Properties

Label 336.4.a.c.1.1
Level $336$
Weight $4$
Character 336.1
Self dual yes
Analytic conductor $19.825$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,4,Mod(1,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.8246417619\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 336.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -2.00000 q^{5} +7.00000 q^{7} +9.00000 q^{9} -52.0000 q^{11} +86.0000 q^{13} +6.00000 q^{15} -30.0000 q^{17} +4.00000 q^{19} -21.0000 q^{21} -120.000 q^{23} -121.000 q^{25} -27.0000 q^{27} +246.000 q^{29} -80.0000 q^{31} +156.000 q^{33} -14.0000 q^{35} -290.000 q^{37} -258.000 q^{39} -374.000 q^{41} -164.000 q^{43} -18.0000 q^{45} -464.000 q^{47} +49.0000 q^{49} +90.0000 q^{51} -162.000 q^{53} +104.000 q^{55} -12.0000 q^{57} -180.000 q^{59} -666.000 q^{61} +63.0000 q^{63} -172.000 q^{65} +628.000 q^{67} +360.000 q^{69} -296.000 q^{71} -518.000 q^{73} +363.000 q^{75} -364.000 q^{77} +1184.00 q^{79} +81.0000 q^{81} -220.000 q^{83} +60.0000 q^{85} -738.000 q^{87} -774.000 q^{89} +602.000 q^{91} +240.000 q^{93} -8.00000 q^{95} -1086.00 q^{97} -468.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −2.00000 −0.178885 −0.0894427 0.995992i \(-0.528509\pi\)
−0.0894427 + 0.995992i \(0.528509\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −52.0000 −1.42533 −0.712663 0.701506i \(-0.752511\pi\)
−0.712663 + 0.701506i \(0.752511\pi\)
\(12\) 0 0
\(13\) 86.0000 1.83478 0.917389 0.397992i \(-0.130293\pi\)
0.917389 + 0.397992i \(0.130293\pi\)
\(14\) 0 0
\(15\) 6.00000 0.103280
\(16\) 0 0
\(17\) −30.0000 −0.428004 −0.214002 0.976833i \(-0.568650\pi\)
−0.214002 + 0.976833i \(0.568650\pi\)
\(18\) 0 0
\(19\) 4.00000 0.0482980 0.0241490 0.999708i \(-0.492312\pi\)
0.0241490 + 0.999708i \(0.492312\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) −120.000 −1.08790 −0.543951 0.839117i \(-0.683072\pi\)
−0.543951 + 0.839117i \(0.683072\pi\)
\(24\) 0 0
\(25\) −121.000 −0.968000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 246.000 1.57521 0.787604 0.616181i \(-0.211321\pi\)
0.787604 + 0.616181i \(0.211321\pi\)
\(30\) 0 0
\(31\) −80.0000 −0.463498 −0.231749 0.972776i \(-0.574445\pi\)
−0.231749 + 0.972776i \(0.574445\pi\)
\(32\) 0 0
\(33\) 156.000 0.822913
\(34\) 0 0
\(35\) −14.0000 −0.0676123
\(36\) 0 0
\(37\) −290.000 −1.28853 −0.644266 0.764801i \(-0.722837\pi\)
−0.644266 + 0.764801i \(0.722837\pi\)
\(38\) 0 0
\(39\) −258.000 −1.05931
\(40\) 0 0
\(41\) −374.000 −1.42461 −0.712305 0.701870i \(-0.752349\pi\)
−0.712305 + 0.701870i \(0.752349\pi\)
\(42\) 0 0
\(43\) −164.000 −0.581622 −0.290811 0.956780i \(-0.593925\pi\)
−0.290811 + 0.956780i \(0.593925\pi\)
\(44\) 0 0
\(45\) −18.0000 −0.0596285
\(46\) 0 0
\(47\) −464.000 −1.44003 −0.720014 0.693959i \(-0.755865\pi\)
−0.720014 + 0.693959i \(0.755865\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 90.0000 0.247108
\(52\) 0 0
\(53\) −162.000 −0.419857 −0.209928 0.977717i \(-0.567323\pi\)
−0.209928 + 0.977717i \(0.567323\pi\)
\(54\) 0 0
\(55\) 104.000 0.254970
\(56\) 0 0
\(57\) −12.0000 −0.0278849
\(58\) 0 0
\(59\) −180.000 −0.397187 −0.198593 0.980082i \(-0.563637\pi\)
−0.198593 + 0.980082i \(0.563637\pi\)
\(60\) 0 0
\(61\) −666.000 −1.39791 −0.698955 0.715165i \(-0.746351\pi\)
−0.698955 + 0.715165i \(0.746351\pi\)
\(62\) 0 0
\(63\) 63.0000 0.125988
\(64\) 0 0
\(65\) −172.000 −0.328215
\(66\) 0 0
\(67\) 628.000 1.14511 0.572555 0.819866i \(-0.305952\pi\)
0.572555 + 0.819866i \(0.305952\pi\)
\(68\) 0 0
\(69\) 360.000 0.628100
\(70\) 0 0
\(71\) −296.000 −0.494771 −0.247385 0.968917i \(-0.579571\pi\)
−0.247385 + 0.968917i \(0.579571\pi\)
\(72\) 0 0
\(73\) −518.000 −0.830511 −0.415256 0.909705i \(-0.636308\pi\)
−0.415256 + 0.909705i \(0.636308\pi\)
\(74\) 0 0
\(75\) 363.000 0.558875
\(76\) 0 0
\(77\) −364.000 −0.538723
\(78\) 0 0
\(79\) 1184.00 1.68621 0.843104 0.537751i \(-0.180726\pi\)
0.843104 + 0.537751i \(0.180726\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −220.000 −0.290941 −0.145471 0.989363i \(-0.546470\pi\)
−0.145471 + 0.989363i \(0.546470\pi\)
\(84\) 0 0
\(85\) 60.0000 0.0765637
\(86\) 0 0
