Properties

Label 3264.2.c.m.577.2
Level $3264$
Weight $2$
Character 3264.577
Analytic conductor $26.063$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3264,2,Mod(577,3264)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3264, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3264.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3264 = 2^{6} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3264.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0631712197\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1632)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.2
Root \(-2.30278i\) of defining polynomial
Character \(\chi\) \(=\) 3264.577
Dual form 3264.2.c.m.577.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +3.60555i q^{5} -4.00000i q^{7} -1.00000 q^{9} +3.00000i q^{11} +1.00000 q^{13} +3.60555 q^{15} +(2.00000 + 3.60555i) q^{17} +3.60555 q^{19} -4.00000 q^{21} -7.00000i q^{23} -8.00000 q^{25} +1.00000i q^{27} -7.21110i q^{29} +2.00000i q^{31} +3.00000 q^{33} +14.4222 q^{35} +7.21110i q^{37} -1.00000i q^{39} +10.8167i q^{41} -3.60555 q^{43} -3.60555i q^{45} -9.00000 q^{49} +(3.60555 - 2.00000i) q^{51} +4.00000 q^{53} -10.8167 q^{55} -3.60555i q^{57} +14.4222 q^{59} +4.00000i q^{63} +3.60555i q^{65} -7.00000 q^{69} +8.00000i q^{71} +8.00000i q^{75} +12.0000 q^{77} -4.00000i q^{79} +1.00000 q^{81} +(-13.0000 + 7.21110i) q^{85} -7.21110 q^{87} +12.0000 q^{89} -4.00000i q^{91} +2.00000 q^{93} +13.0000i q^{95} -7.21110i q^{97} -3.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 4 q^{13} + 8 q^{17} - 16 q^{21} - 32 q^{25} + 12 q^{33} - 36 q^{49} + 16 q^{53} - 28 q^{69} + 48 q^{77} + 4 q^{81} - 52 q^{85} + 48 q^{89} + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3264\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(2177\) \(2245\) \(2689\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 3.60555i 1.61245i 0.591608 + 0.806226i \(0.298493\pi\)
−0.591608 + 0.806226i \(0.701507\pi\)
\(6\) 0 0
\(7\) 4.00000i 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.00000i 0.904534i 0.891883 + 0.452267i \(0.149385\pi\)
−0.891883 + 0.452267i \(0.850615\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 3.60555 0.930949
\(16\) 0 0
\(17\) 2.00000 + 3.60555i 0.485071 + 0.874475i
\(18\) 0 0
\(19\) 3.60555 0.827170 0.413585 0.910465i \(-0.364276\pi\)
0.413585 + 0.910465i \(0.364276\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 7.00000i 1.45960i −0.683660 0.729800i \(-0.739613\pi\)
0.683660 0.729800i \(-0.260387\pi\)
\(24\) 0 0
\(25\) −8.00000 −1.60000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 7.21110i 1.33907i −0.742781 0.669534i \(-0.766494\pi\)
0.742781 0.669534i \(-0.233506\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) 14.4222 2.43780
\(36\) 0 0
\(37\) 7.21110i 1.18550i 0.805387 + 0.592749i \(0.201957\pi\)
−0.805387 + 0.592749i \(0.798043\pi\)
\(38\) 0 0
\(39\) 1.00000i 0.160128i
\(40\) 0 0
\(41\) 10.8167i 1.68928i 0.535337 + 0.844639i \(0.320185\pi\)
−0.535337 + 0.844639i \(0.679815\pi\)
\(42\) 0 0
\(43\) −3.60555 −0.549841 −0.274921 0.961467i \(-0.588652\pi\)
−0.274921 + 0.961467i \(0.588652\pi\)
\(44\) 0 0
\(45\) 3.60555i 0.537484i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 3.60555 2.00000i 0.504878 0.280056i
\(52\) 0 0
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) −10.8167 −1.45852
\(56\) 0 0
\(57\) 3.60555i 0.477567i
\(58\) 0 0
\(59\) 14.4222 1.87761 0.938806 0.344447i \(-0.111934\pi\)
0.938806 + 0.344447i \(0.111934\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 4.00000i 0.503953i
\(64\) 0 0
\(65\) 3.60555i 0.447214i
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) −7.00000 −0.842701
\(70\) 0 0
\(71\) 8.00000i 0.949425i 0.880141 + 0.474713i \(0.157448\pi\)
−0.880141 + 0.474713i \(0.842552\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 8.00000i 0.923760i
\(76\) 0 0
\(77\) 12.0000 1.36753
\(78\) 0 0
