Properties

Label 336.8.a.d.1.1
Level $336$
Weight $8$
Character 336.1
Self dual yes
Analytic conductor $104.961$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,8,Mod(1,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 336.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(104.961368563\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 336.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000 q^{3} -122.000 q^{5} +343.000 q^{7} +729.000 q^{9} +1012.00 q^{11} +3126.00 q^{13} +3294.00 q^{15} -28294.0 q^{17} +22228.0 q^{19} -9261.00 q^{21} +108640. q^{23} -63241.0 q^{25} -19683.0 q^{27} -41354.0 q^{29} -46656.0 q^{31} -27324.0 q^{33} -41846.0 q^{35} -85714.0 q^{37} -84402.0 q^{39} -155694. q^{41} -926804. q^{43} -88938.0 q^{45} +529152. q^{47} +117649. q^{49} +763938. q^{51} -294066. q^{53} -123464. q^{55} -600156. q^{57} +667292. q^{59} +833430. q^{61} +250047. q^{63} -381372. q^{65} -1.15400e6 q^{67} -2.93328e6 q^{69} -3.84234e6 q^{71} +1.48369e6 q^{73} +1.70751e6 q^{75} +347116. q^{77} +3.76382e6 q^{79} +531441. q^{81} +5.39309e6 q^{83} +3.45187e6 q^{85} +1.11656e6 q^{87} +2.50269e6 q^{89} +1.07222e6 q^{91} +1.25971e6 q^{93} -2.71182e6 q^{95} -4.59755e6 q^{97} +737748. q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −27.0000 −0.577350
\(4\) 0 0
\(5\) −122.000 −0.436480 −0.218240 0.975895i \(-0.570032\pi\)
−0.218240 + 0.975895i \(0.570032\pi\)
\(6\) 0 0
\(7\) 343.000 0.377964
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 1012.00 0.229248 0.114624 0.993409i \(-0.463434\pi\)
0.114624 + 0.993409i \(0.463434\pi\)
\(12\) 0 0
\(13\) 3126.00 0.394627 0.197314 0.980340i \(-0.436778\pi\)
0.197314 + 0.980340i \(0.436778\pi\)
\(14\) 0 0
\(15\) 3294.00 0.252002
\(16\) 0 0
\(17\) −28294.0 −1.39676 −0.698382 0.715725i \(-0.746096\pi\)
−0.698382 + 0.715725i \(0.746096\pi\)
\(18\) 0 0
\(19\) 22228.0 0.743469 0.371734 0.928339i \(-0.378763\pi\)
0.371734 + 0.928339i \(0.378763\pi\)
\(20\) 0 0
\(21\) −9261.00 −0.218218
\(22\) 0 0
\(23\) 108640. 1.86184 0.930920 0.365223i \(-0.119007\pi\)
0.930920 + 0.365223i \(0.119007\pi\)
\(24\) 0 0
\(25\) −63241.0 −0.809485
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) −41354.0 −0.314865 −0.157433 0.987530i \(-0.550322\pi\)
−0.157433 + 0.987530i \(0.550322\pi\)
\(30\) 0 0
\(31\) −46656.0 −0.281282 −0.140641 0.990061i \(-0.544916\pi\)
−0.140641 + 0.990061i \(0.544916\pi\)
\(32\) 0 0
\(33\) −27324.0 −0.132357
\(34\) 0 0
\(35\) −41846.0 −0.164974
\(36\) 0 0
\(37\) −85714.0 −0.278193 −0.139096 0.990279i \(-0.544420\pi\)
−0.139096 + 0.990279i \(0.544420\pi\)
\(38\) 0 0
\(39\) −84402.0 −0.227838
\(40\) 0 0
\(41\) −155694. −0.352800 −0.176400 0.984319i \(-0.556445\pi\)
−0.176400 + 0.984319i \(0.556445\pi\)
\(42\) 0 0
\(43\) −926804. −1.77766 −0.888829 0.458239i \(-0.848481\pi\)
−0.888829 + 0.458239i \(0.848481\pi\)
\(44\) 0 0
\(45\) −88938.0 −0.145493
\(46\) 0 0
\(47\) 529152. 0.743426 0.371713 0.928348i \(-0.378770\pi\)
0.371713 + 0.928348i \(0.378770\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 763938. 0.806422
\(52\) 0 0
\(53\) −294066. −0.271318 −0.135659 0.990756i \(-0.543315\pi\)
−0.135659 + 0.990756i \(0.543315\pi\)
\(54\) 0 0
\(55\) −123464. −0.100062
\(56\) 0 0
\(57\) −600156. −0.429242
\(58\) 0 0
\(59\) 667292. 0.422994 0.211497 0.977379i \(-0.432166\pi\)
0.211497 + 0.977379i \(0.432166\pi\)
\(60\) 0 0
\(61\) 833430. 0.470126 0.235063 0.971980i \(-0.424470\pi\)
0.235063 + 0.971980i \(0.424470\pi\)
\(62\) 0 0
\(63\) 250047. 0.125988
\(64\) 0 0
\(65\) −381372. −0.172247
\(66\) 0 0
\(67\) −1.15400e6 −0.468751 −0.234376 0.972146i \(-0.575305\pi\)
−0.234376 + 0.972146i \(0.575305\pi\)
\(68\) 0 0
\(69\) −2.93328e6 −1.07493
\(70\) 0 0
\(71\) −3.84234e6 −1.27406 −0.637032 0.770838i \(-0.719838\pi\)
−0.637032 + 0.770838i \(0.719838\pi\)
\(72\) 0 0
\(73\) 1.48369e6 0.446389 0.223194 0.974774i \(-0.428352\pi\)
0.223194 + 0.974774i \(0.428352\pi\)
\(74\) 0 0
\(75\) 1.70751e6 0.467356
\(76\) 0 0
\(77\) 347116. 0.0866477
\(78\) 0 0
\(79\) 3.76382e6 0.858884 0.429442 0.903094i \(-0.358710\pi\)
0.429442 + 0.903094i \(0.358710\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) 5.39309e6 1.03530 0.517648 0.855594i \(-0.326808\pi\)
0.517648 + 0.855594i \(0.326808\pi\)
\(84\) 0 0
\(85\) 3.45187e6 0.609660