\(87\) −738.000 −0.909447
\(88\) 0 0
\(89\) −774.000 −0.921841 −0.460920 0.887441i \(-0.652481\pi\)
−0.460920 + 0.887441i \(0.652481\pi\)
\(90\) 0 0
\(91\) 602.000 0.693481
\(92\) 0 0
\(93\) 240.000 0.267600
\(94\) 0 0
\(95\) −8.00000 −0.00863982
\(96\) 0 0
\(97\) −1086.00 −1.13677 −0.568385 0.822763i \(-0.692431\pi\)
−0.568385 + 0.822763i \(0.692431\pi\)
\(98\) 0 0
\(99\) −468.000 −0.475109
\(100\) 0 0
\(101\) −290.000 −0.285704 −0.142852 0.989744i \(-0.545627\pi\)
−0.142852 + 0.989744i \(0.545627\pi\)
\(102\) 0 0
\(103\) 88.0000 0.0841835 0.0420917 0.999114i \(-0.486598\pi\)
0.0420917 + 0.999114i \(0.486598\pi\)
\(104\) 0 0
\(105\) 42.0000 0.0390360
\(106\) 0 0
\(107\) −372.000 −0.336099 −0.168050 0.985779i \(-0.553747\pi\)
−0.168050 + 0.985779i \(0.553747\pi\)
\(108\) 0 0
\(109\) 1430.00 1.25660 0.628299 0.777972i \(-0.283752\pi\)
0.628299 + 0.777972i \(0.283752\pi\)
\(110\) 0 0
\(111\) 870.000 0.743935
\(112\) 0 0
\(113\) 1810.00 1.50682 0.753409 0.657552i \(-0.228408\pi\)
0.753409 + 0.657552i \(0.228408\pi\)
\(114\) 0 0
\(115\) 240.000 0.194610
\(116\) 0 0
\(117\) 774.000 0.611593
\(118\) 0 0
\(119\) −210.000 −0.161770
\(120\) 0 0
\(121\) 1373.00 1.03156
\(122\) 0 0
\(123\) 1122.00 0.822499
\(124\) 0 0
\(125\) 492.000 0.352047
\(126\) 0 0
\(127\) −1168.00 −0.816089 −0.408044 0.912962i \(-0.633789\pi\)
−0.408044 + 0.912962i \(0.633789\pi\)
\(128\) 0 0
\(129\) 492.000 0.335800
\(130\) 0 0
\(131\) 1268.00 0.845692 0.422846 0.906202i \(-0.361031\pi\)
0.422846 + 0.906202i \(0.361031\pi\)
\(132\) 0 0
\(133\) 28.0000 0.0182549
\(134\) 0 0
\(135\) 54.0000 0.0344265
\(136\) 0 0
\(137\) 474.000 0.295595 0.147798 0.989018i \(-0.452782\pi\)
0.147798 + 0.989018i \(0.452782\pi\)
\(138\) 0 0
\(139\) 2684.00 1.63780 0.818899 0.573938i \(-0.194585\pi\)
0.818899 + 0.573938i \(0.194585\pi\)
\(140\) 0 0
\(141\) 1392.00 0.831401
\(142\) 0 0
\(143\) −4472.00 −2.61516
\(144\) 0 0
\(145\) −492.000 −0.281782
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) −1314.00 −0.722464 −0.361232 0.932476i \(-0.617644\pi\)
−0.361232 + 0.932476i \(0.617644\pi\)
\(150\) 0 0
\(151\) −3000.00 −1.61680 −0.808399 0.588635i \(-0.799666\pi\)
−0.808399 + 0.588635i \(0.799666\pi\)
\(152\) 0 0
\(153\) −270.000 −0.142668
\(154\) 0 0
\(155\) 160.000 0.0829130
\(156\) 0 0
\(157\) 774.000 0.393452 0.196726 0.980459i \(-0.436969\pi\)
0.196726 + 0.980459i \(0.436969\pi\)
\(158\) 0 0
\(159\) 486.000 0.242404
\(160\) 0 0
\(161\) −840.000 −0.411188
\(162\) 0 0
\(163\) 2292.00 1.10137 0.550685 0.834713i \(-0.314367\pi\)
0.550685 + 0.834713i \(0.314367\pi\)
\(164\) 0 0
\(165\) −312.000 −0.147207
\(166\) 0 0
\(167\) 1672.00 0.774750 0.387375 0.921922i \(-0.373382\pi\)
0.387375 + 0.921922i \(0.373382\pi\)
\(168\) 0 0
\(169\) 5199.00 2.36641
\(170\) 0 0
\(171\) 36.0000 0.0160993
\(172\) 0 0
\(173\) −2730.00 −1.19976 −0.599879 0.800091i \(-0.704785\pi\)
−0.599879 + 0.800091i \(0.704785\pi\)
\(174\) 0 0
\(175\) −847.000 −0.365870
\(176\) 0 0
\(177\) 540.000 0.229316
\(178\) 0 0
\(179\) −2572.00 −1.07397 −0.536984 0.843592i \(-0.680436\pi\)
−0.536984 + 0.843592i \(0.680436\pi\)
\(180\) 0 0
\(181\) 3214.00 1.31986 0.659930 0.751327i \(-0.270586\pi\)
0.659930 + 0.751327i \(0.270586\pi\)
\(182\) 0 0
\(183\) 1998.00 0.807084
\(184\) 0 0
\(185\) 580.000 0.230500
\(186\) 0 0
\(187\) 1560.00 0.610045
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) 1520.00 0.575829 0.287915 0.957656i \(-0.407038\pi\)
0.287915 + 0.957656i \(0.407038\pi\)
\(192\) 0 0
\(193\) −62.0000 −0.0231236 −0.0115618 0.999933i \(-0.503680\pi\)
−0.0115618 + 0.999933i \(0.503680\pi\)
\(194\) 0 0
\(195\) 516.000 0.189495
\(196\) 0 0
\(197\) −1074.00 −0.388423 −0.194212 0.980960i \(-0.562215\pi\)
−0.194212 + 0.980960i \(0.562215\pi\)
\(198\) 0 0
\(199\) −552.000 −0.196634 −0.0983172 0.995155i \(-0.531346\pi\)
−0.0983172 + 0.995155i \(0.531346\pi\)
\(200\) 0 0
\(201\) −1884.00 −0.661130
\(202\) 0 0
\(203\) 1722.00 0.595373
\(204\) 0 0
\(205\) 748.000 0.254842
\(206\) 0 0
\(207\) −1080.00 −0.362634
\(208\) 0 0
\(209\) −208.000 −0.0688405
\(210\) 0 0
\(211\) −1692.00 −0.552048 −0.276024 0.961151i \(-0.589017\pi\)