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −13.0000 + 7.21110i −1.41005 + 0.782154i
\(86\) 0 0
\(87\) −7.21110 −0.773111
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 4.00000i 0.419314i
\(92\) 0 0
\(93\) 2.00000 0.207390
\(94\) 0 0
\(95\) 13.0000i 1.33377i
\(96\) 0 0
\(97\) 7.21110i 0.732177i −0.930580 0.366088i \(-0.880697\pi\)
0.930580 0.366088i \(-0.119303\pi\)
\(98\) 0 0
\(99\) 3.00000i 0.301511i
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 10.8167 1.06580 0.532898 0.846179i \(-0.321103\pi\)
0.532898 + 0.846179i \(0.321103\pi\)
\(104\) 0 0
\(105\) 14.4222i 1.40746i
\(106\) 0 0
\(107\) 13.0000i 1.25676i 0.777908 + 0.628379i \(0.216281\pi\)
−0.777908 + 0.628379i \(0.783719\pi\)
\(108\) 0 0
\(109\) 14.4222i 1.38140i 0.723143 + 0.690698i \(0.242697\pi\)
−0.723143 + 0.690698i \(0.757303\pi\)
\(110\) 0 0
\(111\) 7.21110 0.684448
\(112\) 0 0
\(113\) 10.8167i 1.01755i −0.860901 0.508773i \(-0.830099\pi\)
0.860901 0.508773i \(-0.169901\pi\)
\(114\) 0 0
\(115\) 25.2389 2.35354
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 14.4222 8.00000i 1.32208 0.733359i
\(120\) 0 0
\(121\) 2.00000 0.181818
\(122\) 0 0
\(123\) 10.8167 0.975305
\(124\) 0 0
\(125\) 10.8167i 0.967471i
\(126\) 0 0
\(127\) −18.0278 −1.59970 −0.799852 0.600197i \(-0.795089\pi\)
−0.799852 + 0.600197i \(0.795089\pi\)
\(128\) 0 0
\(129\) 3.60555i 0.317451i
\(130\) 0 0
\(131\) 15.0000i 1.31056i 0.755388 + 0.655278i \(0.227449\pi\)
−0.755388 + 0.655278i \(0.772551\pi\)
\(132\) 0 0
\(133\) 14.4222i 1.25056i
\(134\) 0 0
\(135\) −3.60555 −0.310316
\(136\) 0 0
\(137\) 22.0000 1.87959 0.939793 0.341743i \(-0.111017\pi\)
0.939793 + 0.341743i \(0.111017\pi\)
\(138\) 0 0
\(139\) 14.0000i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.00000i 0.250873i
\(144\) 0 0
\(145\) 26.0000 2.15918
\(146\) 0 0
\(147\) 9.00000i 0.742307i
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 14.4222 1.17366 0.586831 0.809709i \(-0.300375\pi\)
0.586831 + 0.809709i \(0.300375\pi\)
\(152\) 0 0
\(153\) −2.00000 3.60555i −0.161690 0.291492i
\(154\) 0 0
\(155\) −7.21110 −0.579210
\(156\) 0 0
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) 0 0
\(159\) 4.00000i 0.317221i
\(160\) 0 0
\(161\) −28.0000 −2.20671
\(162\) 0 0
\(163\) 14.0000i 1.09656i 0.836293 + 0.548282i \(0.184718\pi\)
−0.836293 + 0.548282i \(0.815282\pi\)
\(164\) 0 0
\(165\) 10.8167i 0.842075i
\(166\) 0 0
\(167\) 11.0000i 0.851206i 0.904910 + 0.425603i \(0.139938\pi\)
−0.904910 + 0.425603i \(0.860062\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) −3.60555 −0.275723
\(172\) 0 0
\(173\) 25.2389i 1.91887i −0.281922 0.959437i \(-0.590972\pi\)
0.281922 0.959437i \(-0.409028\pi\)
\(174\) 0 0
\(175\) 32.0000i 2.41897i
\(176\) 0 0
\(177\) 14.4222i 1.08404i
\(178\) 0 0
\(179\) −7.21110 −0.538983 −0.269492 0.963003i \(-0.586856\pi\)
−0.269492 + 0.963003i \(0.586856\pi\)
\(180\) 0 0
\(181\) 7.21110i 0.535997i 0.963419 + 0.267999i \(0.0863622\pi\)
−0.963419 + 0.267999i \(0.913638\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −26.0000 −1.91156
\(186\) 0 0
\(187\) −10.8167 + 6.00000i −0.790992 + 0.438763i
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) −7.21110 −0.521777 −0.260889 0.965369i \(-0.584016\pi\)
−0.260889 + 0.965369i \(0.584016\pi\)
\(192\) 0 0
\(193\) 7.21110i 0.519067i 0.965734 + 0.259533i \(0.0835687\pi\)
−0.965734 + 0.259533i \(0.916431\pi\)
\(194\) 0 0
\(195\) 3.60555 0.258199
\(196\) 0 0
\(197\) 10.8167i 0.770655i 0.922780 + 0.385327i \(0.125911\pi\)
−0.922780 + 0.385327i \(0.874089\pi\)
\(198\) 0 0
\(199\) 26.0000i 1.84309i −0.388270 0.921546i \(-0.626927\pi\)
0.388270 0.921546i \(-0.373073\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −28.8444 −2.02448
\(204\) 0 0
\(205\) −39.0000 −2.72388
\(206\) 0 0
\(207\) 7.00000i 0.486534i
\(208\) 0 0
\(209\) 10.8167i 0.748204i
\(210\) 0 0
\(211\) 10.0000i 0.688428i 0.938891 + 0.344214i \(0.111855\pi\)
−0.938891 + 0.344214i \(0.888145\pi\)
\(212\) 0 0
