
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) 3.00000 0.126886
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) −9.00000 −0.379305 −0.189652 0.981851i \(-0.560736\pi\)
−0.189652 + 0.981851i \(0.560736\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) −18.0000 −0.753277 −0.376638 0.926360i \(-0.622920\pi\)
−0.376638 + 0.926360i \(0.622920\pi\)
\(572\) 0 0
\(573\) −8.00000 −0.334205
\(574\) 0 0
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) 12.0000 0.498703
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3.00000 0.124247
\(584\) 0 0
\(585\) −6.00000 −0.248069
\(586\) 0 0
\(587\) −30.0000 −1.23823 −0.619116 0.785299i \(-0.712509\pi\)
−0.619116 + 0.785299i \(0.712509\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) −2.00000 −0.0822690
\(592\) 0 0
\(593\) −3.00000 −0.123195 −0.0615976 0.998101i \(-0.519620\pi\)
−0.0615976 + 0.998101i \(0.519620\pi\)
\(594\) 0 0
\(595\) 12.0000 0.491952
\(596\) 0 0
\(597\) 20.0000 0.818546
\(598\) 0 0
\(599\) −15.0000 −0.612883 −0.306442 0.951889i \(-0.599138\pi\)
−0.306442 + 0.951889i \(0.599138\pi\)
\(600\) 0 0
\(601\) −28.0000 −1.14214 −0.571072 0.820900i \(-0.693472\pi\)
−0.571072 + 0.820900i \(0.693472\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 30.0000 1.21967
\(606\) 0 0
\(607\) 7.00000 0.284121 0.142061 0.989858i \(-0.454627\pi\)
0.142061 + 0.989858i \(0.454627\pi\)
\(608\) 0 0
\(609\) 1.00000 0.0405220
\(610\) 0 0
\(611\) −9.00000 −0.364101
\(612\) 0 0
\(613\) −29.0000 −1.17130 −0.585649 0.810564i \(-0.699160\pi\)
−0.585649 + 0.810564i \(0.699160\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −36.0000 −1.44931 −0.724653 0.689114i \(-0.758000\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(618\) 0 0
\(619\) 3.00000 0.120580 0.0602901 0.998181i \(-0.480797\pi\)
0.0602901 + 0.998181i \(0.480797\pi\)
\(620\) 0 0
\(621\) −10.0000 −0.401286
\(622\) 0 0
\(623\) −14.0000 −0.560898
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 4.00000 0.159745
\(628\) 0 0
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) 12.0000 0.477712 0.238856 0.971055i \(-0.423228\pi\)
0.238856 + 0.971055i \(0.423228\pi\)
\(632\) 0 0
\(633\) 9.00000 0.357718
\(634\) 0 0
\(635\) −48.0000 −1.90482
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) −16.0000 −0.632950
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) −12.0000 −0.473234 −0.236617 0.971603i \(-0.576039\pi\)
−0.236617 + 0.971603i \(0.576039\pi\)
\(644\) 0 0
\(645\) 9.00000 0.354375
\(646\) 0 0
\(647\) 20.0000 0.786281 0.393141 0.919478i \(-0.371389\pi\)
0.393141 + 0.919478i \(0.371389\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1.00000 0.0391931
\(652\) 0 0
\(653\) 20.0000 0.782660 0.391330 0.920250i \(-0.372015\pi\)
0.391330 + 0.920250i \(0.372015\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 43.0000 1.67504 0.837521 0.546405i \(-0.184004\pi\)
0.837521 + 0.546405i \(0.184004\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 0 0
\(663\) 4.00000 0.155347
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) 2.00000 0.0774403
\(668\) 0 0
\(669\) 4.00000 0.154649
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 0 0
\(675\) −20.0000 −0.769800
\(676\) 0 0
\(677\) 40.0000 1.53732 0.768662 0.639655i \(-0.220923\pi\)
0.768662 + 0.639655i \(0.220923\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) −14.0000 −0.536481
\(682\) 0 0
\(683\) 24.0000 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) 0 0
\(685\) 30.0000 1.14624
\(686\) 0 0
\(687\) 14.0000 0.534133
\(688\) 0 0
\(689\) −3.00000 −0.114291
\(690\) 0 0
\(691\) 48.0000 1.82601 0.913003 0.407953i \(-0.133757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(692\) 0 0
\(693\) −2.00000 −0.0759737
\(694\) 0 0
\(695\) −42.0000 −1.59315
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 11.0000 0.416058
\(700\) 0 0
\(701\) −35.0000 −1.32193 −0.660966 0.750416i \(-0.729853\pi\)