−0.276024 + 0.961151i \(0.589017\pi\)
\(212\) 0 0
\(213\) 888.000 0.285656
\(214\) 0 0
\(215\) 328.000 0.104044
\(216\) 0 0
\(217\) −560.000 −0.175186
\(218\) 0 0
\(219\) 1554.00 0.479496
\(220\) 0 0
\(221\) −2580.00 −0.785292
\(222\) 0 0
\(223\) −528.000 −0.158554 −0.0792769 0.996853i \(-0.525261\pi\)
−0.0792769 + 0.996853i \(0.525261\pi\)
\(224\) 0 0
\(225\) −1089.00 −0.322667
\(226\) 0 0
\(227\) 1876.00 0.548522 0.274261 0.961655i \(-0.411567\pi\)
0.274261 + 0.961655i \(0.411567\pi\)
\(228\) 0 0
\(229\) −5474.00 −1.57962 −0.789808 0.613354i \(-0.789820\pi\)
−0.789808 + 0.613354i \(0.789820\pi\)
\(230\) 0 0
\(231\) 1092.00 0.311032
\(232\) 0 0
\(233\) 3418.00 0.961033 0.480516 0.876986i \(-0.340449\pi\)
0.480516 + 0.876986i \(0.340449\pi\)
\(234\) 0 0
\(235\) 928.000 0.257600
\(236\) 0 0
\(237\) −3552.00 −0.973532
\(238\) 0 0
\(239\) −7360.00 −1.99196 −0.995981 0.0895670i \(-0.971452\pi\)
−0.995981 + 0.0895670i \(0.971452\pi\)
\(240\) 0 0
\(241\) −2126.00 −0.568248 −0.284124 0.958788i \(-0.591703\pi\)
−0.284124 + 0.958788i \(0.591703\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −98.0000 −0.0255551
\(246\) 0 0
\(247\) 344.000 0.0886162
\(248\) 0 0
\(249\) 660.000 0.167975
\(250\) 0 0
\(251\) 7788.00 1.95846 0.979231 0.202745i \(-0.0649864\pi\)
0.979231 + 0.202745i \(0.0649864\pi\)
\(252\) 0 0
\(253\) 6240.00 1.55061
\(254\) 0 0
\(255\) −180.000 −0.0442041
\(256\) 0 0
\(257\) −3470.00 −0.842228 −0.421114 0.907008i \(-0.638361\pi\)
−0.421114 + 0.907008i \(0.638361\pi\)
\(258\) 0 0
\(259\) −2030.00 −0.487020
\(260\) 0 0
\(261\) 2214.00 0.525070
\(262\) 0 0
\(263\) 3096.00 0.725884 0.362942 0.931812i \(-0.381772\pi\)
0.362942 + 0.931812i \(0.381772\pi\)
\(264\) 0 0
\(265\) 324.000 0.0751063
\(266\) 0 0
\(267\) 2322.00 0.532225
\(268\) 0 0
\(269\) −3274.00 −0.742079 −0.371040 0.928617i \(-0.620999\pi\)
−0.371040 + 0.928617i \(0.620999\pi\)
\(270\) 0 0
\(271\) −960.000 −0.215188 −0.107594 0.994195i \(-0.534315\pi\)
−0.107594 + 0.994195i \(0.534315\pi\)
\(272\) 0 0
\(273\) −1806.00 −0.400381
\(274\) 0 0
\(275\) 6292.00 1.37972
\(276\) 0 0
\(277\) 910.000 0.197388 0.0986942 0.995118i \(-0.468533\pi\)
0.0986942 + 0.995118i \(0.468533\pi\)
\(278\) 0 0
\(279\) −720.000 −0.154499
\(280\) 0 0
\(281\) −6486.00 −1.37695 −0.688474 0.725261i \(-0.741719\pi\)
−0.688474 + 0.725261i \(0.741719\pi\)
\(282\) 0 0
\(283\) −3796.00 −0.797346 −0.398673 0.917093i \(-0.630529\pi\)
−0.398673 + 0.917093i \(0.630529\pi\)
\(284\) 0 0
\(285\) 24.0000 0.00498820
\(286\) 0 0
\(287\) −2618.00 −0.538452
\(288\) 0 0
\(289\) −4013.00 −0.816813
\(290\) 0 0
\(291\) 3258.00 0.656314
\(292\) 0 0
\(293\) −6882.00 −1.37219 −0.686093 0.727513i \(-0.740676\pi\)
−0.686093 + 0.727513i \(0.740676\pi\)
\(294\) 0 0
\(295\) 360.000 0.0710509
\(296\) 0 0
\(297\) 1404.00 0.274304
\(298\) 0 0
\(299\) −10320.0 −1.99606
\(300\) 0 0
\(301\) −1148.00 −0.219833
\(302\) 0 0
\(303\) 870.000 0.164951
\(304\) 0 0
\(305\) 1332.00 0.250066
\(306\) 0 0
\(307\) −7228.00 −1.34373 −0.671863 0.740676i \(-0.734506\pi\)
−0.671863 + 0.740676i \(0.734506\pi\)
\(308\) 0 0
\(309\) −264.000 −0.0486034
\(310\) 0 0
\(311\) −7912.00 −1.44260 −0.721300 0.692623i \(-0.756455\pi\)
−0.721300 + 0.692623i \(0.756455\pi\)
\(312\) 0 0
\(313\) 2218.00 0.400539 0.200270 0.979741i \(-0.435818\pi\)
0.200270 + 0.979741i \(0.435818\pi\)
\(314\) 0 0
\(315\) −126.000 −0.0225374
\(316\) 0 0
\(317\) 8118.00 1.43834 0.719168 0.694837i \(-0.244523\pi\)
0.719168 + 0.694837i \(0.244523\pi\)
\(318\) 0 0
\(319\) −12792.0 −2.24519
\(320\) 0 0
\(321\) 1116.00 0.194047
\(322\) 0 0
\(323\) −120.000 −0.0206718
\(324\) 0 0
\(325\) −10406.0 −1.77606
\(326\) 0 0
\(327\) −4290.00 −0.725497
\(328\) 0 0
\(329\) −3248.00 −0.544280
\(330\) 0 0
\(331\) 10780.0 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(332\) 0 0
\(333\) −2610.00 −0.429511
\(334\) 0 0
\(335\) −1256.00 −0.204844
\(336\) 0 0
\(337\) 3122.00 0.504647 0.252324 0.967643i \(-0.418805\pi\)
0.252324 + 0.967643i \(0.418805\pi\)
\(338\) 0 0
\(339\) −5430.00 −0.869962
\(340\) 0 0
\(341\) 4160.00 0.660635