\(86\) 0 0
\(87\) 1.11656e6 0.181787
\(88\) 0 0
\(89\) 2.50269e6 0.376307 0.188153 0.982140i \(-0.439750\pi\)
0.188153 + 0.982140i \(0.439750\pi\)
\(90\) 0 0
\(91\) 1.07222e6 0.149155
\(92\) 0 0
\(93\) 1.25971e6 0.162398
\(94\) 0 0
\(95\) −2.71182e6 −0.324510
\(96\) 0 0
\(97\) −4.59755e6 −0.511476 −0.255738 0.966746i \(-0.582318\pi\)
−0.255738 + 0.966746i \(0.582318\pi\)
\(98\) 0 0
\(99\) 737748. 0.0764161
\(100\) 0 0
\(101\) 2.05285e7 1.98258 0.991292 0.131679i \(-0.0420368\pi\)
0.991292 + 0.131679i \(0.0420368\pi\)
\(102\) 0 0
\(103\) −1.42334e7 −1.28345 −0.641724 0.766936i \(-0.721781\pi\)
−0.641724 + 0.766936i \(0.721781\pi\)
\(104\) 0 0
\(105\) 1.12984e6 0.0952478
\(106\) 0 0
\(107\) 9.32024e6 0.735502 0.367751 0.929924i \(-0.380128\pi\)
0.367751 + 0.929924i \(0.380128\pi\)
\(108\) 0 0
\(109\) 4.30625e6 0.318498 0.159249 0.987238i \(-0.449093\pi\)
0.159249 + 0.987238i \(0.449093\pi\)
\(110\) 0 0
\(111\) 2.31428e6 0.160615
\(112\) 0 0
\(113\) 6.93570e6 0.452184 0.226092 0.974106i \(-0.427405\pi\)
0.226092 + 0.974106i \(0.427405\pi\)
\(114\) 0 0
\(115\) −1.32541e7 −0.812657
\(116\) 0 0
\(117\) 2.27885e6 0.131542
\(118\) 0 0
\(119\) −9.70484e6 −0.527927
\(120\) 0 0
\(121\) −1.84630e7 −0.947445
\(122\) 0 0
\(123\) 4.20374e6 0.203689
\(124\) 0 0
\(125\) 1.72467e7 0.789805
\(126\) 0 0
\(127\) 3.14502e7 1.36242 0.681209 0.732089i \(-0.261455\pi\)
0.681209 + 0.732089i \(0.261455\pi\)
\(128\) 0 0
\(129\) 2.50237e7 1.02633
\(130\) 0 0
\(131\) 4.48802e6 0.174424 0.0872118 0.996190i \(-0.472204\pi\)
0.0872118 + 0.996190i \(0.472204\pi\)
\(132\) 0 0
\(133\) 7.62420e6 0.281005
\(134\) 0 0
\(135\) 2.40133e6 0.0840007
\(136\) 0 0
\(137\) 1.56256e7 0.519178 0.259589 0.965719i \(-0.416413\pi\)
0.259589 + 0.965719i \(0.416413\pi\)
\(138\) 0 0
\(139\) 5.42435e7 1.71315 0.856577 0.516020i \(-0.172587\pi\)
0.856577 + 0.516020i \(0.172587\pi\)
\(140\) 0 0
\(141\) −1.42871e7 −0.429217
\(142\) 0 0
\(143\) 3.16351e6 0.0904677
\(144\) 0 0
\(145\) 5.04519e6 0.137432
\(146\) 0 0
\(147\) −3.17652e6 −0.0824786
\(148\) 0 0
\(149\) −3.24950e7 −0.804756 −0.402378 0.915474i \(-0.631816\pi\)
−0.402378 + 0.915474i \(0.631816\pi\)
\(150\) 0 0
\(151\) 7.63338e7 1.80425 0.902127 0.431470i \(-0.142005\pi\)
0.902127 + 0.431470i \(0.142005\pi\)
\(152\) 0 0
\(153\) −2.06263e7 −0.465588
\(154\) 0 0
\(155\) 5.69203e6 0.122774
\(156\) 0 0
\(157\) −2.92421e7 −0.603059 −0.301529 0.953457i \(-0.597497\pi\)
−0.301529 + 0.953457i \(0.597497\pi\)
\(158\) 0 0
\(159\) 7.93978e6 0.156646
\(160\) 0 0
\(161\) 3.72635e7 0.703709
\(162\) 0 0
\(163\) 9.50898e7 1.71980 0.859899 0.510465i \(-0.170527\pi\)
0.859899 + 0.510465i \(0.170527\pi\)
\(164\) 0 0
\(165\) 3.33353e6 0.0577711
\(166\) 0 0
\(167\) 2.29949e7 0.382054 0.191027 0.981585i \(-0.438818\pi\)
0.191027 + 0.981585i \(0.438818\pi\)
\(168\) 0 0
\(169\) −5.29766e7 −0.844269
\(170\) 0 0
\(171\) 1.62042e7 0.247823
\(172\) 0 0
\(173\) 1.19486e8 1.75451 0.877255 0.480025i \(-0.159372\pi\)
0.877255 + 0.480025i \(0.159372\pi\)
\(174\) 0 0
\(175\) −2.16917e7 −0.305956
\(176\) 0 0
\(177\) −1.80169e7 −0.244216
\(178\) 0 0
\(179\) −9.38255e7 −1.22274 −0.611372 0.791344i \(-0.709382\pi\)
−0.611372 + 0.791344i \(0.709382\pi\)
\(180\) 0 0
\(181\) 1.48834e8 1.86564 0.932819 0.360346i \(-0.117341\pi\)
0.932819 + 0.360346i \(0.117341\pi\)
\(182\) 0 0
\(183\) −2.25026e7 −0.271428
\(184\) 0 0
\(185\) 1.04571e7 0.121426
\(186\) 0 0
\(187\) −2.86335e7 −0.320206
\(188\) 0 0
\(189\) −6.75127e6 −0.0727393
\(190\) 0 0
\(191\) 1.01406e8 1.05304 0.526522 0.850161i \(-0.323496\pi\)
0.526522 + 0.850161i \(0.323496\pi\)
\(192\) 0 0
\(193\) 7.05896e7 0.706789 0.353395 0.935474i \(-0.385027\pi\)
0.353395 + 0.935474i \(0.385027\pi\)
\(194\) 0 0
\(195\) 1.02970e7 0.0994469
\(196\) 0 0
\(197\) 5.02307e7 0.468099 0.234049 0.972225i \(-0.424802\pi\)
0.234049 + 0.972225i \(0.424802\pi\)
\(198\) 0 0
\(199\) −2.08897e8 −1.87909 −0.939544 0.342429i \(-0.888750\pi\)
−0.939544 + 0.342429i \(0.888750\pi\)
\(200\) 0 0
\(201\) 3.11579e7 0.270634
\(202\) 0 0
\(203\) −1.41844e7 −0.119008
\(204\) 0 0
\(205\) 1.89947e7 0.153990
\(206\) 0 0
\(207\) 7.91986e7 0.620613
\(208\) 0 0
\(209\) 2.24947e7 0.170439
\(210\) 0 0
\(211\) 8.44931e7 0.619202 0.309601 0.950866i \(-0.399804\pi\)
