Properties

Label 338.4.e.h.23.5
Level $338$
Weight $4$
Character 338.23
Analytic conductor $19.943$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(23,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.23");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.e (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.5
Root \(-1.07992 + 0.623490i\) of defining polynomial
Character \(\chi\) \(=\) 338.23
Dual form 338.4.e.h.147.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{2} +(1.83244 + 3.17387i) q^{3} +(2.00000 - 3.46410i) q^{4} +8.53079i q^{5} +(6.34775 + 3.66487i) q^{6} +(-3.63821 - 2.10052i) q^{7} -8.00000i q^{8} +(6.78435 - 11.7508i) q^{9} +(8.53079 + 14.7758i) q^{10} +(56.6143 - 32.6863i) q^{11} +14.6595 q^{12} -8.40209 q^{14} +(-27.0757 + 15.6321i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(-13.4510 + 23.2977i) q^{17} -27.1374i q^{18} +(11.5813 + 6.68648i) q^{19} +(29.5515 + 17.0616i) q^{20} -15.3963i q^{21} +(65.3726 - 113.229i) q^{22} +(79.9645 + 138.503i) q^{23} +(25.3910 - 14.6595i) q^{24} +52.2255 q^{25} +148.679 q^{27} +(-14.5529 + 8.40209i) q^{28} +(150.644 + 260.923i) q^{29} +(-31.2643 + 54.1513i) q^{30} -73.0232i q^{31} +(-27.7128 - 16.0000i) q^{32} +(207.484 + 119.791i) q^{33} +53.8038i q^{34} +(17.9191 - 31.0368i) q^{35} +(-27.1374 - 47.0033i) q^{36} +(102.867 - 59.3904i) q^{37} +26.7459 q^{38} +68.2464 q^{40} +(-374.903 + 216.451i) q^{41} +(-15.3963 - 26.6672i) q^{42} +(-178.254 + 308.745i) q^{43} -261.490i q^{44} +(100.244 + 57.8759i) q^{45} +(277.005 + 159.929i) q^{46} -588.614i q^{47} +(29.3190 - 50.7820i) q^{48} +(-162.676 - 281.762i) q^{49} +(90.4573 - 52.2255i) q^{50} -98.5921 q^{51} -269.462 q^{53} +(257.520 - 148.679i) q^{54} +(278.840 + 482.965i) q^{55} +(-16.8042 + 29.1057i) q^{56} +49.0102i q^{57} +(521.846 + 301.288i) q^{58} +(199.480 + 115.170i) q^{59} +125.057i q^{60} +(190.408 - 329.796i) q^{61} +(-73.0232 - 126.480i) q^{62} +(-49.3658 + 28.5014i) q^{63} -64.0000 q^{64} +479.164 q^{66} +(377.456 - 217.924i) q^{67} +(53.8038 + 93.1909i) q^{68} +(-293.060 + 507.595i) q^{69} -71.6765i q^{70} +(-57.1249 - 32.9811i) q^{71} +(-94.0067 - 54.2748i) q^{72} -885.517i q^{73} +(118.781 - 205.735i) q^{74} +(95.7000 + 165.757i) q^{75} +(46.3253 - 26.7459i) q^{76} -274.633 q^{77} -385.463 q^{79} +(118.206 - 68.2464i) q^{80} +(89.2679 + 154.616i) q^{81} +(-432.901 + 749.807i) q^{82} -254.207i q^{83} +(-53.3344 - 30.7926i) q^{84} +(-198.748 - 114.747i) q^{85} +713.016i q^{86} +(-552.091 + 956.250i) q^{87} +(-261.490 - 452.914i) q^{88} +(322.692 - 186.306i) q^{89} +231.504 q^{90} +639.716 q^{92} +(231.766 - 133.810i) q^{93} +(-588.614 - 1019.51i) q^{94} +(-57.0410 + 98.7979i) q^{95} -117.276i q^{96} +(-1137.86 - 656.942i) q^{97} +(-563.525 - 325.351i) q^{98} -887.020i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{3} + 24 q^{4} - 18 q^{9} - 48 q^{10} + 192 q^{12} + 216 q^{14} - 96 q^{16} - 180 q^{17} + 328 q^{22} + 38 q^{23} + 244 q^{25} - 276 q^{27} + 202 q^{29} + 360 q^{30} + 916 q^{35} + 72 q^{36}+ \cdots + 3658 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.00000i 0.612372 0.353553i
\(3\) 1.83244 + 3.17387i 0.352653 + 0.610812i 0.986713 0.162471i \(-0.0519464\pi\)
−0.634061 + 0.773283i \(0.718613\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 8.53079i 0.763017i 0.924365 + 0.381509i \(0.124595\pi\)
−0.924365 + 0.381509i \(0.875405\pi\)
\(6\) 6.34775 + 3.66487i 0.431910 + 0.249363i
\(7\) −3.63821 2.10052i −0.196445 0.113418i 0.398551 0.917146i \(-0.369513\pi\)
−0.594996 + 0.803729i \(0.702846\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 6.78435 11.7508i 0.251272 0.435216i
\(10\) 8.53079 + 14.7758i 0.269767 + 0.467251i
\(11\) 56.6143 32.6863i 1.55180 0.895935i 0.553810 0.832643i \(-0.313174\pi\)
0.997995 0.0632915i \(-0.0201598\pi\)
\(12\) 14.6595 0.352653
\(13\) 0 0
\(14\) −8.40209 −0.160397
\(15\) −27.0757 + 15.6321i −0.466061 + 0.269080i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −13.4510 + 23.2977i −0.191902 + 0.332384i −0.945881 0.324515i \(-0.894799\pi\)
0.753979 + 0.656899i \(0.228132\pi\)
\(18\) 27.1374i 0.355352i
\(19\) 11.5813 + 6.68648i 0.139839 + 0.0807360i 0.568287 0.822830i \(-0.307606\pi\)
−0.428448 + 0.903566i \(0.640940\pi\)
\(20\) 29.5515 + 17.0616i 0.330396 + 0.190754i
\(21\) 15.3963i 0.159988i
\(22\) 65.3726 113.229i 0.633522 1.09729i
\(23\) 79.9645 + 138.503i 0.724946 + 1.25564i 0.958996 + 0.283419i \(0.0914687\pi\)
−0.234050 + 0.972225i \(0.575198\pi\)
\(24\) 25.3910 14.6595i 0.215955 0.124682i
\(25\) 52.2255 0.417804
\(26\) 0 0
\(27\) 148.679 1.05975
\(28\) −14.5529 + 8.40209i −0.0982225 + 0.0567088i
\(29\) 150.644 + 260.923i 0.964616 + 1.67076i 0.710643 + 0.703553i \(0.248404\pi\)
0.253973 + 0.967211i \(0.418262\pi\)
\(30\) −31.2643 + 54.1513i −0.190268 + 0.329555i
\(31\) 73.0232i 0.423076i −0.977370 0.211538i \(-0.932153\pi\)
0.977370 0.211538i \(-0.0678472\pi\)
\(32\) −27.7128 16.0000i −0.153093 0.0883883i
\(33\) 207.484 + 119.791i 1.09450 + 0.631908i
\(34\) 53.8038i 0.271390i
\(35\) 17.9191 31.0368i 0.0865396 0.149891i
\(36\) −27.1374 47.0033i −0.125636 0.217608i
\(37\) 102.867 59.3904i 0.457061 0.263885i −0.253746 0.967271i \(-0.581663\pi\)
0.710808 + 0.703386i \(0.248330\pi\)
\(38\) 26.7459 0.114178
\(39\) 0 0
\(40\) 68.2464 0.269767