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −720.000 −0.112358
\(346\) 0 0
\(347\) 828.000 0.128096 0.0640481 0.997947i \(-0.479599\pi\)
0.0640481 + 0.997947i \(0.479599\pi\)
\(348\) 0 0
\(349\) 4614.00 0.707684 0.353842 0.935305i \(-0.384875\pi\)
0.353842 + 0.935305i \(0.384875\pi\)
\(350\) 0 0
\(351\) −2322.00 −0.353103
\(352\) 0 0
\(353\) 9458.00 1.42606 0.713029 0.701134i \(-0.247323\pi\)
0.713029 + 0.701134i \(0.247323\pi\)
\(354\) 0 0
\(355\) 592.000 0.0885073
\(356\) 0 0
\(357\) 630.000 0.0933981
\(358\) 0 0
\(359\) −2952.00 −0.433985 −0.216992 0.976173i \(-0.569625\pi\)
−0.216992 + 0.976173i \(0.569625\pi\)
\(360\) 0 0
\(361\) −6843.00 −0.997667
\(362\) 0 0
\(363\) −4119.00 −0.595569
\(364\) 0 0
\(365\) 1036.00 0.148566
\(366\) 0 0
\(367\) 10592.0 1.50653 0.753267 0.657715i \(-0.228477\pi\)
0.753267 + 0.657715i \(0.228477\pi\)
\(368\) 0 0
\(369\) −3366.00 −0.474870
\(370\) 0 0
\(371\) −1134.00 −0.158691
\(372\) 0 0
\(373\) 6478.00 0.899244 0.449622 0.893219i \(-0.351559\pi\)
0.449622 + 0.893219i \(0.351559\pi\)
\(374\) 0 0
\(375\) −1476.00 −0.203254
\(376\) 0 0
\(377\) 21156.0 2.89016
\(378\) 0 0
\(379\) −5780.00 −0.783374 −0.391687 0.920099i \(-0.628108\pi\)
−0.391687 + 0.920099i \(0.628108\pi\)
\(380\) 0 0
\(381\) 3504.00 0.471169
\(382\) 0 0
\(383\) 6912.00 0.922158 0.461079 0.887359i \(-0.347462\pi\)
0.461079 + 0.887359i \(0.347462\pi\)
\(384\) 0 0
\(385\) 728.000 0.0963697
\(386\) 0 0
\(387\) −1476.00 −0.193874
\(388\) 0 0
\(389\) −9010.00 −1.17436 −0.587179 0.809457i \(-0.699761\pi\)
−0.587179 + 0.809457i \(0.699761\pi\)
\(390\) 0 0
\(391\) 3600.00 0.465626
\(392\) 0 0
\(393\) −3804.00 −0.488261
\(394\) 0 0
\(395\) −2368.00 −0.301638
\(396\) 0 0
\(397\) 10774.0 1.36204 0.681022 0.732263i \(-0.261536\pi\)
0.681022 + 0.732263i \(0.261536\pi\)
\(398\) 0 0
\(399\) −84.0000 −0.0105395
\(400\) 0 0
\(401\) −78.0000 −0.00971355 −0.00485678 0.999988i \(-0.501546\pi\)
−0.00485678 + 0.999988i \(0.501546\pi\)
\(402\) 0 0
\(403\) −6880.00 −0.850415
\(404\) 0 0
\(405\) −162.000 −0.0198762
\(406\) 0 0
\(407\) 15080.0 1.83658
\(408\) 0 0
\(409\) −15254.0 −1.84416 −0.922080 0.386998i \(-0.873512\pi\)
−0.922080 + 0.386998i \(0.873512\pi\)
\(410\) 0 0
\(411\) −1422.00 −0.170662
\(412\) 0 0
\(413\) −1260.00 −0.150122
\(414\) 0 0
\(415\) 440.000 0.0520452
\(416\) 0 0
\(417\) −8052.00 −0.945583
\(418\) 0 0
\(419\) 7316.00 0.853007 0.426504 0.904486i \(-0.359745\pi\)
0.426504 + 0.904486i \(0.359745\pi\)
\(420\) 0 0
\(421\) −11330.0 −1.31162 −0.655808 0.754928i \(-0.727672\pi\)
−0.655808 + 0.754928i \(0.727672\pi\)
\(422\) 0 0
\(423\) −4176.00 −0.480010
\(424\) 0 0
\(425\) 3630.00 0.414308
\(426\) 0 0
\(427\) −4662.00 −0.528361
\(428\) 0 0
\(429\) 13416.0 1.50986
\(430\) 0 0
\(431\) 6016.00 0.672345 0.336172 0.941801i \(-0.390868\pi\)
0.336172 + 0.941801i \(0.390868\pi\)
\(432\) 0 0
\(433\) −13550.0 −1.50386 −0.751930 0.659243i \(-0.770877\pi\)
−0.751930 + 0.659243i \(0.770877\pi\)
\(434\) 0 0
\(435\) 1476.00 0.162687
\(436\) 0 0
\(437\) −480.000 −0.0525435
\(438\) 0 0
\(439\) 2760.00 0.300063 0.150031 0.988681i \(-0.452063\pi\)
0.150031 + 0.988681i \(0.452063\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 3036.00 0.325609 0.162804 0.986658i \(-0.447946\pi\)
0.162804 + 0.986658i \(0.447946\pi\)
\(444\) 0 0
\(445\) 1548.00 0.164904
\(446\) 0 0
\(447\) 3942.00 0.417115
\(448\) 0 0
\(449\) 12962.0 1.36239 0.681197 0.732100i \(-0.261460\pi\)
0.681197 + 0.732100i \(0.261460\pi\)
\(450\) 0 0
\(451\) 19448.0 2.03053
\(452\) 0 0
\(453\) 9000.00 0.933459
\(454\) 0 0
\(455\) −1204.00 −0.124054
\(456\) 0 0
\(457\) 11866.0 1.21459 0.607295 0.794476i \(-0.292254\pi\)
0.607295 + 0.794476i \(0.292254\pi\)
\(458\) 0 0
\(459\) 810.000 0.0823694
\(460\) 0 0
\(461\) 10998.0 1.11112 0.555562 0.831475i \(-0.312503\pi\)
0.555562 + 0.831475i \(0.312503\pi\)
\(462\) 0 0
\(463\) 9088.00 0.912214 0.456107 0.889925i \(-0.349243\pi\)
0.456107 + 0.889925i \(0.349243\pi\)
\(464\) 0 0
\(465\) −480.000 −0.0478698
\(466\) 0 0
\(467\) −18236.0 −1.80698 −0.903492 0.428605i \(-0.859005\pi\)
−0.903492 + 0.428605i \(0.859005\pi\)
\(468\) 0 0
\(469\) 4396.00 0.432811