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 13.0000i 0.886593i
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.00000 + 3.60555i 0.134535 + 0.242536i
\(222\) 0 0
\(223\) 25.2389 1.69012 0.845060 0.534672i \(-0.179565\pi\)
0.845060 + 0.534672i \(0.179565\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) 27.0000i 1.79205i −0.444001 0.896026i \(-0.646441\pi\)
0.444001 0.896026i \(-0.353559\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 12.0000i 0.789542i
\(232\) 0 0
\(233\) 18.0278i 1.18104i 0.807024 + 0.590519i \(0.201077\pi\)
−0.807024 + 0.590519i \(0.798923\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) 7.21110 0.466447 0.233224 0.972423i \(-0.425073\pi\)
0.233224 + 0.972423i \(0.425073\pi\)
\(240\) 0 0
\(241\) 14.4222i 0.929016i 0.885569 + 0.464508i \(0.153769\pi\)
−0.885569 + 0.464508i \(0.846231\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 32.4500i 2.07315i
\(246\) 0 0
\(247\) 3.60555 0.229416
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.6333 1.36548 0.682741 0.730660i \(-0.260788\pi\)
0.682741 + 0.730660i \(0.260788\pi\)
\(252\) 0 0
\(253\) 21.0000 1.32026
\(254\) 0 0
\(255\) 7.21110 + 13.0000i 0.451577 + 0.814092i
\(256\) 0 0
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 0 0
\(259\) 28.8444 1.79230
\(260\) 0 0
\(261\) 7.21110i 0.446356i
\(262\) 0 0
\(263\) −21.6333 −1.33397 −0.666983 0.745073i \(-0.732415\pi\)
−0.666983 + 0.745073i \(0.732415\pi\)
\(264\) 0 0
\(265\) 14.4222i 0.885949i
\(266\) 0 0
\(267\) 12.0000i 0.734388i
\(268\) 0 0
\(269\) 10.8167i 0.659503i 0.944068 + 0.329752i \(0.106965\pi\)
−0.944068 + 0.329752i \(0.893035\pi\)
\(270\) 0 0
\(271\) 3.60555 0.219022 0.109511 0.993986i \(-0.465072\pi\)
0.109511 + 0.993986i \(0.465072\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 0 0
\(275\) 24.0000i 1.44725i
\(276\) 0 0
\(277\) 14.4222i 0.866546i 0.901263 + 0.433273i \(0.142641\pi\)
−0.901263 + 0.433273i \(0.857359\pi\)
\(278\) 0 0
\(279\) 2.00000i 0.119737i
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) 32.0000i 1.90220i −0.308879 0.951101i \(-0.599954\pi\)
0.308879 0.951101i \(-0.400046\pi\)
\(284\) 0 0
\(285\) 13.0000 0.770054
\(286\) 0 0
\(287\) 43.2666 2.55395
\(288\) 0 0
\(289\) −9.00000 + 14.4222i −0.529412 + 0.848365i
\(290\) 0 0
\(291\) −7.21110 −0.422722
\(292\) 0 0
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 0 0
\(295\) 52.0000i 3.02756i
\(296\) 0 0
\(297\) −3.00000 −0.174078
\(298\) 0 0
\(299\) 7.00000i 0.404820i
\(300\) 0 0
\(301\) 14.4222i 0.831282i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 28.8444 1.64624 0.823119 0.567869i \(-0.192232\pi\)
0.823119 + 0.567869i \(0.192232\pi\)
\(308\) 0 0
\(309\) 10.8167i 0.615338i
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 7.21110i 0.407596i −0.979013 0.203798i \(-0.934671\pi\)
0.979013 0.203798i \(-0.0653285\pi\)
\(314\) 0 0
\(315\) −14.4222 −0.812599
\(316\) 0 0
\(317\) 7.21110i 0.405016i −0.979281 0.202508i \(-0.935091\pi\)
0.979281 0.202508i \(-0.0649092\pi\)
\(318\) 0 0
\(319\) 21.6333 1.21123
\(320\) 0 0
\(321\) 13.0000 0.725589
\(322\) 0 0
\(323\) 7.21110 + 13.0000i 0.401236 + 0.723339i
\(324\) 0 0
\(325\) −8.00000 −0.443760
\(326\) 0 0
\(327\) 14.4222 0.797550
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −25.2389 −1.38725 −0.693627 0.720335i \(-0.743988\pi\)
−0.693627 + 0.720335i \(0.743988\pi\)
\(332\) 0 0
\(333\) 7.21110i 0.395166i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 36.0555i 1.96407i −0.188702 0.982034i \(-0.560428\pi\)
0.188702 0.982034i \(-0.439572\pi\)
\(338\) 0 0
\(339\) −10.8167 −0.587480
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 25.2389i 1.35881i
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 1.00000 0.0535288 0.0267644 0.999642i \(-0.491480\pi\)
0.0267644 + 0.999642i \(0.491480\pi\)
\(350\) 0 0
\(351\) 1.00000i 0.0533761i
\(352\) 0 0
\(353\) −8.00000 −0.425797 −0.212899 0.977074i \(-0.568290\pi\)