−0.660966 + 0.750416i \(0.729853\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) 0 0
\(705\) −27.0000 −1.01688
\(706\) 0 0
\(707\) −4.00000 −0.150435
\(708\) 0 0
\(709\) 9.00000 0.338002 0.169001 0.985616i \(-0.445946\pi\)
0.169001 + 0.985616i \(0.445946\pi\)
\(710\) 0 0
\(711\) −26.0000 −0.975076
\(712\) 0 0
\(713\) 2.00000 0.0749006
\(714\) 0 0
\(715\) 3.00000 0.112194
\(716\) 0 0
\(717\) 12.0000 0.448148
\(718\) 0 0
\(719\) 2.00000 0.0745874 0.0372937 0.999304i \(-0.488126\pi\)
0.0372937 + 0.999304i \(0.488126\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 0 0
\(723\) −29.0000 −1.07852
\(724\) 0 0
\(725\) 4.00000 0.148556
\(726\) 0 0
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 0 0
\(733\) −38.0000 −1.40356 −0.701781 0.712393i \(-0.747612\pi\)
−0.701781 + 0.712393i \(0.747612\pi\)
\(734\) 0 0
\(735\) −3.00000 −0.110657
\(736\) 0 0
\(737\) −2.00000 −0.0736709
\(738\) 0 0
\(739\) 47.0000 1.72892 0.864461 0.502699i \(-0.167660\pi\)
0.864461 + 0.502699i \(0.167660\pi\)
\(740\) 0 0
\(741\) −4.00000 −0.146944
\(742\) 0 0
\(743\) 20.0000 0.733729 0.366864 0.930274i \(-0.380431\pi\)
0.366864 + 0.930274i \(0.380431\pi\)
\(744\) 0 0
\(745\) 33.0000 1.20903
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 14.0000 0.511549
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) 17.0000 0.619514
\(754\) 0 0
\(755\) 42.0000 1.52854
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) 0 0
\(759\) 2.00000 0.0725954
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 15.0000 0.543036
\(764\) 0 0
\(765\) −24.0000 −0.867722
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 4.00000 0.144244 0.0721218 0.997396i \(-0.477023\pi\)
0.0721218 + 0.997396i \(0.477023\pi\)
\(770\) 0 0
\(771\) −9.00000 −0.324127
\(772\) 0 0
\(773\) −20.0000 −0.719350 −0.359675 0.933078i \(-0.617112\pi\)
−0.359675 + 0.933078i \(0.617112\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 6.00000 0.215249
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 8.00000 0.286263
\(782\) 0 0
\(783\) −5.00000 −0.178685
\(784\) 0 0
\(785\) 36.0000 1.28490
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) 0 0
\(789\) −5.00000 −0.178005
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.00000 −0.213066
\(794\) 0 0
\(795\) −9.00000 −0.319197
\(796\) 0 0
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) −36.0000 −1.27359
\(800\) 0 0
\(801\) 28.0000 0.989331
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −6.00000 −0.211472
\(806\) 0 0
\(807\) −28.0000 −0.985647
\(808\) 0 0
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 30.0000 1.05344 0.526721 0.850038i \(-0.323421\pi\)
0.526721 + 0.850038i \(0.323421\pi\)
\(812\) 0 0
\(813\) −25.0000 −0.876788
\(814\) 0 0
\(815\) −63.0000 −2.20679
\(816\) 0 0
\(817\) −12.0000 −0.419827
\(818\) 0 0
\(819\) 2.00000 0.0698857
\(820\) 0 0
\(821\) 53.0000 1.84971 0.924856 0.380317i \(-0.124185\pi\)
0.924856 + 0.380317i \(0.124185\pi\)
\(822\) 0 0
\(823\) 8.00000 0.278862 0.139431 0.990232i \(-0.455473\pi\)
0.139431 + 0.990232i \(0.455473\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) −47.0000 −1.63435 −0.817175 0.576390i \(-0.804461\pi\)
−0.817175 + 0.576390i \(0.804461\pi\)
\(828\) 0 0
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) −4.00000 −0.138592
\(834\) 0 0
\(835\) 36.0000 1.24583
\(836\) 0 0
\(837\) −5.00000 −0.172825
\(838\) 0 0
\(839\) 21.0000 0.725001 0.362500 0.931984i \(-0.381923\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −21.0000 −0.723278
\(844\) 0 0
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) −10.0000 −0.343604
\(848\) 0 0
\(849\) 2.00000 0.0686398
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 0 0
\(855\) 24.0000 0.820783
\(856\) 0 0
\(857\) −41.0000 −1.40053 −0.700267 0.713881i \(-0.746936\pi\)
−0.700267 + 0.713881i \(0.746936\pi\)
\(858\) 0 0
\(859\) −31.0000 −1.05771 −0.528853 0.848713i \(-0.677378\pi\)