0.309601 + 0.950866i \(0.399804\pi\)
\(212\) 0 0
\(213\) 1.03743e8 0.735581
\(214\) 0 0
\(215\) 1.13070e8 0.775913
\(216\) 0 0
\(217\) −1.60030e7 −0.106315
\(218\) 0 0
\(219\) −4.00596e7 −0.257723
\(220\) 0 0
\(221\) −8.84470e7 −0.551201
\(222\) 0 0
\(223\) −1.50175e8 −0.906837 −0.453418 0.891298i \(-0.649796\pi\)
−0.453418 + 0.891298i \(0.649796\pi\)
\(224\) 0 0
\(225\) −4.61027e7 −0.269828
\(226\) 0 0
\(227\) 3.02874e8 1.71859 0.859293 0.511484i \(-0.170904\pi\)
0.859293 + 0.511484i \(0.170904\pi\)
\(228\) 0 0
\(229\) −5.31373e7 −0.292399 −0.146199 0.989255i \(-0.546704\pi\)
−0.146199 + 0.989255i \(0.546704\pi\)
\(230\) 0 0
\(231\) −9.37213e6 −0.0500261
\(232\) 0 0
\(233\) −1.36351e8 −0.706174 −0.353087 0.935590i \(-0.614868\pi\)
−0.353087 + 0.935590i \(0.614868\pi\)
\(234\) 0 0
\(235\) −6.45565e7 −0.324491
\(236\) 0 0
\(237\) −1.01623e8 −0.495877
\(238\) 0 0
\(239\) −2.26802e8 −1.07462 −0.537309 0.843385i \(-0.680559\pi\)
−0.537309 + 0.843385i \(0.680559\pi\)
\(240\) 0 0
\(241\) 4.05053e8 1.86403 0.932014 0.362423i \(-0.118050\pi\)
0.932014 + 0.362423i \(0.118050\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 0 0
\(245\) −1.43532e7 −0.0623544
\(246\) 0 0
\(247\) 6.94847e7 0.293393
\(248\) 0 0
\(249\) −1.45613e8 −0.597728
\(250\) 0 0
\(251\) 3.08065e7 0.122966 0.0614828 0.998108i \(-0.480417\pi\)
0.0614828 + 0.998108i \(0.480417\pi\)
\(252\) 0 0
\(253\) 1.09944e8 0.426824
\(254\) 0 0
\(255\) −9.32004e7 −0.351988
\(256\) 0 0
\(257\) −2.75132e8 −1.01105 −0.505527 0.862811i \(-0.668702\pi\)
−0.505527 + 0.862811i \(0.668702\pi\)
\(258\) 0 0
\(259\) −2.93999e7 −0.105147
\(260\) 0 0
\(261\) −3.01471e7 −0.104955
\(262\) 0 0
\(263\) 4.83996e8 1.64058 0.820288 0.571950i \(-0.193813\pi\)
0.820288 + 0.571950i \(0.193813\pi\)
\(264\) 0 0
\(265\) 3.58761e7 0.118425
\(266\) 0 0
\(267\) −6.75726e7 −0.217261
\(268\) 0 0
\(269\) 2.47375e8 0.774858 0.387429 0.921900i \(-0.373363\pi\)
0.387429 + 0.921900i \(0.373363\pi\)
\(270\) 0 0
\(271\) 2.28287e8 0.696768 0.348384 0.937352i \(-0.386731\pi\)
0.348384 + 0.937352i \(0.386731\pi\)
\(272\) 0 0
\(273\) −2.89499e7 −0.0861148
\(274\) 0 0
\(275\) −6.39999e7 −0.185573
\(276\) 0 0
\(277\) −3.55116e8 −1.00390 −0.501950 0.864896i \(-0.667384\pi\)
−0.501950 + 0.864896i \(0.667384\pi\)
\(278\) 0 0
\(279\) −3.40122e7 −0.0937606
\(280\) 0 0
\(281\) 2.28167e8 0.613453 0.306726 0.951798i \(-0.400766\pi\)
0.306726 + 0.951798i \(0.400766\pi\)
\(282\) 0 0
\(283\) 2.13791e8 0.560709 0.280354 0.959897i \(-0.409548\pi\)
0.280354 + 0.959897i \(0.409548\pi\)
\(284\) 0 0
\(285\) 7.32190e7 0.187356
\(286\) 0 0
\(287\) −5.34030e7 −0.133346
\(288\) 0 0
\(289\) 3.90212e8 0.950950
\(290\) 0 0
\(291\) 1.24134e8 0.295301
\(292\) 0 0
\(293\) 3.78816e8 0.879816 0.439908 0.898043i \(-0.355011\pi\)
0.439908 + 0.898043i \(0.355011\pi\)
\(294\) 0 0
\(295\) −8.14096e7 −0.184628
\(296\) 0 0
\(297\) −1.99192e7 −0.0441189
\(298\) 0 0
\(299\) 3.39609e8 0.734733
\(300\) 0 0
\(301\) −3.17894e8 −0.671892
\(302\) 0 0
\(303\) −5.54269e8 −1.14465
\(304\) 0 0
\(305\) −1.01678e8 −0.205201
\(306\) 0 0
\(307\) −6.33814e8 −1.25019 −0.625097 0.780547i \(-0.714941\pi\)
−0.625097 + 0.780547i \(0.714941\pi\)
\(308\) 0 0
\(309\) 3.84302e8 0.740999
\(310\) 0 0
\(311\) 3.90195e8 0.735564 0.367782 0.929912i \(-0.380117\pi\)
0.367782 + 0.929912i \(0.380117\pi\)
\(312\) 0 0
\(313\) −1.00444e9 −1.85148 −0.925741 0.378158i \(-0.876558\pi\)
−0.925741 + 0.378158i \(0.876558\pi\)
\(314\) 0 0
\(315\) −3.05057e7 −0.0549914
\(316\) 0 0
\(317\) 2.42975e8 0.428404 0.214202 0.976789i \(-0.431285\pi\)
0.214202 + 0.976789i \(0.431285\pi\)
\(318\) 0 0
\(319\) −4.18502e7 −0.0721823
\(320\) 0 0
\(321\) −2.51647e8 −0.424642
\(322\) 0 0
\(323\) −6.28919e8 −1.03845
\(324\) 0 0
\(325\) −1.97691e8 −0.319445
\(326\) 0 0
\(327\) −1.16269e8 −0.183885
\(328\) 0 0
\(329\) 1.81499e8 0.280989
\(330\) 0 0
\(331\) 2.83517e7 0.0429715 0.0214858 0.999769i \(-0.493160\pi\)
0.0214858 + 0.999769i \(0.493160\pi\)
\(332\) 0 0
\(333\) −6.24855e7 −0.0927309
\(334\) 0 0
\(335\) 1.40788e8 0.204601
\(336\) 0 0
\(337\) −1.01675e9 −1.44714 −0.723572 0.690249i \(-0.757501\pi\)
−0.723572 + 0.690249i \(0.757501\pi\)
\(338\) 0 0
\(339\) −1.87264e8 −0.261069
\(340\) 0 0
\(341\) −4.72159e7 −0.0644834
\(342\) 0 0
\(343\) 4.03536e7 0.0539949