−0.212899 + 0.977074i \(0.568290\pi\)
\(354\) 0 0
\(355\) −28.8444 −1.53090
\(356\) 0 0
\(357\) −8.00000 14.4222i −0.423405 0.763304i
\(358\) 0 0
\(359\) −21.6333 −1.14176 −0.570881 0.821033i \(-0.693398\pi\)
−0.570881 + 0.821033i \(0.693398\pi\)
\(360\) 0 0
\(361\) −6.00000 −0.315789
\(362\) 0 0
\(363\) 2.00000i 0.104973i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 30.0000i 1.56599i −0.622030 0.782994i \(-0.713692\pi\)
0.622030 0.782994i \(-0.286308\pi\)
\(368\) 0 0
\(369\) 10.8167i 0.563093i
\(370\) 0 0
\(371\) 16.0000i 0.830679i
\(372\) 0 0
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) −10.8167 −0.558570
\(376\) 0 0
\(377\) 7.21110i 0.371391i
\(378\) 0 0
\(379\) 28.0000i 1.43826i −0.694874 0.719132i \(-0.744540\pi\)
0.694874 0.719132i \(-0.255460\pi\)
\(380\) 0 0
\(381\) 18.0278i 0.923590i
\(382\) 0 0
\(383\) 21.6333 1.10541 0.552705 0.833377i \(-0.313596\pi\)
0.552705 + 0.833377i \(0.313596\pi\)
\(384\) 0 0
\(385\) 43.2666i 2.20507i
\(386\) 0 0
\(387\) 3.60555 0.183280
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 25.2389 14.0000i 1.27638 0.708010i
\(392\) 0 0
\(393\) 15.0000 0.756650
\(394\) 0 0
\(395\) 14.4222 0.725660
\(396\) 0 0
\(397\) 36.0555i 1.80957i 0.425864 + 0.904787i \(0.359970\pi\)
−0.425864 + 0.904787i \(0.640030\pi\)
\(398\) 0 0
\(399\) −14.4222 −0.722013
\(400\) 0 0
\(401\) 18.0278i 0.900263i −0.892962 0.450132i \(-0.851377\pi\)
0.892962 0.450132i \(-0.148623\pi\)
\(402\) 0 0
\(403\) 2.00000i 0.0996271i
\(404\) 0 0
\(405\) 3.60555i 0.179161i
\(406\) 0 0
\(407\) −21.6333 −1.07232
\(408\) 0 0
\(409\) 1.00000 0.0494468 0.0247234 0.999694i \(-0.492129\pi\)
0.0247234 + 0.999694i \(0.492129\pi\)
\(410\) 0 0
\(411\) 22.0000i 1.08518i
\(412\) 0 0
\(413\) 57.6888i 2.83868i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 14.0000 0.685583
\(418\) 0 0
\(419\) 36.0000i 1.75872i 0.476162 + 0.879358i \(0.342028\pi\)
−0.476162 + 0.879358i \(0.657972\pi\)
\(420\) 0 0
\(421\) 17.0000 0.828529 0.414265 0.910156i \(-0.364039\pi\)
0.414265 + 0.910156i \(0.364039\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −16.0000 28.8444i −0.776114 1.39916i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.00000 0.144841
\(430\) 0 0
\(431\) 16.0000i 0.770693i −0.922772 0.385346i \(-0.874082\pi\)
0.922772 0.385346i \(-0.125918\pi\)
\(432\) 0 0
\(433\) 5.00000 0.240285 0.120142 0.992757i \(-0.461665\pi\)
0.120142 + 0.992757i \(0.461665\pi\)
\(434\) 0 0
\(435\) 26.0000i 1.24660i
\(436\) 0 0
\(437\) 25.2389i 1.20734i
\(438\) 0 0
\(439\) 12.0000i 0.572729i 0.958121 + 0.286364i \(0.0924468\pi\)
−0.958121 + 0.286364i \(0.907553\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) −14.4222 −0.685220 −0.342610 0.939478i \(-0.611311\pi\)
−0.342610 + 0.939478i \(0.611311\pi\)
\(444\) 0 0
\(445\) 43.2666i 2.05103i
\(446\) 0 0
\(447\) 18.0000i 0.851371i
\(448\) 0 0
\(449\) 21.6333i 1.02094i 0.859896 + 0.510469i \(0.170528\pi\)
−0.859896 + 0.510469i \(0.829472\pi\)
\(450\) 0 0
\(451\) −32.4500 −1.52801
\(452\) 0 0
\(453\) 14.4222i 0.677614i
\(454\) 0 0
\(455\) 14.4222 0.676123
\(456\) 0 0
\(457\) −5.00000 −0.233890 −0.116945 0.993138i \(-0.537310\pi\)
−0.116945 + 0.993138i \(0.537310\pi\)
\(458\) 0 0
\(459\) −3.60555 + 2.00000i −0.168293 + 0.0933520i
\(460\) 0 0
\(461\) −32.0000 −1.49039 −0.745194 0.666847i \(-0.767643\pi\)
−0.745194 + 0.666847i \(0.767643\pi\)
\(462\) 0 0
\(463\) 14.4222 0.670257 0.335128 0.942172i \(-0.391220\pi\)
0.335128 + 0.942172i \(0.391220\pi\)
\(464\) 0 0
\(465\) 7.21110i 0.334407i
\(466\) 0 0
\(467\) −21.6333 −1.00107 −0.500535 0.865716i \(-0.666863\pi\)
−0.500535 + 0.865716i \(0.666863\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.00000i 0.0460776i
\(472\) 0 0
\(473\) 10.8167i 0.497350i
\(474\) 0 0
\(475\) −28.8444 −1.32347
\(476\) 0 0
\(477\) −4.00000 −0.183147
\(478\) 0 0
\(479\) 15.0000i 0.685367i 0.939451 + 0.342684i \(0.111336\pi\)
−0.939451 + 0.342684i \(0.888664\pi\)
\(480\) 0 0
\(481\) 7.21110i 0.328798i