\(470\) 0 0
\(471\) −2322.00 −0.227159
\(472\) 0 0
\(473\) 8528.00 0.829002
\(474\) 0 0
\(475\) −484.000 −0.0467525
\(476\) 0 0
\(477\) −1458.00 −0.139952
\(478\) 0 0
\(479\) 11424.0 1.08972 0.544860 0.838527i \(-0.316583\pi\)
0.544860 + 0.838527i \(0.316583\pi\)
\(480\) 0 0
\(481\) −24940.0 −2.36417
\(482\) 0 0
\(483\) 2520.00 0.237400
\(484\) 0 0
\(485\) 2172.00 0.203351
\(486\) 0 0
\(487\) 8536.00 0.794257 0.397128 0.917763i \(-0.370007\pi\)
0.397128 + 0.917763i \(0.370007\pi\)
\(488\) 0 0
\(489\) −6876.00 −0.635876
\(490\) 0 0
\(491\) 18732.0 1.72172 0.860859 0.508844i \(-0.169927\pi\)
0.860859 + 0.508844i \(0.169927\pi\)
\(492\) 0 0
\(493\) −7380.00 −0.674196
\(494\) 0 0
\(495\) 936.000 0.0849900
\(496\) 0 0
\(497\) −2072.00 −0.187006
\(498\) 0 0
\(499\) 21700.0 1.94674 0.973372 0.229231i \(-0.0736210\pi\)
0.973372 + 0.229231i \(0.0736210\pi\)
\(500\) 0 0
\(501\) −5016.00 −0.447302
\(502\) 0 0
\(503\) 1048.00 0.0928986 0.0464493 0.998921i \(-0.485209\pi\)
0.0464493 + 0.998921i \(0.485209\pi\)
\(504\) 0 0
\(505\) 580.000 0.0511082
\(506\) 0 0
\(507\) −15597.0 −1.36625
\(508\) 0 0
\(509\) −8890.00 −0.774150 −0.387075 0.922048i \(-0.626515\pi\)
−0.387075 + 0.922048i \(0.626515\pi\)
\(510\) 0 0
\(511\) −3626.00 −0.313904
\(512\) 0 0
\(513\) −108.000 −0.00929496
\(514\) 0 0
\(515\) −176.000 −0.0150592
\(516\) 0 0
\(517\) 24128.0 2.05251
\(518\) 0 0
\(519\) 8190.00 0.692680
\(520\) 0 0
\(521\) 13962.0 1.17406 0.587031 0.809564i \(-0.300297\pi\)
0.587031 + 0.809564i \(0.300297\pi\)
\(522\) 0 0
\(523\) −16420.0 −1.37284 −0.686421 0.727204i \(-0.740819\pi\)
−0.686421 + 0.727204i \(0.740819\pi\)
\(524\) 0 0
\(525\) 2541.00 0.211235
\(526\) 0 0
\(527\) 2400.00 0.198379
\(528\) 0 0
\(529\) 2233.00 0.183529
\(530\) 0 0
\(531\) −1620.00 −0.132396
\(532\) 0 0
\(533\) −32164.0 −2.61384
\(534\) 0 0
\(535\) 744.000 0.0601232
\(536\) 0 0
\(537\) 7716.00 0.620056
\(538\) 0 0
\(539\) −2548.00 −0.203618
\(540\) 0 0
\(541\) −14554.0 −1.15661 −0.578304 0.815821i \(-0.696285\pi\)
−0.578304 + 0.815821i \(0.696285\pi\)
\(542\) 0 0
\(543\) −9642.00 −0.762022
\(544\) 0 0
\(545\) −2860.00 −0.224787
\(546\) 0 0
\(547\) −588.000 −0.0459617 −0.0229809 0.999736i \(-0.507316\pi\)
−0.0229809 + 0.999736i \(0.507316\pi\)
\(548\) 0 0
\(549\) −5994.00 −0.465970
\(550\) 0 0
\(551\) 984.000 0.0760795
\(552\) 0 0
\(553\) 8288.00 0.637327
\(554\) 0 0
\(555\) −1740.00 −0.133079
\(556\) 0 0
\(557\) 10726.0 0.815934 0.407967 0.912997i \(-0.366238\pi\)
0.407967 + 0.912997i \(0.366238\pi\)
\(558\) 0 0
\(559\) −14104.0 −1.06715
\(560\) 0 0
\(561\) −4680.00 −0.352210
\(562\) 0 0
\(563\) 740.000 0.0553948 0.0276974 0.999616i \(-0.491183\pi\)
0.0276974 + 0.999616i \(0.491183\pi\)
\(564\) 0 0
\(565\) −3620.00 −0.269548
\(566\) 0 0
\(567\) 567.000 0.0419961
\(568\) 0 0
\(569\) 17386.0 1.28095 0.640474 0.767980i \(-0.278738\pi\)
0.640474 + 0.767980i \(0.278738\pi\)
\(570\) 0 0
\(571\) −1108.00 −0.0812055 −0.0406028 0.999175i \(-0.512928\pi\)
−0.0406028 + 0.999175i \(0.512928\pi\)
\(572\) 0 0
\(573\) −4560.00 −0.332455
\(574\) 0 0
\(575\) 14520.0 1.05309
\(576\) 0 0
\(577\) −13694.0 −0.988022 −0.494011 0.869456i \(-0.664470\pi\)
−0.494011 + 0.869456i \(0.664470\pi\)
\(578\) 0 0
\(579\) 186.000 0.0133504
\(580\) 0 0
\(581\) −1540.00 −0.109966
\(582\) 0 0
\(583\) 8424.00 0.598433
\(584\) 0 0
\(585\) −1548.00 −0.109405
\(586\) 0 0
\(587\) 2844.00 0.199973 0.0999867 0.994989i \(-0.468120\pi\)
0.0999867 + 0.994989i \(0.468120\pi\)
\(588\) 0 0
\(589\) −320.000 −0.0223860
\(590\) 0 0
\(591\) 3222.00 0.224256
\(592\) 0 0
\(593\) 9410.00 0.651640 0.325820 0.945432i \(-0.394360\pi\)
0.325820 + 0.945432i \(0.394360\pi\)
\(594\) 0 0
\(595\) 420.000 0.0289384
\(596\) 0 0
\(597\) 1656.00 0.113527
\(598\) 0 0
\(599\) 14952.0 1.01990 0.509952 0.860203i \(-0.329663\pi\)
0.509952 + 0.860203i \(0.329663\pi\)
\(600\) 0 0
\(601\) 2570.00 0.174430 0.0872150 0.996190i \(-0.472203\pi\)
0.0872150 + 0.996190i \(0.472203\pi\)
\(602\) 0 0
\(603\) 5652.00 0.381704
\(604\) 0 0
\(605\) −2746.00 −0.184530
\(606\) 0 0
\(607\) 8176.00 0.546711 0.273356 0.961913i \(-0.411866\pi\)