−0.528853 + 0.848713i \(0.677378\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −58.0000 −1.97434 −0.987171 0.159664i \(-0.948959\pi\)
−0.987171 + 0.159664i \(0.948959\pi\)
\(864\) 0 0
\(865\) −42.0000 −1.42804
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 13.0000 0.440995
\(870\) 0 0
\(871\) 2.00000 0.0677674
\(872\) 0 0
\(873\) −32.0000 −1.08304
\(874\) 0 0
\(875\) 3.00000 0.101419
\(876\) 0 0
\(877\) 31.0000 1.04680 0.523398 0.852088i \(-0.324664\pi\)
0.523398 + 0.852088i \(0.324664\pi\)
\(878\) 0 0
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) −26.0000 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(882\) 0 0
\(883\) 6.00000 0.201916 0.100958 0.994891i \(-0.467809\pi\)
0.100958 + 0.994891i \(0.467809\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.00000 −0.100730 −0.0503651 0.998731i \(-0.516038\pi\)
−0.0503651 + 0.998731i \(0.516038\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) −72.0000 −2.40669
\(896\) 0 0
\(897\) −2.00000 −0.0667781
\(898\) 0 0
\(899\) 1.00000 0.0333519
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) −3.00000 −0.0998337
\(904\) 0 0
\(905\) −69.0000 −2.29364
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 0 0
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) 9.00000 0.298183 0.149092 0.988823i \(-0.452365\pi\)
0.149092 + 0.988823i \(0.452365\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −18.0000 −0.595062
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −10.0000 −0.329870 −0.164935 0.986304i \(-0.552741\pi\)
−0.164935 + 0.986304i \(0.552741\pi\)
\(920\) 0 0
\(921\) −9.00000 −0.296560
\(922\) 0 0
\(923\) −8.00000 −0.263323
\(924\) 0 0
\(925\) 24.0000 0.789115
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 54.0000 1.77168 0.885841 0.463988i \(-0.153582\pi\)
0.885841 + 0.463988i \(0.153582\pi\)
\(930\) 0 0
\(931\) 4.00000 0.131095
\(932\) 0 0
\(933\) −20.0000 −0.654771
\(934\) 0 0
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −5.00000 −0.163169
\(940\) 0 0
\(941\) −27.0000 −0.880175 −0.440087 0.897955i \(-0.645053\pi\)
−0.440087 + 0.897955i \(0.645053\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 15.0000 0.487950
\(946\) 0 0
\(947\) −19.0000 −0.617417 −0.308709 0.951157i \(-0.599897\pi\)
−0.308709 + 0.951157i \(0.599897\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 22.0000 0.713399
\(952\) 0 0
\(953\) 47.0000 1.52248 0.761240 0.648471i \(-0.224591\pi\)
0.761240 + 0.648471i \(0.224591\pi\)
\(954\) 0 0
\(955\) 24.0000 0.776622
\(956\) 0 0
\(957\) 1.00000 0.0323254
\(958\) 0 0
\(959\) −10.0000 −0.322917
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) −28.0000 −0.902287
\(964\) 0 0
\(965\) −36.0000 −1.15888
\(966\) 0 0
\(967\) 31.0000 0.996893 0.498446 0.866921i \(-0.333904\pi\)
0.498446 + 0.866921i \(0.333904\pi\)
\(968\) 0 0
\(969\) −16.0000 −0.513994
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) 14.0000 0.448819
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) 53.0000 1.69562 0.847810 0.530300i \(-0.177921\pi\)
0.847810 + 0.530300i \(0.177921\pi\)
\(978\) 0 0
\(979\) −14.0000 −0.447442
\(980\) 0 0
\(981\) −30.0000 −0.957826
\(982\) 0 0
\(983\) −39.0000 −1.24391 −0.621953 0.783054i \(-0.713661\pi\)
−0.621953 + 0.783054i \(0.713661\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 9.00000 0.286473
\(988\) 0 0
\(989\) −6.00000 −0.190789
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) 0 0
\(993\) −27.0000 −0.856819
\(994\) 0 0
\(995\) −60.0000 −1.90213
\(996\) 0 0
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) 0 0
\(999\) −30.0000 −0.949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3248.2.a.k.1.1 1
4.3 odd 2 406.2.a.d.1.1 1
12.11 even 2 3654.2.a.l.1.1 1
28.27 even 2 2842.2.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
406.2.a.d.1.1 1 4.3 odd 2
2842.2.a.f.1.1 1 28.27 even 2
3248.2.a.k.1.1 1 1.1 even 1 trivial
3654.2.a.l.1.1 1 12.11 even 2