\(482\) 0 0
\(483\) 28.0000i 1.27404i
\(484\) 0 0
\(485\) 26.0000 1.18060
\(486\) 0 0
\(487\) 20.0000i 0.906287i −0.891438 0.453143i \(-0.850303\pi\)
0.891438 0.453143i \(-0.149697\pi\)
\(488\) 0 0
\(489\) 14.0000 0.633102
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 26.0000 14.4222i 1.17098 0.649543i
\(494\) 0 0
\(495\) 10.8167 0.486172
\(496\) 0 0
\(497\) 32.0000 1.43540
\(498\) 0 0
\(499\) 4.00000i 0.179065i −0.995984 0.0895323i \(-0.971463\pi\)
0.995984 0.0895323i \(-0.0285372\pi\)
\(500\) 0 0
\(501\) 11.0000 0.491444
\(502\) 0 0
\(503\) 3.00000i 0.133763i 0.997761 + 0.0668817i \(0.0213050\pi\)
−0.997761 + 0.0668817i \(0.978695\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.0000i 0.532939i
\(508\) 0 0
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 3.60555i 0.159189i
\(514\) 0 0
\(515\) 39.0000i 1.71855i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −25.2389 −1.10786
\(520\) 0 0
\(521\) 32.4500i 1.42166i −0.703365 0.710829i \(-0.748320\pi\)
0.703365 0.710829i \(-0.251680\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 32.0000 1.39659
\(526\) 0 0
\(527\) −7.21110 + 4.00000i −0.314121 + 0.174243i
\(528\) 0 0
\(529\) −26.0000 −1.13043
\(530\) 0 0
\(531\) −14.4222 −0.625870
\(532\) 0 0
\(533\) 10.8167i 0.468521i
\(534\) 0 0
\(535\) −46.8722 −2.02646
\(536\) 0 0
\(537\) 7.21110i 0.311182i
\(538\) 0 0
\(539\) 27.0000i 1.16297i
\(540\) 0 0
\(541\) 7.21110i 0.310030i −0.987912 0.155015i \(-0.950457\pi\)
0.987912 0.155015i \(-0.0495425\pi\)
\(542\) 0 0
\(543\) 7.21110 0.309458
\(544\) 0 0
\(545\) −52.0000 −2.22744
\(546\) 0 0
\(547\) 12.0000i 0.513083i −0.966533 0.256541i \(-0.917417\pi\)
0.966533 0.256541i \(-0.0825830\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 26.0000i 1.10764i
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) 0 0
\(555\) 26.0000i 1.10364i
\(556\) 0 0
\(557\) −28.0000 −1.18640 −0.593199 0.805056i \(-0.702135\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) 0 0
\(559\) −3.60555 −0.152499
\(560\) 0 0
\(561\) 6.00000 + 10.8167i 0.253320 + 0.456679i
\(562\) 0 0
\(563\) −7.21110 −0.303912 −0.151956 0.988387i \(-0.548557\pi\)
−0.151956 + 0.988387i \(0.548557\pi\)
\(564\) 0 0
\(565\) 39.0000 1.64074
\(566\) 0 0
\(567\) 4.00000i 0.167984i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 26.0000i 1.08807i −0.839064 0.544033i \(-0.816897\pi\)
0.839064 0.544033i \(-0.183103\pi\)
\(572\) 0 0
\(573\) 7.21110i 0.301248i
\(574\) 0 0
\(575\) 56.0000i 2.33536i
\(576\) 0 0
\(577\) 9.00000 0.374675 0.187337 0.982296i \(-0.440014\pi\)
0.187337 + 0.982296i \(0.440014\pi\)
\(578\) 0 0
\(579\) 7.21110 0.299683
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12.0000i 0.496989i
\(584\) 0 0
\(585\) 3.60555i 0.149071i
\(586\) 0 0
\(587\) −43.2666 −1.78580 −0.892902 0.450251i \(-0.851335\pi\)
−0.892902 + 0.450251i \(0.851335\pi\)
\(588\) 0 0
\(589\) 7.21110i 0.297128i
\(590\) 0 0
\(591\) 10.8167 0.444938
\(592\) 0 0
\(593\) 4.00000 0.164260 0.0821302 0.996622i \(-0.473828\pi\)
0.0821302 + 0.996622i \(0.473828\pi\)
\(594\) 0 0
\(595\) 28.8444 + 52.0000i 1.18251 + 2.13179i
\(596\) 0 0
\(597\) −26.0000 −1.06411
\(598\) 0 0
\(599\) −21.6333 −0.883913 −0.441956 0.897036i \(-0.645715\pi\)
−0.441956 + 0.897036i \(0.645715\pi\)
\(600\) 0 0
\(601\) 7.21110i 0.294147i −0.989126 0.147074i \(-0.953015\pi\)
0.989126 0.147074i \(-0.0469854\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.21110i 0.293173i
\(606\) 0 0
\(607\) 38.0000i 1.54237i −0.636610 0.771186i \(-0.719664\pi\)
0.636610 0.771186i \(-0.280336\pi\)
\(608\) 0 0
\(609\) 28.8444i 1.16883i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −11.0000 −0.444286 −0.222143 0.975014i \(-0.571305\pi\)
−0.222143 + 0.975014i \(0.571305\pi\)
\(614\) 0 0
\(615\) 39.0000i 1.57263i
\(616\) 0 0
\(617\) 21.6333i 0.870924i 0.900207 + 0.435462i \(0.143415\pi\)
−0.900207 + 0.435462i \(0.856585\pi\)
\(618\) 0 0