0.273356 + 0.961913i \(0.411866\pi\)
\(608\) 0 0
\(609\) −5166.00 −0.343739
\(610\) 0 0
\(611\) −39904.0 −2.64213
\(612\) 0 0
\(613\) 8862.00 0.583903 0.291952 0.956433i \(-0.405695\pi\)
0.291952 + 0.956433i \(0.405695\pi\)
\(614\) 0 0
\(615\) −2244.00 −0.147133
\(616\) 0 0
\(617\) −1126.00 −0.0734701 −0.0367351 0.999325i \(-0.511696\pi\)
−0.0367351 + 0.999325i \(0.511696\pi\)
\(618\) 0 0
\(619\) −9892.00 −0.642315 −0.321158 0.947026i \(-0.604072\pi\)
−0.321158 + 0.947026i \(0.604072\pi\)
\(620\) 0 0
\(621\) 3240.00 0.209367
\(622\) 0 0
\(623\) −5418.00 −0.348423
\(624\) 0 0
\(625\) 14141.0 0.905024
\(626\) 0 0
\(627\) 624.000 0.0397451
\(628\) 0 0
\(629\) 8700.00 0.551497
\(630\) 0 0
\(631\) −11256.0 −0.710134 −0.355067 0.934841i \(-0.615542\pi\)
−0.355067 + 0.934841i \(0.615542\pi\)
\(632\) 0 0
\(633\) 5076.00 0.318725
\(634\) 0 0
\(635\) 2336.00 0.145986
\(636\) 0 0
\(637\) 4214.00 0.262111
\(638\) 0 0
\(639\) −2664.00 −0.164924
\(640\) 0 0
\(641\) −5694.00 −0.350857 −0.175429 0.984492i \(-0.556131\pi\)
−0.175429 + 0.984492i \(0.556131\pi\)
\(642\) 0 0
\(643\) −30028.0 −1.84166 −0.920831 0.389962i \(-0.872488\pi\)
−0.920831 + 0.389962i \(0.872488\pi\)
\(644\) 0 0
\(645\) −984.000 −0.0600697
\(646\) 0 0
\(647\) −18680.0 −1.13506 −0.567532 0.823351i \(-0.692102\pi\)
−0.567532 + 0.823351i \(0.692102\pi\)
\(648\) 0 0
\(649\) 9360.00 0.566120
\(650\) 0 0
\(651\) 1680.00 0.101143
\(652\) 0 0
\(653\) −3034.00 −0.181822 −0.0909109 0.995859i \(-0.528978\pi\)
−0.0909109 + 0.995859i \(0.528978\pi\)
\(654\) 0 0
\(655\) −2536.00 −0.151282
\(656\) 0 0
\(657\) −4662.00 −0.276837
\(658\) 0 0
\(659\) −26508.0 −1.56693 −0.783464 0.621438i \(-0.786549\pi\)
−0.783464 + 0.621438i \(0.786549\pi\)
\(660\) 0 0
\(661\) −24658.0 −1.45096 −0.725480 0.688243i \(-0.758382\pi\)
−0.725480 + 0.688243i \(0.758382\pi\)
\(662\) 0 0
\(663\) 7740.00 0.453389
\(664\) 0 0
\(665\) −56.0000 −0.00326554
\(666\) 0 0
\(667\) −29520.0 −1.71367
\(668\) 0 0
\(669\) 1584.00 0.0915411
\(670\) 0 0
\(671\) 34632.0 1.99248
\(672\) 0 0
\(673\) 23266.0 1.33260 0.666299 0.745685i \(-0.267877\pi\)
0.666299 + 0.745685i \(0.267877\pi\)
\(674\) 0 0
\(675\) 3267.00 0.186292
\(676\) 0 0
\(677\) 5694.00 0.323247 0.161623 0.986852i \(-0.448327\pi\)
0.161623 + 0.986852i \(0.448327\pi\)
\(678\) 0 0
\(679\) −7602.00 −0.429658
\(680\) 0 0
\(681\) −5628.00 −0.316689
\(682\) 0 0
\(683\) 14796.0 0.828921 0.414461 0.910067i \(-0.363970\pi\)
0.414461 + 0.910067i \(0.363970\pi\)
\(684\) 0 0
\(685\) −948.000 −0.0528777
\(686\) 0 0
\(687\) 16422.0 0.911992
\(688\) 0 0
\(689\) −13932.0 −0.770344
\(690\) 0 0
\(691\) −4540.00 −0.249942 −0.124971 0.992160i \(-0.539884\pi\)
−0.124971 + 0.992160i \(0.539884\pi\)
\(692\) 0 0
\(693\) −3276.00 −0.179574
\(694\) 0 0
\(695\) −5368.00 −0.292978
\(696\) 0 0
\(697\) 11220.0 0.609739
\(698\) 0 0
\(699\) −10254.0 −0.554853
\(700\) 0 0
\(701\) −18666.0 −1.00571 −0.502857 0.864370i \(-0.667718\pi\)
−0.502857 + 0.864370i \(0.667718\pi\)
\(702\) 0 0
\(703\) −1160.00 −0.0622336
\(704\) 0 0
\(705\) −2784.00 −0.148726
\(706\) 0 0
\(707\) −2030.00 −0.107986
\(708\) 0 0
\(709\) 10974.0 0.581294 0.290647 0.956830i \(-0.406130\pi\)
0.290647 + 0.956830i \(0.406130\pi\)
\(710\) 0 0
\(711\) 10656.0 0.562069
\(712\) 0 0
\(713\) 9600.00 0.504240
\(714\) 0 0
\(715\) 8944.00 0.467813
\(716\) 0 0
\(717\) 22080.0 1.15006
\(718\) 0 0
\(719\) −28240.0 −1.46478 −0.732388 0.680887i \(-0.761594\pi\)
−0.732388 + 0.680887i \(0.761594\pi\)
\(720\) 0 0
\(721\) 616.000 0.0318184
\(722\) 0 0
\(723\) 6378.00 0.328078
\(724\) 0 0
\(725\) −29766.0 −1.52480
\(726\) 0 0
\(727\) −6232.00 −0.317926 −0.158963 0.987285i \(-0.550815\pi\)
−0.158963 + 0.987285i \(0.550815\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 4920.00 0.248937
\(732\) 0 0
\(733\) 21638.0 1.09034 0.545169 0.838326i \(-0.316465\pi\)
0.545169 + 0.838326i \(0.316465\pi\)
\(734\) 0 0
\(735\) 294.000 0.0147542
\(736\) 0 0
\(737\) −32656.0 −1.63216
\(738\) 0 0
\(739\) −24364.0 −1.21278 −0.606390 0.795167i \(-0.707383\pi\)
−0.606390 + 0.795167i \(0.707383\pi\)
\(740\) 0 0
\(741\) −1032.00 −0.0511626