\(344\) 0 0
\(345\) 3.57860e8 0.469188
\(346\) 0 0
\(347\) 9.70494e8 1.24692 0.623461 0.781854i \(-0.285726\pi\)
0.623461 + 0.781854i \(0.285726\pi\)
\(348\) 0 0
\(349\) 8.84145e8 1.11336 0.556678 0.830728i \(-0.312076\pi\)
0.556678 + 0.830728i \(0.312076\pi\)
\(350\) 0 0
\(351\) −6.15291e7 −0.0759461
\(352\) 0 0
\(353\) −1.09046e9 −1.31947 −0.659734 0.751499i \(-0.729331\pi\)
−0.659734 + 0.751499i \(0.729331\pi\)
\(354\) 0 0
\(355\) 4.68765e8 0.556104
\(356\) 0 0
\(357\) 2.62031e8 0.304799
\(358\) 0 0
\(359\) −1.03373e9 −1.17917 −0.589585 0.807707i \(-0.700709\pi\)
−0.589585 + 0.807707i \(0.700709\pi\)
\(360\) 0 0
\(361\) −3.99788e8 −0.447254
\(362\) 0 0
\(363\) 4.98502e8 0.547008
\(364\) 0 0
\(365\) −1.81010e8 −0.194840
\(366\) 0 0
\(367\) 2.42183e8 0.255748 0.127874 0.991790i \(-0.459185\pi\)
0.127874 + 0.991790i \(0.459185\pi\)
\(368\) 0 0
\(369\) −1.13501e8 −0.117600
\(370\) 0 0
\(371\) −1.00865e8 −0.102549
\(372\) 0 0
\(373\) −1.43769e9 −1.43444 −0.717222 0.696845i \(-0.754587\pi\)
−0.717222 + 0.696845i \(0.754587\pi\)
\(374\) 0 0
\(375\) −4.65660e8 −0.455994
\(376\) 0 0
\(377\) −1.29273e8 −0.124254
\(378\) 0 0
\(379\) −1.20169e9 −1.13385 −0.566924 0.823770i \(-0.691867\pi\)
−0.566924 + 0.823770i \(0.691867\pi\)
\(380\) 0 0
\(381\) −8.49155e8 −0.786592
\(382\) 0 0
\(383\) −6.30859e8 −0.573768 −0.286884 0.957965i \(-0.592619\pi\)
−0.286884 + 0.957965i \(0.592619\pi\)
\(384\) 0 0
\(385\) −4.23482e7 −0.0378200
\(386\) 0 0
\(387\) −6.75640e8 −0.592553
\(388\) 0 0
\(389\) −1.42186e9 −1.22471 −0.612354 0.790584i \(-0.709777\pi\)
−0.612354 + 0.790584i \(0.709777\pi\)
\(390\) 0 0
\(391\) −3.07386e9 −2.60055
\(392\) 0 0
\(393\) −1.21177e8 −0.100704
\(394\) 0 0
\(395\) −4.59187e8 −0.374886
\(396\) 0 0
\(397\) 7.04969e7 0.0565462 0.0282731 0.999600i \(-0.490999\pi\)
0.0282731 + 0.999600i \(0.490999\pi\)
\(398\) 0 0
\(399\) −2.05854e8 −0.162238
\(400\) 0 0
\(401\) 2.02322e9 1.56689 0.783444 0.621462i \(-0.213461\pi\)
0.783444 + 0.621462i \(0.213461\pi\)
\(402\) 0 0
\(403\) −1.45847e8 −0.111001
\(404\) 0 0
\(405\) −6.48358e7 −0.0484978
\(406\) 0 0
\(407\) −8.67426e7 −0.0637752
\(408\) 0 0
\(409\) 1.43726e9 1.03874 0.519368 0.854551i \(-0.326168\pi\)
0.519368 + 0.854551i \(0.326168\pi\)
\(410\) 0 0
\(411\) −4.21892e8 −0.299747
\(412\) 0 0
\(413\) 2.28881e8 0.159877
\(414\) 0 0
\(415\) −6.57957e8 −0.451886
\(416\) 0 0
\(417\) −1.46458e9 −0.989090
\(418\) 0 0
\(419\) −8.62098e7 −0.0572542 −0.0286271 0.999590i \(-0.509114\pi\)
−0.0286271 + 0.999590i \(0.509114\pi\)
\(420\) 0 0
\(421\) −1.18254e9 −0.772378 −0.386189 0.922420i \(-0.626209\pi\)
−0.386189 + 0.922420i \(0.626209\pi\)
\(422\) 0 0
\(423\) 3.85752e8 0.247809
\(424\) 0 0
\(425\) 1.78934e9 1.13066
\(426\) 0 0
\(427\) 2.85866e8 0.177691
\(428\) 0 0
\(429\) −8.54148e7 −0.0522315
\(430\) 0 0
\(431\) −6.04657e8 −0.363780 −0.181890 0.983319i \(-0.558222\pi\)
−0.181890 + 0.983319i \(0.558222\pi\)
\(432\) 0 0
\(433\) 7.16394e7 0.0424076 0.0212038 0.999775i \(-0.493250\pi\)
0.0212038 + 0.999775i \(0.493250\pi\)
\(434\) 0 0
\(435\) −1.36220e8 −0.0793467
\(436\) 0 0
\(437\) 2.41485e9 1.38422
\(438\) 0 0
\(439\) −1.94917e8 −0.109958 −0.0549788 0.998488i \(-0.517509\pi\)
−0.0549788 + 0.998488i \(0.517509\pi\)
\(440\) 0 0
\(441\) 8.57661e7 0.0476190
\(442\) 0 0
\(443\) 2.08018e9 1.13681 0.568405 0.822749i \(-0.307561\pi\)
0.568405 + 0.822749i \(0.307561\pi\)
\(444\) 0 0
\(445\) −3.05328e8 −0.164251
\(446\) 0 0
\(447\) 8.77364e8 0.464626
\(448\) 0 0
\(449\) 1.78606e9 0.931180 0.465590 0.885000i \(-0.345842\pi\)
0.465590 + 0.885000i \(0.345842\pi\)
\(450\) 0 0
\(451\) −1.57562e8 −0.0808788
\(452\) 0 0
\(453\) −2.06101e9 −1.04169
\(454\) 0 0
\(455\) −1.30811e8 −0.0651033
\(456\) 0 0
\(457\) −2.24308e9 −1.09936 −0.549678 0.835377i \(-0.685249\pi\)
−0.549678 + 0.835377i \(0.685249\pi\)
\(458\) 0 0
\(459\) 5.56911e8 0.268807
\(460\) 0 0
\(461\) −2.60254e9 −1.23721 −0.618607 0.785701i \(-0.712303\pi\)
−0.618607 + 0.785701i \(0.712303\pi\)
\(462\) 0 0
\(463\) 7.12557e8 0.333646 0.166823 0.985987i \(-0.446649\pi\)
0.166823 + 0.985987i \(0.446649\pi\)
\(464\) 0 0
\(465\) −1.53685e8 −0.0708836
\(466\) 0 0
\(467\) 6.33469e8 0.287817 0.143908 0.989591i \(-0.454033\pi\)
0.143908 + 0.989591i \(0.454033\pi\)
\(468\) 0 0