\(41\) −374.903 + 216.451i −1.42805 + 0.824486i −0.996967 0.0778262i \(-0.975202\pi\)
−0.431084 + 0.902312i \(0.641869\pi\)
\(42\) −15.3963 26.6672i −0.0565643 0.0979723i
\(43\) −178.254 + 308.745i −0.632174 + 1.09496i 0.354933 + 0.934892i \(0.384504\pi\)
−0.987106 + 0.160065i \(0.948830\pi\)
\(44\) 261.490i 0.895935i
\(45\) 100.244 + 57.8759i 0.332078 + 0.191725i
\(46\) 277.005 + 159.929i 0.887874 + 0.512614i
\(47\) 588.614i 1.82677i −0.407096 0.913385i \(-0.633459\pi\)
0.407096 0.913385i \(-0.366541\pi\)
\(48\) 29.3190 50.7820i 0.0881632 0.152703i
\(49\) −162.676 281.762i −0.474273 0.821465i
\(50\) 90.4573 52.2255i 0.255852 0.147716i
\(51\) −98.5921 −0.270699
\(52\) 0 0
\(53\) −269.462 −0.698366 −0.349183 0.937054i \(-0.613541\pi\)
−0.349183 + 0.937054i \(0.613541\pi\)
\(54\) 257.520 148.679i 0.648963 0.374679i
\(55\) 278.840 + 482.965i 0.683614 + 1.18405i
\(56\) −16.8042 + 29.1057i −0.0400992 + 0.0694538i
\(57\) 49.0102i 0.113887i
\(58\) 521.846 + 301.288i 1.18141 + 0.682087i
\(59\) 199.480 + 115.170i 0.440171 + 0.254133i 0.703670 0.710527i \(-0.251543\pi\)
−0.263499 + 0.964660i \(0.584877\pi\)
\(60\) 125.057i 0.269080i
\(61\) 190.408 329.796i 0.399659 0.692230i −0.594024 0.804447i \(-0.702462\pi\)
0.993684 + 0.112217i \(0.0357951\pi\)
\(62\) −73.0232 126.480i −0.149580 0.259080i
\(63\) −49.3658 + 28.5014i −0.0987223 + 0.0569974i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 479.164 0.893652
\(67\) 377.456 217.924i 0.688262 0.397368i −0.114699 0.993400i \(-0.536590\pi\)
0.802961 + 0.596032i \(0.203257\pi\)
\(68\) 53.8038 + 93.1909i 0.0959510 + 0.166192i
\(69\) −293.060 + 507.595i −0.511308 + 0.885612i
\(70\) 71.6765i 0.122385i
\(71\) −57.1249 32.9811i −0.0954857 0.0551287i 0.451497 0.892273i \(-0.350890\pi\)
−0.546982 + 0.837144i \(0.684224\pi\)
\(72\) −94.0067 54.2748i −0.153872 0.0888381i
\(73\) 885.517i 1.41975i −0.704326 0.709876i \(-0.748751\pi\)
0.704326 0.709876i \(-0.251249\pi\)
\(74\) 118.781 205.735i 0.186595 0.323191i
\(75\) 95.7000 + 165.757i 0.147340 + 0.255200i
\(76\) 46.3253 26.7459i 0.0699194 0.0403680i
\(77\) −274.633 −0.406459
\(78\) 0 0
\(79\) −385.463 −0.548962 −0.274481 0.961592i \(-0.588506\pi\)
−0.274481 + 0.961592i \(0.588506\pi\)
\(80\) 118.206 68.2464i 0.165198 0.0953772i
\(81\) 89.2679 + 154.616i 0.122452 + 0.212094i
\(82\) −432.901 + 749.807i −0.582999 + 1.00978i
\(83\) 254.207i 0.336179i −0.985772 0.168089i \(-0.946240\pi\)
0.985772 0.168089i \(-0.0537597\pi\)
\(84\) −53.3344 30.7926i −0.0692769 0.0399970i
\(85\) −198.748 114.747i −0.253615 0.146425i
\(86\) 713.016i 0.894029i
\(87\) −552.091 + 956.250i −0.680349 + 1.17840i