\(742\) 0 0
\(743\) −3112.00 −0.153658 −0.0768292 0.997044i \(-0.524480\pi\)
−0.0768292 + 0.997044i \(0.524480\pi\)
\(744\) 0 0
\(745\) 2628.00 0.129238
\(746\) 0 0
\(747\) −1980.00 −0.0969805
\(748\) 0 0
\(749\) −2604.00 −0.127033
\(750\) 0 0
\(751\) 20576.0 0.999772 0.499886 0.866091i \(-0.333375\pi\)
0.499886 + 0.866091i \(0.333375\pi\)
\(752\) 0 0
\(753\) −23364.0 −1.13072
\(754\) 0 0
\(755\) 6000.00 0.289222
\(756\) 0 0
\(757\) −4754.00 −0.228252 −0.114126 0.993466i \(-0.536407\pi\)
−0.114126 + 0.993466i \(0.536407\pi\)
\(758\) 0 0
\(759\) −18720.0 −0.895248
\(760\) 0 0
\(761\) −10950.0 −0.521599 −0.260800 0.965393i \(-0.583986\pi\)
−0.260800 + 0.965393i \(0.583986\pi\)
\(762\) 0 0
\(763\) 10010.0 0.474949
\(764\) 0 0
\(765\) 540.000 0.0255212
\(766\) 0 0
\(767\) −15480.0 −0.728749
\(768\) 0 0
\(769\) −28798.0 −1.35043 −0.675216 0.737620i \(-0.735950\pi\)
−0.675216 + 0.737620i \(0.735950\pi\)
\(770\) 0 0
\(771\) 10410.0 0.486261
\(772\) 0 0
\(773\) −12866.0 −0.598652 −0.299326 0.954151i \(-0.596762\pi\)
−0.299326 + 0.954151i \(0.596762\pi\)
\(774\) 0 0
\(775\) 9680.00 0.448666
\(776\) 0 0
\(777\) 6090.00 0.281181
\(778\) 0 0
\(779\) −1496.00 −0.0688059
\(780\) 0 0
\(781\) 15392.0 0.705210
\(782\) 0 0
\(783\) −6642.00 −0.303149
\(784\) 0 0
\(785\) −1548.00 −0.0703828
\(786\) 0 0
\(787\) 13156.0 0.595884 0.297942 0.954584i \(-0.403700\pi\)
0.297942 + 0.954584i \(0.403700\pi\)
\(788\) 0 0
\(789\) −9288.00 −0.419089
\(790\) 0 0
\(791\) 12670.0 0.569524
\(792\) 0 0
\(793\) −57276.0 −2.56486
\(794\) 0 0
\(795\) −972.000 −0.0433626
\(796\) 0 0
\(797\) 20454.0 0.909056 0.454528 0.890732i \(-0.349808\pi\)
0.454528 + 0.890732i \(0.349808\pi\)
\(798\) 0 0
\(799\) 13920.0 0.616338
\(800\) 0 0
\(801\) −6966.00 −0.307280
\(802\) 0 0
\(803\) 26936.0 1.18375
\(804\) 0 0
\(805\) 1680.00 0.0735556
\(806\) 0 0
\(807\) 9822.00 0.428440
\(808\) 0 0
\(809\) 15706.0 0.682563 0.341282 0.939961i \(-0.389139\pi\)
0.341282 + 0.939961i \(0.389139\pi\)
\(810\) 0 0
\(811\) −6532.00 −0.282823 −0.141412 0.989951i \(-0.545164\pi\)
−0.141412 + 0.989951i \(0.545164\pi\)
\(812\) 0 0
\(813\) 2880.00 0.124239
\(814\) 0 0
\(815\) −4584.00 −0.197019
\(816\) 0 0
\(817\) −656.000 −0.0280912
\(818\) 0 0
\(819\) 5418.00 0.231160
\(820\) 0 0
\(821\) −46754.0 −1.98749 −0.993743 0.111692i \(-0.964373\pi\)
−0.993743 + 0.111692i \(0.964373\pi\)
\(822\) 0 0
\(823\) −22008.0 −0.932139 −0.466070 0.884748i \(-0.654330\pi\)
−0.466070 + 0.884748i \(0.654330\pi\)
\(824\) 0 0
\(825\) −18876.0 −0.796579
\(826\) 0 0
\(827\) −45412.0 −1.90947 −0.954734 0.297461i \(-0.903860\pi\)
−0.954734 + 0.297461i \(0.903860\pi\)
\(828\) 0 0
\(829\) 13670.0 0.572713 0.286356 0.958123i \(-0.407556\pi\)
0.286356 + 0.958123i \(0.407556\pi\)
\(830\) 0 0
\(831\) −2730.00 −0.113962
\(832\) 0 0
\(833\) −1470.00 −0.0611434
\(834\) 0 0
\(835\) −3344.00 −0.138591
\(836\) 0 0
\(837\) 2160.00 0.0892001
\(838\) 0 0
\(839\) 26568.0 1.09324 0.546621 0.837380i \(-0.315914\pi\)
0.546621 + 0.837380i \(0.315914\pi\)
\(840\) 0 0
\(841\) 36127.0 1.48128
\(842\) 0 0
\(843\) 19458.0 0.794981
\(844\) 0 0
\(845\) −10398.0 −0.423316
\(846\) 0 0
\(847\) 9611.00 0.389891
\(848\) 0 0
\(849\) 11388.0 0.460348
\(850\) 0 0
\(851\) 34800.0 1.40180
\(852\) 0 0
\(853\) 1070.00 0.0429497 0.0214749 0.999769i \(-0.493164\pi\)
0.0214749 + 0.999769i \(0.493164\pi\)
\(854\) 0 0
\(855\) −72.0000 −0.00287994
\(856\) 0 0
\(857\) 42906.0 1.71020 0.855100 0.518463i \(-0.173496\pi\)
0.855100 + 0.518463i \(0.173496\pi\)
\(858\) 0 0
\(859\) −11252.0 −0.446930 −0.223465 0.974712i \(-0.571737\pi\)
−0.223465 + 0.974712i \(0.571737\pi\)
\(860\) 0 0
\(861\) 7854.00 0.310875
\(862\) 0 0
\(863\) −29264.0 −1.15430 −0.577148 0.816639i \(-0.695835\pi\)
−0.577148 + 0.816639i \(0.695835\pi\)
\(864\) 0 0
\(865\) 5460.00 0.214619
\(866\) 0 0
\(867\) 12039.0 0.471587
\(868\) 0 0
\(869\) −61568.0 −2.40340
\(870\) 0 0
\(871\) 54008.0 2.10102
\(872\) 0 0
\(873\) −9774.00 −0.378923
\(874\) 0 0
\(875\) 3444.00 0.133061
\(876\) 0 0
\(877\) 25782.0 0.992698 0.496349 0.868123i \(-0.334674\pi\)
0.496349 + 0.868123i \(0.334674\pi\)
\(878\) 0 0