\(469\) −3.95821e8 −0.177171
\(470\) 0 0
\(471\) 7.89536e8 0.348176
\(472\) 0 0
\(473\) −9.37926e8 −0.407525
\(474\) 0 0
\(475\) −1.40572e9 −0.601827
\(476\) 0 0
\(477\) −2.14374e8 −0.0904395
\(478\) 0 0
\(479\) 2.20552e8 0.0916931 0.0458466 0.998948i \(-0.485401\pi\)
0.0458466 + 0.998948i \(0.485401\pi\)
\(480\) 0 0
\(481\) −2.67942e8 −0.109782
\(482\) 0 0
\(483\) −1.00612e9 −0.406287
\(484\) 0 0
\(485\) 5.60901e8 0.223249
\(486\) 0 0
\(487\) −3.92932e9 −1.54158 −0.770791 0.637088i \(-0.780139\pi\)
−0.770791 + 0.637088i \(0.780139\pi\)
\(488\) 0 0
\(489\) −2.56742e9 −0.992925
\(490\) 0 0
\(491\) 3.28904e9 1.25396 0.626980 0.779036i \(-0.284291\pi\)
0.626980 + 0.779036i \(0.284291\pi\)
\(492\) 0 0
\(493\) 1.17007e9 0.439792
\(494\) 0 0
\(495\) −9.00053e7 −0.0333541
\(496\) 0 0
\(497\) −1.31792e9 −0.481551
\(498\) 0 0
\(499\) 4.30630e9 1.55150 0.775752 0.631038i \(-0.217371\pi\)
0.775752 + 0.631038i \(0.217371\pi\)
\(500\) 0 0
\(501\) −6.20863e8 −0.220579
\(502\) 0 0
\(503\) 2.56392e9 0.898291 0.449145 0.893459i \(-0.351729\pi\)
0.449145 + 0.893459i \(0.351729\pi\)
\(504\) 0 0
\(505\) −2.50447e9 −0.865360
\(506\) 0 0
\(507\) 1.43037e9 0.487439
\(508\) 0 0
\(509\) 4.20386e9 1.41298 0.706490 0.707723i \(-0.250278\pi\)
0.706490 + 0.707723i \(0.250278\pi\)
\(510\) 0 0
\(511\) 5.08906e8 0.168719
\(512\) 0 0
\(513\) −4.37514e8 −0.143081
\(514\) 0 0
\(515\) 1.73647e9 0.560200
\(516\) 0 0
\(517\) 5.35502e8 0.170429
\(518\) 0 0
\(519\) −3.22612e9 −1.01297
\(520\) 0 0
\(521\) 4.50770e9 1.39644 0.698220 0.715883i \(-0.253976\pi\)
0.698220 + 0.715883i \(0.253976\pi\)
\(522\) 0 0
\(523\) 5.46352e9 1.67000 0.835000 0.550250i \(-0.185468\pi\)
0.835000 + 0.550250i \(0.185468\pi\)
\(524\) 0 0
\(525\) 5.85675e8 0.176644
\(526\) 0 0
\(527\) 1.32008e9 0.392884
\(528\) 0 0
\(529\) 8.39782e9 2.46645
\(530\) 0 0
\(531\) 4.86456e8 0.140998
\(532\) 0 0
\(533\) −4.86699e8 −0.139224
\(534\) 0 0
\(535\) −1.13707e9 −0.321032
\(536\) 0 0
\(537\) 2.53329e9 0.705951
\(538\) 0 0
\(539\) 1.19061e8 0.0327498
\(540\) 0 0
\(541\) −6.58629e9 −1.78834 −0.894171 0.447725i \(-0.852234\pi\)
−0.894171 + 0.447725i \(0.852234\pi\)
\(542\) 0 0
\(543\) −4.01852e9 −1.07713
\(544\) 0 0
\(545\) −5.25362e8 −0.139018
\(546\) 0 0
\(547\) 1.71749e9 0.448681 0.224340 0.974511i \(-0.427977\pi\)
0.224340 + 0.974511i \(0.427977\pi\)
\(548\) 0 0
\(549\) 6.07570e8 0.156709
\(550\) 0 0
\(551\) −9.19217e8 −0.234092
\(552\) 0 0
\(553\) 1.29099e9 0.324628
\(554\) 0 0
\(555\) −2.82342e8 −0.0701051
\(556\) 0 0
\(557\) 4.94264e9 1.21190 0.605949 0.795504i \(-0.292794\pi\)
0.605949 + 0.795504i \(0.292794\pi\)
\(558\) 0 0
\(559\) −2.89719e9 −0.701513
\(560\) 0 0
\(561\) 7.73105e8 0.184871
\(562\) 0 0
\(563\) 3.38308e9 0.798974 0.399487 0.916739i \(-0.369188\pi\)
0.399487 + 0.916739i \(0.369188\pi\)
\(564\) 0 0
\(565\) −8.46155e8 −0.197370
\(566\) 0 0
\(567\) 1.82284e8 0.0419961
\(568\) 0 0
\(569\) −2.24635e9 −0.511193 −0.255596 0.966784i \(-0.582272\pi\)
−0.255596 + 0.966784i \(0.582272\pi\)
\(570\) 0 0
\(571\) 6.81094e8 0.153102 0.0765509 0.997066i \(-0.475609\pi\)
0.0765509 + 0.997066i \(0.475609\pi\)
\(572\) 0 0
\(573\) −2.73796e9 −0.607976
\(574\) 0 0
\(575\) −6.87050e9 −1.50713
\(576\) 0 0
\(577\) −7.48296e8 −0.162165 −0.0810827 0.996707i \(-0.525838\pi\)
−0.0810827 + 0.996707i \(0.525838\pi\)
\(578\) 0 0
\(579\) −1.90592e9 −0.408065
\(580\) 0 0
\(581\) 1.84983e9 0.391305
\(582\) 0 0
\(583\) −2.97595e8 −0.0621993
\(584\) 0 0
\(585\) −2.78020e8 −0.0574157
\(586\) 0 0
\(587\) 6.17294e9 1.25968 0.629838 0.776727i \(-0.283121\pi\)
0.629838 + 0.776727i \(0.283121\pi\)
\(588\) 0 0
\(589\) −1.03707e9 −0.209124
\(590\) 0 0
\(591\) −1.35623e9 −0.270257
\(592\) 0 0
\(593\) 1.00425e10 1.97765 0.988826 0.149071i \(-0.0476284\pi\)
0.988826 + 0.149071i \(0.0476284\pi\)
\(594\) 0 0
\(595\) 1.18399e9 0.230430
\(596\) 0 0
\(597\) 5.64023e9 1.08489
\(598\) 0 0
\(599\) 1.32244e9 0.251410 0.125705 0.992068i \(-0.459881\pi\)
0.125705 + 0.992068i \(0.459881\pi\)
\(600\) 0 0
\(601\) −4.48600e8 −0.0842944 −0.0421472 0.999111i \(-0.513420\pi\)
−0.0421472 + 0.999111i \(0.513420\pi\)
\(602\) 0 0
\(603\) −8.41263e8 −0.156250
\(604\) 0 0
\(605\) 2.25249e9 0.413541
\(606\) 0 0
\(607\) −8.91500e8 −0.161793 −0.0808967 0.996722i \(-0.525778\pi\)