\(619\) 36.0000i 1.44696i 0.690344 + 0.723481i \(0.257459\pi\)
−0.690344 + 0.723481i \(0.742541\pi\)
\(620\) 0 0
\(621\) 7.00000 0.280900
\(622\) 0 0
\(623\) 48.0000i 1.92308i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 10.8167 0.431976
\(628\) 0 0
\(629\) −26.0000 + 14.4222i −1.03669 + 0.575051i
\(630\) 0 0
\(631\) −46.8722 −1.86595 −0.932976 0.359939i \(-0.882797\pi\)
−0.932976 + 0.359939i \(0.882797\pi\)
\(632\) 0 0
\(633\) 10.0000 0.397464
\(634\) 0 0
\(635\) 65.0000i 2.57945i
\(636\) 0 0
\(637\) −9.00000 −0.356593
\(638\) 0 0
\(639\) 8.00000i 0.316475i
\(640\) 0 0
\(641\) 10.8167i 0.427232i 0.976918 + 0.213616i \(0.0685242\pi\)
−0.976918 + 0.213616i \(0.931476\pi\)
\(642\) 0 0
\(643\) 6.00000i 0.236617i −0.992977 0.118308i \(-0.962253\pi\)
0.992977 0.118308i \(-0.0377472\pi\)
\(644\) 0 0
\(645\) −13.0000 −0.511875
\(646\) 0 0
\(647\) 36.0555 1.41749 0.708744 0.705466i \(-0.249262\pi\)
0.708744 + 0.705466i \(0.249262\pi\)
\(648\) 0 0
\(649\) 43.2666i 1.69836i
\(650\) 0 0
\(651\) 8.00000i 0.313545i
\(652\) 0 0
\(653\) 10.8167i 0.423288i 0.977347 + 0.211644i \(0.0678818\pi\)
−0.977347 + 0.211644i \(0.932118\pi\)
\(654\) 0 0
\(655\) −54.0833 −2.11321
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.21110 0.280905 0.140452 0.990087i \(-0.455144\pi\)
0.140452 + 0.990087i \(0.455144\pi\)
\(660\) 0 0
\(661\) −27.0000 −1.05018 −0.525089 0.851047i \(-0.675968\pi\)
−0.525089 + 0.851047i \(0.675968\pi\)
\(662\) 0 0
\(663\) 3.60555 2.00000i 0.140028 0.0776736i
\(664\) 0 0
\(665\) 52.0000 2.01647
\(666\) 0 0
\(667\) −50.4777 −1.95451
\(668\) 0 0
\(669\) 25.2389i 0.975791i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 14.4222i 0.555935i −0.960590 0.277968i \(-0.910339\pi\)
0.960590 0.277968i \(-0.0896608\pi\)
\(674\) 0 0
\(675\) 8.00000i 0.307920i
\(676\) 0 0
\(677\) 25.2389i 0.970008i 0.874512 + 0.485004i \(0.161182\pi\)
−0.874512 + 0.485004i \(0.838818\pi\)
\(678\) 0 0
\(679\) −28.8444 −1.10695
\(680\) 0 0
\(681\) −27.0000 −1.03464
\(682\) 0 0
\(683\) 21.0000i 0.803543i −0.915740 0.401771i \(-0.868395\pi\)
0.915740 0.401771i \(-0.131605\pi\)
\(684\) 0 0
\(685\) 79.3221i 3.03074i
\(686\) 0 0
\(687\) 10.0000i 0.381524i
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 16.0000i 0.608669i −0.952565 0.304334i \(-0.901566\pi\)
0.952565 0.304334i \(-0.0984340\pi\)
\(692\) 0 0
\(693\) −12.0000 −0.455842
\(694\) 0 0
\(695\) −50.4777 −1.91473
\(696\) 0 0
\(697\) −39.0000 + 21.6333i −1.47723 + 0.819420i
\(698\) 0 0
\(699\) 18.0278 0.681872
\(700\) 0 0
\(701\) 16.0000 0.604312 0.302156 0.953259i \(-0.402294\pi\)
0.302156 + 0.953259i \(0.402294\pi\)
\(702\) 0 0
\(703\) 26.0000i 0.980609i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 14.4222i 0.541637i 0.962630 + 0.270819i \(0.0872944\pi\)
−0.962630 + 0.270819i \(0.912706\pi\)
\(710\) 0 0
\(711\) 4.00000i 0.150012i
\(712\) 0 0
\(713\) 14.0000 0.524304
\(714\) 0 0
\(715\) −10.8167 −0.404520
\(716\) 0 0
\(717\) 7.21110i 0.269304i
\(718\) 0 0
\(719\) 17.0000i 0.633993i 0.948427 + 0.316997i \(0.102674\pi\)
−0.948427 + 0.316997i \(0.897326\pi\)
\(720\) 0 0
\(721\) 43.2666i 1.61133i
\(722\) 0 0
\(723\) 14.4222 0.536368
\(724\) 0 0
\(725\) 57.6888i 2.14251i
\(726\) 0 0
\(727\) −43.2666 −1.60467 −0.802335 0.596874i \(-0.796409\pi\)
−0.802335 + 0.596874i \(0.796409\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −7.21110 13.0000i −0.266712 0.480822i
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 0 0
\(735\) −32.4500 −1.19693
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 18.0278 0.663162 0.331581 0.943427i \(-0.392418\pi\)
0.331581 + 0.943427i \(0.392418\pi\)
\(740\) 0 0
\(741\) 3.60555i 0.132453i
\(742\) 0 0
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) 0 0
\(745\) 64.8999i 2.37775i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 52.0000 1.90004
\(750\) 0 0
\(751\) 2.00000i 0.0729810i 0.999334 + 0.0364905i \(0.0116179\pi\)
−0.999334 + 0.0364905i \(0.988382\pi\)
\(752\) 0 0