\(879\) 20646.0 0.792232
\(880\) 0 0
\(881\) −9054.00 −0.346240 −0.173120 0.984901i \(-0.555385\pi\)
−0.173120 + 0.984901i \(0.555385\pi\)
\(882\) 0 0
\(883\) −8092.00 −0.308400 −0.154200 0.988040i \(-0.549280\pi\)
−0.154200 + 0.988040i \(0.549280\pi\)
\(884\) 0 0
\(885\) −1080.00 −0.0410212
\(886\) 0 0
\(887\) −11944.0 −0.452131 −0.226066 0.974112i \(-0.572586\pi\)
−0.226066 + 0.974112i \(0.572586\pi\)
\(888\) 0 0
\(889\) −8176.00 −0.308452
\(890\) 0 0
\(891\) −4212.00 −0.158370
\(892\) 0 0
\(893\) −1856.00 −0.0695506
\(894\) 0 0
\(895\) 5144.00 0.192117
\(896\) 0 0
\(897\) 30960.0 1.15242
\(898\) 0 0
\(899\) −19680.0 −0.730105
\(900\) 0 0
\(901\) 4860.00 0.179700
\(902\) 0 0
\(903\) 3444.00 0.126920
\(904\) 0 0
\(905\) −6428.00 −0.236104
\(906\) 0 0
\(907\) 31804.0 1.16432 0.582158 0.813076i \(-0.302209\pi\)
0.582158 + 0.813076i \(0.302209\pi\)
\(908\) 0 0
\(909\) −2610.00 −0.0952346
\(910\) 0 0
\(911\) −27840.0 −1.01249 −0.506246 0.862389i \(-0.668967\pi\)
−0.506246 + 0.862389i \(0.668967\pi\)
\(912\) 0 0
\(913\) 11440.0 0.414686
\(914\) 0 0
\(915\) −3996.00 −0.144376
\(916\) 0 0
\(917\) 8876.00 0.319642
\(918\) 0 0
\(919\) −12536.0 −0.449972 −0.224986 0.974362i \(-0.572234\pi\)
−0.224986 + 0.974362i \(0.572234\pi\)
\(920\) 0 0
\(921\) 21684.0 0.775800
\(922\) 0 0
\(923\) −25456.0 −0.907795
\(924\) 0 0
\(925\) 35090.0 1.24730
\(926\) 0 0
\(927\) 792.000 0.0280612
\(928\) 0 0
\(929\) −25870.0 −0.913635 −0.456818 0.889560i \(-0.651011\pi\)
−0.456818 + 0.889560i \(0.651011\pi\)
\(930\) 0 0
\(931\) 196.000 0.00689972
\(932\) 0 0
\(933\) 23736.0 0.832885
\(934\) 0 0
\(935\) −3120.00 −0.109128
\(936\) 0 0
\(937\) −6086.00 −0.212189 −0.106094 0.994356i \(-0.533835\pi\)
−0.106094 + 0.994356i \(0.533835\pi\)
\(938\) 0 0
\(939\) −6654.00 −0.231251
\(940\) 0 0
\(941\) 3894.00 0.134900 0.0674499 0.997723i \(-0.478514\pi\)
0.0674499 + 0.997723i \(0.478514\pi\)
\(942\) 0 0
\(943\) 44880.0 1.54983
\(944\) 0 0
\(945\) 378.000 0.0130120
\(946\) 0 0
\(947\) 20692.0 0.710031 0.355016 0.934860i \(-0.384476\pi\)
0.355016 + 0.934860i \(0.384476\pi\)
\(948\) 0 0
\(949\) −44548.0 −1.52380
\(950\) 0 0
\(951\) −24354.0 −0.830423
\(952\) 0 0
\(953\) 46986.0 1.59709 0.798545 0.601936i \(-0.205604\pi\)
0.798545 + 0.601936i \(0.205604\pi\)
\(954\) 0 0
\(955\) −3040.00 −0.103007
\(956\) 0 0
\(957\) 38376.0 1.29626
\(958\) 0 0
\(959\) 3318.00 0.111725
\(960\) 0 0
\(961\) −23391.0 −0.785170
\(962\) 0 0
\(963\) −3348.00 −0.112033
\(964\) 0 0
\(965\) 124.000 0.00413648
\(966\) 0 0
\(967\) −53960.0 −1.79445 −0.897227 0.441570i \(-0.854422\pi\)
−0.897227 + 0.441570i \(0.854422\pi\)
\(968\) 0 0
\(969\) 360.000 0.0119348
\(970\) 0 0
\(971\) 7068.00 0.233597 0.116799 0.993156i \(-0.462737\pi\)
0.116799 + 0.993156i \(0.462737\pi\)
\(972\) 0 0
\(973\) 18788.0 0.619029
\(974\) 0 0
\(975\) 31218.0 1.02541
\(976\) 0 0
\(977\) 54130.0 1.77254 0.886270 0.463168i \(-0.153288\pi\)
0.886270 + 0.463168i \(0.153288\pi\)
\(978\) 0 0
\(979\) 40248.0 1.31392
\(980\) 0 0
\(981\) 12870.0 0.418866
\(982\) 0 0
\(983\) 23064.0 0.748349 0.374175 0.927358i \(-0.377926\pi\)
0.374175 + 0.927358i \(0.377926\pi\)
\(984\) 0 0
\(985\) 2148.00 0.0694832
\(986\) 0 0
\(987\) 9744.00 0.314240
\(988\) 0 0
\(989\) 19680.0 0.632748
\(990\) 0 0
\(991\) 10768.0 0.345163 0.172582 0.984995i \(-0.444789\pi\)
0.172582 + 0.984995i \(0.444789\pi\)
\(992\) 0 0
\(993\) −32340.0 −1.03351
\(994\) 0 0
\(995\) 1104.00 0.0351750
\(996\) 0 0
\(997\) 12766.0 0.405520 0.202760 0.979228i \(-0.435009\pi\)
0.202760 + 0.979228i \(0.435009\pi\)
\(998\) 0 0
\(999\) 7830.00 0.247978
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.a.c.1.1 1
3.2 odd 2 1008.4.a.l.1.1 1
4.3 odd 2 168.4.a.f.1.1 1
7.6 odd 2 2352.4.a.bb.1.1 1
8.3 odd 2 1344.4.a.g.1.1 1
8.5 even 2 1344.4.a.v.1.1 1
12.11 even 2 504.4.a.c.1.1 1
28.27 even 2 1176.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.a.f.1.1 1 4.3 odd 2
336.4.a.c.1.1 1 1.1 even 1 trivial
504.4.a.c.1.1 1 12.11 even 2
1008.4.a.l.1.1 1 3.2 odd 2
1176.4.a.e.1.1 1 28.27 even 2
1344.4.a.g.1.1 1 8.3 odd 2
1344.4.a.v.1.1 1 8.5 even 2
2352.4.a.bb.1.1 1 7.6 odd 2