−0.0808967 + 0.996722i \(0.525778\pi\)
\(608\) 0 0
\(609\) 3.82979e8 0.0687092
\(610\) 0 0
\(611\) 1.65413e9 0.293376
\(612\) 0 0
\(613\) 3.51417e9 0.616185 0.308092 0.951356i \(-0.400309\pi\)
0.308092 + 0.951356i \(0.400309\pi\)
\(614\) 0 0
\(615\) −5.12856e8 −0.0889063
\(616\) 0 0
\(617\) 3.78067e9 0.647993 0.323996 0.946058i \(-0.394973\pi\)
0.323996 + 0.946058i \(0.394973\pi\)
\(618\) 0 0
\(619\) −2.68966e9 −0.455807 −0.227903 0.973684i \(-0.573187\pi\)
−0.227903 + 0.973684i \(0.573187\pi\)
\(620\) 0 0
\(621\) −2.13836e9 −0.358311
\(622\) 0 0
\(623\) 8.58423e8 0.142231
\(624\) 0 0
\(625\) 2.83661e9 0.464750
\(626\) 0 0
\(627\) −6.07358e8 −0.0984030
\(628\) 0 0
\(629\) 2.42519e9 0.388570
\(630\) 0 0
\(631\) 6.91824e9 1.09621 0.548104 0.836410i \(-0.315350\pi\)
0.548104 + 0.836410i \(0.315350\pi\)
\(632\) 0 0
\(633\) −2.28131e9 −0.357497
\(634\) 0 0
\(635\) −3.83692e9 −0.594668
\(636\) 0 0
\(637\) 3.67771e8 0.0563753
\(638\) 0 0
\(639\) −2.80106e9 −0.424688
\(640\) 0 0
\(641\) −5.49959e9 −0.824759 −0.412379 0.911012i \(-0.635302\pi\)
−0.412379 + 0.911012i \(0.635302\pi\)
\(642\) 0 0
\(643\) 1.35931e9 0.201641 0.100821 0.994905i \(-0.467853\pi\)
0.100821 + 0.994905i \(0.467853\pi\)
\(644\) 0 0
\(645\) −3.05289e9 −0.447974
\(646\) 0 0
\(647\) 7.29185e9 1.05846 0.529228 0.848480i \(-0.322482\pi\)
0.529228 + 0.848480i \(0.322482\pi\)
\(648\) 0 0
\(649\) 6.75300e8 0.0969706
\(650\) 0 0
\(651\) 4.32081e8 0.0613807
\(652\) 0 0
\(653\) −9.96884e8 −0.140103 −0.0700517 0.997543i \(-0.522316\pi\)
−0.0700517 + 0.997543i \(0.522316\pi\)
\(654\) 0 0
\(655\) −5.47538e8 −0.0761325
\(656\) 0 0
\(657\) 1.08161e9 0.148796
\(658\) 0 0
\(659\) 1.35118e10 1.83914 0.919568 0.392932i \(-0.128539\pi\)
0.919568 + 0.392932i \(0.128539\pi\)
\(660\) 0 0
\(661\) −7.79936e9 −1.05040 −0.525199 0.850979i \(-0.676009\pi\)
−0.525199 + 0.850979i \(0.676009\pi\)
\(662\) 0 0
\(663\) 2.38807e9 0.318236
\(664\) 0 0
\(665\) −9.30153e8 −0.122653
\(666\) 0 0
\(667\) −4.49270e9 −0.586228
\(668\) 0 0
\(669\) 4.05471e9 0.523563
\(670\) 0 0
\(671\) 8.43431e8 0.107776
\(672\) 0 0
\(673\) −6.85231e9 −0.866531 −0.433265 0.901266i \(-0.642639\pi\)
−0.433265 + 0.901266i \(0.642639\pi\)
\(674\) 0 0
\(675\) 1.24477e9 0.155785
\(676\) 0 0
\(677\) −7.65704e9 −0.948419 −0.474210 0.880412i \(-0.657266\pi\)
−0.474210 + 0.880412i \(0.657266\pi\)
\(678\) 0 0
\(679\) −1.57696e9 −0.193320
\(680\) 0 0
\(681\) −8.17759e9 −0.992226
\(682\) 0 0
\(683\) 5.52675e9 0.663739 0.331870 0.943325i \(-0.392321\pi\)
0.331870 + 0.943325i \(0.392321\pi\)
\(684\) 0 0
\(685\) −1.90633e9 −0.226611
\(686\) 0 0
\(687\) 1.43471e9 0.168817
\(688\) 0 0
\(689\) −9.19250e8 −0.107070
\(690\) 0 0
\(691\) −1.51927e9 −0.175171 −0.0875854 0.996157i \(-0.527915\pi\)
−0.0875854 + 0.996157i \(0.527915\pi\)
\(692\) 0 0
\(693\) 2.53048e8 0.0288826
\(694\) 0 0
\(695\) −6.61771e9 −0.747758
\(696\) 0 0
\(697\) 4.40521e9 0.492778
\(698\) 0 0
\(699\) 3.68147e9 0.407710
\(700\) 0 0
\(701\) 6.81967e9 0.747739 0.373869 0.927481i \(-0.378031\pi\)
0.373869 + 0.927481i \(0.378031\pi\)
\(702\) 0 0
\(703\) −1.90525e9 −0.206828
\(704\) 0 0
\(705\) 1.74303e9 0.187345
\(706\) 0 0
\(707\) 7.04127e9 0.749347
\(708\) 0 0
\(709\) 1.21699e10 1.28241 0.641205 0.767370i \(-0.278435\pi\)
0.641205 + 0.767370i \(0.278435\pi\)
\(710\) 0 0
\(711\) 2.74383e9 0.286295
\(712\) 0 0
\(713\) −5.06871e9 −0.523702
\(714\) 0 0
\(715\) −3.85948e8 −0.0394874
\(716\) 0 0
\(717\) 6.12365e9 0.620431
\(718\) 0 0
\(719\) −2.00025e9 −0.200693 −0.100347 0.994953i \(-0.531995\pi\)
−0.100347 + 0.994953i \(0.531995\pi\)
\(720\) 0 0
\(721\) −4.88206e9 −0.485098
\(722\) 0 0
\(723\) −1.09364e10 −1.07620
\(724\) 0 0
\(725\) 2.61527e9 0.254879
\(726\) 0 0
\(727\) −1.21193e10 −1.16979 −0.584895 0.811109i \(-0.698864\pi\)
−0.584895 + 0.811109i \(0.698864\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 2.62230e10 2.48297
\(732\) 0 0
\(733\) 1.30453e10 1.22346 0.611732 0.791065i \(-0.290473\pi\)
0.611732 + 0.791065i \(0.290473\pi\)
\(734\) 0 0
\(735\) 3.87536e8 0.0360003
\(736\) 0 0
\(737\) −1.16784e9 −0.107460
\(738\) 0 0
\(739\) −2.27587e9 −0.207440 −0.103720 0.994607i \(-0.533075\pi\)
−0.103720 + 0.994607i \(0.533075\pi\)
\(740\) 0 0
\(741\) −1.87609e9 −0.169391
\(742\) 0 0