\(753\) 21.6333i 0.788362i
\(754\) 0 0
\(755\) 52.0000i 1.89247i
\(756\) 0 0
\(757\) 9.00000 0.327111 0.163555 0.986534i \(-0.447704\pi\)
0.163555 + 0.986534i \(0.447704\pi\)
\(758\) 0 0
\(759\) 21.0000i 0.762252i
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) 57.6888 2.08848
\(764\) 0 0
\(765\) 13.0000 7.21110i 0.470016 0.260718i
\(766\) 0 0
\(767\) 14.4222 0.520756
\(768\) 0 0
\(769\) −11.0000 −0.396670 −0.198335 0.980134i \(-0.563553\pi\)
−0.198335 + 0.980134i \(0.563553\pi\)
\(770\) 0 0
\(771\) 12.0000i 0.432169i
\(772\) 0 0
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 16.0000i 0.574737i
\(776\) 0 0
\(777\) 28.8444i 1.03479i
\(778\) 0 0
\(779\) 39.0000i 1.39732i
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) 0 0
\(783\) 7.21110 0.257704
\(784\) 0 0
\(785\) 3.60555i 0.128688i
\(786\) 0 0
\(787\) 22.0000i 0.784215i −0.919919 0.392108i \(-0.871746\pi\)
0.919919 0.392108i \(-0.128254\pi\)
\(788\) 0 0
\(789\) 21.6333i 0.770166i
\(790\) 0 0
\(791\) −43.2666 −1.53838
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 14.4222 0.511503
\(796\) 0 0
\(797\) 24.0000 0.850124 0.425062 0.905164i \(-0.360252\pi\)
0.425062 + 0.905164i \(0.360252\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 100.955i 3.55821i
\(806\) 0 0
\(807\) 10.8167 0.380764
\(808\) 0 0
\(809\) 32.4500i 1.14088i −0.821339 0.570440i \(-0.806773\pi\)
0.821339 0.570440i \(-0.193227\pi\)
\(810\) 0 0
\(811\) 4.00000i 0.140459i 0.997531 + 0.0702295i \(0.0223732\pi\)
−0.997531 + 0.0702295i \(0.977627\pi\)
\(812\) 0 0
\(813\) 3.60555i 0.126452i
\(814\) 0 0
\(815\) −50.4777 −1.76816
\(816\) 0 0
\(817\) −13.0000 −0.454812
\(818\) 0 0
\(819\) 4.00000i 0.139771i
\(820\) 0 0
\(821\) 10.8167i 0.377504i −0.982025 0.188752i \(-0.939556\pi\)
0.982025 0.188752i \(-0.0604442\pi\)
\(822\) 0 0
\(823\) 34.0000i 1.18517i −0.805510 0.592583i \(-0.798108\pi\)
0.805510 0.592583i \(-0.201892\pi\)
\(824\) 0 0
\(825\) −24.0000 −0.835573
\(826\) 0 0
\(827\) 7.00000i 0.243414i −0.992566 0.121707i \(-0.961163\pi\)
0.992566 0.121707i \(-0.0388368\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) 14.4222 0.500301
\(832\) 0 0
\(833\) −18.0000 32.4500i −0.623663 1.12432i
\(834\) 0 0
\(835\) −39.6611 −1.37253
\(836\) 0 0
\(837\) −2.00000 −0.0691301
\(838\) 0 0
\(839\) 21.0000i 0.725001i −0.931984 0.362500i \(-0.881923\pi\)
0.931984 0.362500i \(-0.118077\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) 0 0
\(843\) 20.0000i 0.688837i
\(844\) 0 0
\(845\) 43.2666i 1.48842i
\(846\) 0 0
\(847\) 8.00000i 0.274883i
\(848\) 0 0
\(849\) −32.0000 −1.09824
\(850\) 0 0
\(851\) 50.4777 1.73035
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 13.0000i 0.444591i
\(856\) 0 0
\(857\) 21.6333i 0.738980i 0.929235 + 0.369490i \(0.120468\pi\)
−0.929235 + 0.369490i \(0.879532\pi\)
\(858\) 0 0
\(859\) 14.4222 0.492079 0.246040 0.969260i \(-0.420871\pi\)
0.246040 + 0.969260i \(0.420871\pi\)
\(860\) 0 0
\(861\) 43.2666i 1.47452i
\(862\) 0 0
\(863\) 28.8444 0.981875 0.490938 0.871195i \(-0.336654\pi\)
0.490938 + 0.871195i \(0.336654\pi\)
\(864\) 0 0
\(865\) 91.0000 3.09409
\(866\) 0 0
\(867\) 14.4222 + 9.00000i 0.489804 + 0.305656i
\(868\) 0 0
\(869\) 12.0000 0.407072
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 7.21110i 0.244059i
\(874\) 0 0
\(875\) −43.2666 −1.46268
\(876\) 0 0
\(877\) 50.4777i 1.70451i −0.523125 0.852256i \(-0.675234\pi\)
0.523125 0.852256i \(-0.324766\pi\)
\(878\) 0 0
\(879\) 22.0000i 0.742042i
\(880\) 0 0
\(881\) 21.6333i 0.728845i 0.931234 + 0.364422i \(0.118734\pi\)
−0.931234 + 0.364422i \(0.881266\pi\)
\(882\) 0 0
\(883\) −18.0278 −0.606682 −0.303341 0.952882i \(-0.598102\pi\)
−0.303341 + 0.952882i \(0.598102\pi\)
\(884\) 0 0
\(885\) 52.0000 1.74796
\(886\) 0 0
\(887\) 31.0000i 1.04088i −0.853899 0.520439i \(-0.825768\pi\)
0.853899 0.520439i \(-0.174232\pi\)
\(888\) 0 0
\(889\) 72.1110i 2.41853i
\(890\) 0 0
\(891\) 3.00000i 0.100504i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 26.0000i 0.869084i