\(88\) −261.490 452.914i −0.316761 0.548646i
\(89\) 322.692 186.306i 0.384329 0.221892i −0.295371 0.955383i \(-0.595443\pi\)
0.679700 + 0.733490i \(0.262110\pi\)
\(90\) 231.504 0.271140
\(91\) 0 0
\(92\) 639.716 0.724946
\(93\) 231.766 133.810i 0.258420 0.149199i
\(94\) −588.614 1019.51i −0.645861 1.11866i
\(95\) −57.0410 + 98.7979i −0.0616030 + 0.106699i
\(96\) 117.276i 0.124682i
\(97\) −1137.86 656.942i −1.19105 0.687653i −0.232506 0.972595i \(-0.574692\pi\)
−0.958545 + 0.284942i \(0.908026\pi\)
\(98\) −563.525 325.351i −0.580863 0.335362i
\(99\) 887.020i 0.900494i
\(100\) 104.451 180.915i 0.104451 0.180915i
\(101\) 731.861 + 1267.62i 0.721019 + 1.24884i 0.960592 + 0.277963i \(0.0896592\pi\)
−0.239573 + 0.970878i \(0.577007\pi\)
\(102\) −170.767 + 98.5921i −0.165769 + 0.0957066i
\(103\) −210.886 −0.201740 −0.100870 0.994900i \(-0.532163\pi\)
−0.100870 + 0.994900i \(0.532163\pi\)
\(104\) 0 0
\(105\) 131.343 0.122074
\(106\) −466.722 + 269.462i −0.427660 + 0.246910i
\(107\) −195.531 338.669i −0.176660 0.305985i 0.764074 0.645128i \(-0.223196\pi\)
−0.940735 + 0.339144i \(0.889863\pi\)
\(108\) 297.358 515.040i 0.264938 0.458886i
\(109\) 1331.40i 1.16996i 0.811049 + 0.584978i \(0.198897\pi\)
−0.811049 + 0.584978i \(0.801103\pi\)
\(110\) 965.930 + 557.680i 0.837253 + 0.483388i
\(111\) 376.996 + 217.658i 0.322368 + 0.186119i
\(112\) 67.2167i 0.0567088i
\(113\) 355.956 616.534i 0.296332 0.513263i −0.678962 0.734174i \(-0.737570\pi\)
0.975294 + 0.220911i \(0.0709031\pi\)
\(114\) 49.0102 + 84.8882i 0.0402652 + 0.0697413i
\(115\) −1181.54 + 682.161i −0.958078 + 0.553146i
\(116\) 1205.15 0.964616
\(117\) 0 0
\(118\) 460.679 0.359398
\(119\) 97.8748 56.5081i 0.0753964 0.0435301i
\(120\) 125.057 + 216.605i 0.0951342 + 0.164777i
\(121\) 1471.29 2548.34i 1.10540 1.91461i
\(122\) 761.631i 0.565204i
\(123\) −1373.97 793.264i −1.00721 0.581514i
\(124\) −252.960 146.046i −0.183197 0.105769i
\(125\) 1511.87i 1.08181i
\(126\) −57.0027 + 98.7316i −0.0403032 + 0.0698072i
\(127\) −585.852 1014.73i −0.409338 0.708995i 0.585477 0.810689i \(-0.300907\pi\)
−0.994816 + 0.101694i \(0.967574\pi\)
\(128\) −110.851 + 64.0000i −0.0765466 + 0.0441942i
\(129\) −1306.56 −0.891751
\(130\) 0 0
\(131\) −1128.61 −0.752726 −0.376363 0.926472i \(-0.622825\pi\)
−0.376363 + 0.926472i \(0.622825\pi\)
\(132\) 829.937 479.164i 0.547248 0.315954i
\(133\) −28.0902 48.6537i −0.0183138 0.0317204i
\(134\) 435.848 754.911i 0.280982 0.486675i
\(135\) 1268.35i 0.808610i
\(136\) 186.382 + 107.608i 0.117516 + 0.0678476i
\(137\) −1513.76 873.967i −0.944006 0.545022i −0.0527923 0.998606i \(-0.516812\pi\)
−0.891214 + 0.453583i \(0.850145\pi\)