\(743\) −2.13411e9 −0.190878 −0.0954390 0.995435i \(-0.530425\pi\)
−0.0954390 + 0.995435i \(0.530425\pi\)
\(744\) 0 0
\(745\) 3.96439e9 0.351260
\(746\) 0 0
\(747\) 3.93156e9 0.345099
\(748\) 0 0
\(749\) 3.19684e9 0.277994
\(750\) 0 0
\(751\) −2.04177e10 −1.75901 −0.879503 0.475894i \(-0.842125\pi\)
−0.879503 + 0.475894i \(0.842125\pi\)
\(752\) 0 0
\(753\) −8.31774e8 −0.0709942
\(754\) 0 0
\(755\) −9.31273e9 −0.787522
\(756\) 0 0
\(757\) 8.04759e9 0.674265 0.337132 0.941457i \(-0.390543\pi\)
0.337132 + 0.941457i \(0.390543\pi\)
\(758\) 0 0
\(759\) −2.96848e9 −0.246427
\(760\) 0 0
\(761\) 5.61734e9 0.462045 0.231023 0.972948i \(-0.425793\pi\)
0.231023 + 0.972948i \(0.425793\pi\)
\(762\) 0 0
\(763\) 1.47704e9 0.120381
\(764\) 0 0
\(765\) 2.51641e9 0.203220
\(766\) 0 0
\(767\) 2.08595e9 0.166925
\(768\) 0 0
\(769\) −8.92653e9 −0.707849 −0.353924 0.935274i \(-0.615153\pi\)
−0.353924 + 0.935274i \(0.615153\pi\)
\(770\) 0 0
\(771\) 7.42855e9 0.583733
\(772\) 0 0
\(773\) −1.79866e10 −1.40062 −0.700310 0.713839i \(-0.746955\pi\)
−0.700310 + 0.713839i \(0.746955\pi\)
\(774\) 0 0
\(775\) 2.95057e9 0.227693
\(776\) 0 0
\(777\) 7.93797e8 0.0607066
\(778\) 0 0
\(779\) −3.46077e9 −0.262296
\(780\) 0 0
\(781\) −3.88844e9 −0.292077
\(782\) 0 0
\(783\) 8.13971e8 0.0605958
\(784\) 0 0
\(785\) 3.56753e9 0.263223
\(786\) 0 0
\(787\) 1.31588e10 0.962289 0.481144 0.876641i \(-0.340221\pi\)
0.481144 + 0.876641i \(0.340221\pi\)
\(788\) 0 0
\(789\) −1.30679e10 −0.947188
\(790\) 0 0
\(791\) 2.37894e9 0.170910
\(792\) 0 0
\(793\) 2.60530e9 0.185525
\(794\) 0 0
\(795\) −9.68653e8 −0.0683728
\(796\) 0 0
\(797\) 2.50099e9 0.174988 0.0874939 0.996165i \(-0.472114\pi\)
0.0874939 + 0.996165i \(0.472114\pi\)
\(798\) 0 0
\(799\) −1.49718e10 −1.03839
\(800\) 0 0
\(801\) 1.82446e9 0.125436
\(802\) 0 0
\(803\) 1.50149e9 0.102334
\(804\) 0 0
\(805\) −4.54615e9 −0.307155
\(806\) 0 0
\(807\) −6.67911e9 −0.447364
\(808\) 0 0
\(809\) 1.12119e10 0.744488 0.372244 0.928135i \(-0.378588\pi\)
0.372244 + 0.928135i \(0.378588\pi\)
\(810\) 0 0
\(811\) 2.38194e10 1.56804 0.784020 0.620736i \(-0.213166\pi\)
0.784020 + 0.620736i \(0.213166\pi\)
\(812\) 0 0
\(813\) −6.16374e9 −0.402279
\(814\) 0 0
\(815\) −1.16010e10 −0.750658
\(816\) 0 0
\(817\) −2.06010e10 −1.32163
\(818\) 0 0
\(819\) 7.81647e8 0.0497184
\(820\) 0 0
\(821\) −2.02921e10 −1.27975 −0.639877 0.768477i \(-0.721015\pi\)
−0.639877 + 0.768477i \(0.721015\pi\)
\(822\) 0 0
\(823\) 5.55929e9 0.347632 0.173816 0.984778i \(-0.444390\pi\)
0.173816 + 0.984778i \(0.444390\pi\)
\(824\) 0 0
\(825\) 1.72800e9 0.107141
\(826\) 0 0
\(827\) −2.02195e10 −1.24308 −0.621542 0.783381i \(-0.713493\pi\)
−0.621542 + 0.783381i \(0.713493\pi\)
\(828\) 0 0
\(829\) 3.74799e9 0.228485 0.114243 0.993453i \(-0.463556\pi\)
0.114243 + 0.993453i \(0.463556\pi\)
\(830\) 0 0
\(831\) 9.58813e9 0.579602
\(832\) 0 0
\(833\) −3.32876e9 −0.199538
\(834\) 0 0
\(835\) −2.80538e9 −0.166759
\(836\) 0 0
\(837\) 9.18330e8 0.0541327
\(838\) 0 0
\(839\) −2.03224e10 −1.18798 −0.593988 0.804474i \(-0.702447\pi\)
−0.593988 + 0.804474i \(0.702447\pi\)
\(840\) 0 0
\(841\) −1.55397e10 −0.900860
\(842\) 0 0
\(843\) −6.16051e9 −0.354177
\(844\) 0 0
\(845\) 6.46315e9 0.368507
\(846\) 0 0
\(847\) −6.33282e9 −0.358101
\(848\) 0 0
\(849\) −5.77236e9 −0.323725
\(850\) 0 0
\(851\) −9.31197e9 −0.517950
\(852\) 0 0
\(853\) 3.86410e8 0.0213170 0.0106585 0.999943i \(-0.496607\pi\)
0.0106585 + 0.999943i \(0.496607\pi\)
\(854\) 0 0
\(855\) −1.97691e9 −0.108170
\(856\) 0 0
\(857\) −4.64244e9 −0.251950 −0.125975 0.992033i \(-0.540206\pi\)
−0.125975 + 0.992033i \(0.540206\pi\)
\(858\) 0 0
\(859\) 2.73307e10 1.47121 0.735606 0.677410i \(-0.236898\pi\)
0.735606 + 0.677410i \(0.236898\pi\)
\(860\) 0 0
\(861\) 1.44188e9 0.0769872
\(862\) 0 0
\(863\) −1.84334e10 −0.976264 −0.488132 0.872770i \(-0.662322\pi\)
−0.488132 + 0.872770i \(0.662322\pi\)
\(864\) 0 0
\(865\) −1.45773e10 −0.765809
\(866\) 0 0
\(867\) −1.05357e10 −0.549032
\(868\) 0 0
\(869\) 3.80899e9 0.196898
\(870\) 0 0
\(871\) −3.60739e9 −0.184982
\(872\) 0 0
\(873\) −3.35161e9 −0.170492
\(874\) 0 0
\(875\) 5.91560e9 0.298518
\(876\) 0 0
\(877\) −1.30287e10 −0.652235 −0.326117 0.945329i \(-0.605740\pi\)
−0.326117 + 0.945329i \(0.605740\pi\)
\(878\) 0 0
\(879\) −1.02280e10 −0.507962
