Properties

Label 336.5.bh.c
Level $336$
Weight $5$
Character orbit 336.bh
Analytic conductor $34.732$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,5,Mod(145,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.145");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 336.bh (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.7323075962\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \beta_{2} - 6) q^{3} + ( - 3 \beta_{3} - 8 \beta_{2} + 5) q^{5} + (7 \beta_{3} - 7 \beta_1 + 21) q^{7} + (27 \beta_{2} + 27) q^{9} + (14 \beta_{3} + 5 \beta_{2} - 7 \beta_1 + 7) q^{11} + ( - 5 \beta_{3} + 71 \beta_{2} + \cdots + 33) q^{13}+ \cdots + (189 \beta_{3} + 189 \beta_{2} + \cdots + 54) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18 q^{3} + 39 q^{5} + 70 q^{7} + 54 q^{9} - 3 q^{11} - 234 q^{15} + 510 q^{17} - 459 q^{19} - 315 q^{21} - 144 q^{23} - 227 q^{25} - 570 q^{29} - 2640 q^{31} + 27 q^{33} + 2478 q^{35} + 433 q^{37}+ \cdots - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu^{2} + 56\nu - 25 ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 4\nu^{2} - 4\nu - 25 ) / 20 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -7\nu^{3} + 2\nu^{2} + 28\nu + 35 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 14\beta_{2} + 14 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -4\beta_{3} + 4\beta _1 + 19 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
145.1
2.13746 0.656712i
−1.63746 + 1.52274i
2.13746 + 0.656712i
−1.63746 1.52274i
0 −4.50000 + 2.59808i 0 −7.23713 4.17836i 0 17.5000 + 45.7684i 0 13.5000 23.3827i 0
145.2 0 −4.50000 + 2.59808i 0 26.7371 + 15.4367i 0 17.5000 45.7684i 0 13.5000 23.3827i 0
241.1 0 −4.50000 2.59808i 0 −7.23713 + 4.17836i 0 17.5000 45.7684i 0 13.5000 + 23.3827i 0
241.2 0 −4.50000 2.59808i 0 26.7371 15.4367i 0 17.5000 + 45.7684i 0 13.5000 + 23.3827i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.5.bh.c 4
4.b odd 2 1 84.5.m.a 4
7.d odd 6 1 inner 336.5.bh.c 4
12.b even 2 1 252.5.z.b 4
28.d even 2 1 588.5.m.a 4
28.f even 6 1 84.5.m.a 4
28.f even 6 1 588.5.d.a 4
28.g odd 6 1 588.5.d.a 4
28.g odd 6 1 588.5.m.a 4
84.j odd 6 1 252.5.z.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.5.m.a 4 4.b odd 2 1
84.5.m.a 4 28.f even 6 1
252.5.z.b 4 12.b even 2 1
252.5.z.b 4 84.j odd 6 1
336.5.bh.c 4 1.a even 1 1 trivial
336.5.bh.c 4 7.d odd 6 1 inner
588.5.d.a 4 28.f even 6 1
588.5.d.a 4 28.g odd 6 1
588.5.m.a 4 28.d even 2 1
588.5.m.a 4 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 39T_{5}^{3} + 249T_{5}^{2} + 10062T_{5} + 66564 \) acting on \(S_{5}^{\mathrm{new}}(336, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 9 T + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 39 T^{3} + \cdots + 66564 \) Copy content Toggle raw display
$7$ \( (T^{2} - 35 T + 2401)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 3 T^{3} + \cdots + 39463524 \) Copy content Toggle raw display
$13$ \( T^{4} + 9699 T^{2} + 7354944 \) Copy content Toggle raw display
$17$ \( T^{4} - 510 T^{3} + \cdots + 405458496 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 26589215844 \) Copy content Toggle raw display
$23$ \( T^{4} + 144 T^{3} + \cdots + 764411904 \) Copy content Toggle raw display
$29$ \( (T^{2} + 285 T - 456912)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 208064611881 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 36199628644 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 63039157776 \) Copy content Toggle raw display
$43$ \( (T^{2} - 49 T - 332978)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 63047665345536 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 692043096250944 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 430696638445824 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 189610256169216 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 21850501500304 \) Copy content Toggle raw display
$71$ \( (T^{2} + 9594 T + 22690584)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 194131721469456 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 632116493273329 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 85048935951204 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 11\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 157118302979856 \) Copy content Toggle raw display
show more
show less