\(896\) 0 0
\(897\) −7.00000 −0.233723
\(898\) 0 0
\(899\) 14.4222 0.481007
\(900\) 0 0
\(901\) 8.00000 + 14.4222i 0.266519 + 0.480473i
\(902\) 0 0
\(903\) 14.4222 0.479941
\(904\) 0 0
\(905\) −26.0000 −0.864269
\(906\) 0 0
\(907\) 58.0000i 1.92586i −0.269754 0.962929i \(-0.586942\pi\)
0.269754 0.962929i \(-0.413058\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.00000i 0.0331315i 0.999863 + 0.0165657i \(0.00527328\pi\)
−0.999863 + 0.0165657i \(0.994727\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 60.0000 1.98137
\(918\) 0 0
\(919\) 3.60555 0.118936 0.0594681 0.998230i \(-0.481060\pi\)
0.0594681 + 0.998230i \(0.481060\pi\)
\(920\) 0 0
\(921\) 28.8444i 0.950456i
\(922\) 0 0
\(923\) 8.00000i 0.263323i
\(924\) 0 0
\(925\) 57.6888i 1.89680i
\(926\) 0 0
\(927\) −10.8167 −0.355266
\(928\) 0 0
\(929\) 54.0833i 1.77441i −0.461371 0.887207i \(-0.652642\pi\)
0.461371 0.887207i \(-0.347358\pi\)
\(930\) 0 0
\(931\) −32.4500 −1.06350
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −21.6333 39.0000i −0.707485 1.27544i
\(936\) 0 0
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) 0 0
\(939\) −7.21110 −0.235325
\(940\) 0 0
\(941\) 36.0555i 1.17538i 0.809088 + 0.587688i \(0.199962\pi\)
−0.809088 + 0.587688i \(0.800038\pi\)
\(942\) 0 0
\(943\) 75.7166 2.46567
\(944\) 0 0
\(945\) 14.4222i 0.469154i
\(946\) 0 0
\(947\) 12.0000i 0.389948i 0.980808 + 0.194974i \(0.0624622\pi\)
−0.980808 + 0.194974i \(0.937538\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −7.21110 −0.233836
\(952\) 0 0
\(953\) 60.0000 1.94359 0.971795 0.235826i \(-0.0757795\pi\)
0.971795 + 0.235826i \(0.0757795\pi\)
\(954\) 0 0
\(955\) 26.0000i 0.841340i
\(956\) 0 0
\(957\) 21.6333i 0.699306i
\(958\) 0 0
\(959\) 88.0000i 2.84167i
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) 13.0000i 0.418919i
\(964\) 0 0
\(965\) −26.0000 −0.836970
\(966\) 0 0
\(967\) −25.2389 −0.811627 −0.405813 0.913956i \(-0.633012\pi\)
−0.405813 + 0.913956i \(0.633012\pi\)
\(968\) 0 0
\(969\) 13.0000 7.21110i 0.417620 0.231654i
\(970\) 0 0
\(971\) −7.21110 −0.231415 −0.115708 0.993283i \(-0.536914\pi\)
−0.115708 + 0.993283i \(0.536914\pi\)
\(972\) 0 0
\(973\) 56.0000 1.79528
\(974\) 0 0
\(975\) 8.00000i 0.256205i
\(976\) 0 0
\(977\) 24.0000 0.767828 0.383914 0.923369i \(-0.374576\pi\)
0.383914 + 0.923369i \(0.374576\pi\)
\(978\) 0 0
\(979\) 36.0000i 1.15056i
\(980\) 0 0
\(981\) 14.4222i 0.460466i
\(982\) 0 0
\(983\) 49.0000i 1.56286i 0.623995 + 0.781429i \(0.285509\pi\)
−0.623995 + 0.781429i \(0.714491\pi\)
\(984\) 0 0
\(985\) −39.0000 −1.24264
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 25.2389i 0.802549i
\(990\) 0 0
\(991\) 42.0000i 1.33417i 0.744980 + 0.667087i \(0.232459\pi\)
−0.744980 + 0.667087i \(0.767541\pi\)
\(992\) 0 0
\(993\) 25.2389i 0.800931i
\(994\) 0 0
\(995\) 93.7443 2.97190
\(996\) 0 0
\(997\) 43.2666i 1.37027i −0.728417 0.685134i \(-0.759744\pi\)
0.728417 0.685134i \(-0.240256\pi\)
\(998\) 0 0
\(999\) −7.21110 −0.228149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3264.2.c.m.577.2 4
4.3 odd 2 inner 3264.2.c.m.577.4 4
8.3 odd 2 1632.2.c.c.577.1 4
8.5 even 2 1632.2.c.c.577.3 yes 4
17.16 even 2 inner 3264.2.c.m.577.3 4
24.5 odd 2 4896.2.c.g.577.3 4
24.11 even 2 4896.2.c.g.577.4 4
68.67 odd 2 inner 3264.2.c.m.577.1 4
136.67 odd 2 1632.2.c.c.577.4 yes 4
136.101 even 2 1632.2.c.c.577.2 yes 4
408.101 odd 2 4896.2.c.g.577.2 4
408.203 even 2 4896.2.c.g.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1632.2.c.c.577.1 4 8.3 odd 2
1632.2.c.c.577.2 yes 4 136.101 even 2
1632.2.c.c.577.3 yes 4 8.5 even 2
1632.2.c.c.577.4 yes 4 136.67 odd 2
3264.2.c.m.577.1 4 68.67 odd 2 inner
3264.2.c.m.577.2 4 1.1 even 1 trivial
3264.2.c.m.577.3 4 17.16 even 2 inner
3264.2.c.m.577.4 4 4.3 odd 2 inner
4896.2.c.g.577.1 4 408.203 even 2
4896.2.c.g.577.2 4 408.101 odd 2
4896.2.c.g.577.3 4 24.5 odd 2
4896.2.c.g.577.4 4 24.11 even 2