\(880\) 0 0
\(881\) 3.46348e10 1.70646 0.853232 0.521531i \(-0.174639\pi\)
0.853232 + 0.521531i \(0.174639\pi\)
\(882\) 0 0
\(883\) −3.40346e10 −1.66363 −0.831817 0.555049i \(-0.812699\pi\)
−0.831817 + 0.555049i \(0.812699\pi\)
\(884\) 0 0
\(885\) 2.19806e9 0.106595
\(886\) 0 0
\(887\) 4.78148e9 0.230054 0.115027 0.993362i \(-0.463305\pi\)
0.115027 + 0.993362i \(0.463305\pi\)
\(888\) 0 0
\(889\) 1.07874e10 0.514945
\(890\) 0 0
\(891\) 5.37818e8 0.0254720
\(892\) 0 0
\(893\) 1.17620e10 0.552714
\(894\) 0 0
\(895\) 1.14467e10 0.533704
\(896\) 0 0
\(897\) −9.16943e9 −0.424198
\(898\) 0 0
\(899\) 1.92941e9 0.0885658
\(900\) 0 0
\(901\) 8.32030e9 0.378968
\(902\) 0 0
\(903\) 8.58313e9 0.387917
\(904\) 0 0
\(905\) −1.81578e10 −0.814314
\(906\) 0 0
\(907\) 2.78639e10 1.23999 0.619993 0.784608i \(-0.287136\pi\)
0.619993 + 0.784608i \(0.287136\pi\)
\(908\) 0 0
\(909\) 1.49653e10 0.660862
\(910\) 0 0
\(911\) −3.21050e10 −1.40689 −0.703443 0.710752i \(-0.748355\pi\)
−0.703443 + 0.710752i \(0.748355\pi\)
\(912\) 0 0
\(913\) 5.45781e9 0.237340
\(914\) 0 0
\(915\) 2.74532e9 0.118473
\(916\) 0 0
\(917\) 1.53939e9 0.0659259
\(918\) 0 0
\(919\) −2.82454e10 −1.20045 −0.600224 0.799832i \(-0.704922\pi\)
−0.600224 + 0.799832i \(0.704922\pi\)
\(920\) 0 0
\(921\) 1.71130e10 0.721800
\(922\) 0 0
\(923\) −1.20111e10 −0.502780
\(924\) 0 0
\(925\) 5.42064e9 0.225193
\(926\) 0 0
\(927\) −1.03761e10 −0.427816
\(928\) 0 0
\(929\) 1.02974e10 0.421379 0.210690 0.977553i \(-0.432429\pi\)
0.210690 + 0.977553i \(0.432429\pi\)
\(930\) 0 0
\(931\) 2.61510e9 0.106210
\(932\) 0 0
\(933\) −1.05353e10 −0.424678
\(934\) 0 0
\(935\) 3.49329e9 0.139764
\(936\) 0 0
\(937\) −3.96648e10 −1.57513 −0.787565 0.616231i \(-0.788659\pi\)
−0.787565 + 0.616231i \(0.788659\pi\)
\(938\) 0 0
\(939\) 2.71199e10 1.06895
\(940\) 0 0
\(941\) 2.86294e9 0.112008 0.0560040 0.998431i \(-0.482164\pi\)
0.0560040 + 0.998431i \(0.482164\pi\)
\(942\) 0 0
\(943\) −1.69146e10 −0.656857
\(944\) 0 0
\(945\) 8.23655e8 0.0317493
\(946\) 0 0
\(947\) −6.84247e9 −0.261811 −0.130906 0.991395i \(-0.541788\pi\)
−0.130906 + 0.991395i \(0.541788\pi\)
\(948\) 0 0
\(949\) 4.63801e9 0.176157
\(950\) 0 0
\(951\) −6.56031e9 −0.247339
\(952\) 0 0
\(953\) −2.50283e10 −0.936711 −0.468356 0.883540i \(-0.655153\pi\)
−0.468356 + 0.883540i \(0.655153\pi\)
\(954\) 0 0
\(955\) −1.23715e10 −0.459633
\(956\) 0 0
\(957\) 1.12996e9 0.0416745
\(958\) 0 0
\(959\) 5.35960e9 0.196231
\(960\) 0 0
\(961\) −2.53358e10 −0.920881
\(962\) 0 0
\(963\) 6.79446e9 0.245167
\(964\) 0 0
\(965\) −8.61193e9 −0.308500
\(966\) 0 0
\(967\) 5.13292e10 1.82546 0.912730 0.408564i \(-0.133970\pi\)
0.912730 + 0.408564i \(0.133970\pi\)
\(968\) 0 0
\(969\) 1.69808e10 0.599550
\(970\) 0 0
\(971\) −3.62532e10 −1.27081 −0.635403 0.772181i \(-0.719166\pi\)
−0.635403 + 0.772181i \(0.719166\pi\)
\(972\) 0 0
\(973\) 1.86055e10 0.647511
\(974\) 0 0
\(975\) 5.33767e9 0.184432
\(976\) 0 0
\(977\) −3.57974e10 −1.22806 −0.614031 0.789282i \(-0.710453\pi\)
−0.614031 + 0.789282i \(0.710453\pi\)
\(978\) 0 0
\(979\) 2.53272e9 0.0862677
\(980\) 0 0
\(981\) 3.13925e9 0.106166
\(982\) 0 0
\(983\) −4.89020e10 −1.64206 −0.821030 0.570885i \(-0.806600\pi\)
−0.821030 + 0.570885i \(0.806600\pi\)
\(984\) 0 0
\(985\) −6.12815e9 −0.204316
\(986\) 0 0
\(987\) −4.90048e9 −0.162229
\(988\) 0 0
\(989\) −1.00688e11 −3.30972
\(990\) 0 0
\(991\) 6.89882e9 0.225173 0.112587 0.993642i \(-0.464086\pi\)
0.112587 + 0.993642i \(0.464086\pi\)
\(992\) 0 0
\(993\) −7.65495e8 −0.0248096
\(994\) 0 0
\(995\) 2.54855e10 0.820185
\(996\) 0 0
\(997\) −5.53031e9 −0.176732 −0.0883662 0.996088i \(-0.528165\pi\)
−0.0883662 + 0.996088i \(0.528165\pi\)
\(998\) 0 0
\(999\) 1.68711e9 0.0535382
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.8.a.d.1.1 1
4.3 odd 2 42.8.a.c.1.1 1
12.11 even 2 126.8.a.g.1.1 1
28.3 even 6 294.8.e.n.79.1 2
28.11 odd 6 294.8.e.j.79.1 2
28.19 even 6 294.8.e.n.67.1 2
28.23 odd 6 294.8.e.j.67.1 2
28.27 even 2 294.8.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.8.a.c.1.1 1 4.3 odd 2
126.8.a.g.1.1 1 12.11 even 2
294.8.a.c.1.1 1 28.27 even 2
294.8.e.j.67.1 2 28.23 odd 6
294.8.e.j.79.1 2 28.11 odd 6
294.8.e.n.67.1 2 28.19 even 6
294.8.e.n.79.1 2 28.3 even 6
336.8.a.d.1.1 1 1.1 even 1 trivial