\(138\) 1172.24i 0.723099i
\(139\) −838.268 + 1451.92i −0.511518 + 0.885975i 0.488393 + 0.872624i \(0.337583\pi\)
−0.999911 + 0.0133509i \(0.995750\pi\)
\(140\) −71.6765 124.147i −0.0432698 0.0749455i
\(141\) 1868.19 1078.60i 1.11581 0.644216i
\(142\) −131.924 −0.0779637
\(143\) 0 0
\(144\) −217.099 −0.125636
\(145\) −2225.88 + 1285.11i −1.27482 + 0.736019i
\(146\) −885.517 1533.76i −0.501958 0.869417i
\(147\) 596.186 1032.62i 0.334507 0.579384i
\(148\) 475.124i 0.263885i
\(149\) 776.791 + 448.481i 0.427095 + 0.246584i 0.698108 0.715992i \(-0.254025\pi\)
−0.271013 + 0.962576i \(0.587359\pi\)
\(150\) 331.515 + 191.400i 0.180454 + 0.104185i
\(151\) 2078.28i 1.12005i 0.828475 + 0.560027i \(0.189209\pi\)
−0.828475 + 0.560027i \(0.810791\pi\)
\(152\) 53.4918 92.6506i 0.0285445 0.0494405i
\(153\) 182.512 + 316.120i 0.0964393 + 0.167038i
\(154\) −475.679 + 274.633i −0.248904 + 0.143705i
\(155\) 622.946 0.322814
\(156\) 0 0
\(157\) −3494.75 −1.77650 −0.888252 0.459357i \(-0.848080\pi\)
−0.888252 + 0.459357i \(0.848080\pi\)
\(158\) −667.642 + 385.463i −0.336169 + 0.194087i
\(159\) −493.772 855.238i −0.246281 0.426571i
\(160\) 136.493 236.412i 0.0674419 0.116813i
\(161\) 671.869i 0.328887i
\(162\) 309.233 + 178.536i 0.149973 + 0.0865870i
\(163\) −390.797 225.627i −0.187789 0.108420i 0.403158 0.915130i \(-0.367912\pi\)
−0.590947 + 0.806710i \(0.701246\pi\)
\(164\) 1731.61i 0.824486i
\(165\) −1021.91 + 1770.01i −0.482157 + 0.835120i
\(166\) −254.207 440.299i −0.118857 0.205867i
\(167\) −2774.18 + 1601.68i −1.28547 + 0.742164i −0.977842 0.209344i \(-0.932867\pi\)
−0.307624 + 0.951508i \(0.599534\pi\)
\(168\) −123.170 −0.0565643
\(169\) 0 0
\(170\) −458.989 −0.207076
\(171\) 157.143 90.7268i 0.0702752 0.0405734i
\(172\) 713.016 + 1234.98i 0.316087 + 0.547478i
\(173\) 949.691 1644.91i 0.417362 0.722893i −0.578311 0.815816i \(-0.696288\pi\)
0.995673 + 0.0929237i \(0.0296213\pi\)
\(174\) 2208.36i 0.962159i
\(175\) −190.008 109.701i −0.0820756 0.0473864i
\(176\) −905.829 522.980i −0.387951 0.223984i
\(177\) 844.165i 0.358482i
\(178\) 372.612 645.384i 0.156902 0.271762i
\(179\) 1325.45 + 2295.74i 0.553455 + 0.958612i 0.998022 + 0.0628664i \(0.0200242\pi\)
−0.444567 + 0.895746i \(0.646642\pi\)
\(180\) 400.976 231.504i 0.166039 0.0958625i
\(181\) 2289.94 0.940387 0.470194 0.882563i \(-0.344184\pi\)
0.470194 + 0.882563i \(0.344184\pi\)
\(182\) 0 0
\(183\) 1395.64 0.563764
\(184\) 1108.02 639.716i 0.443937 0.256307i
\(185\) 506.648 + 877.539i 0.201349 + 0.348746i
\(186\) 267.621 463.533i 0.105500 0.182731i
\(187\) 1758.65i 0.687727i
\(188\) −2039.02 1177.23i −0.791015 0.456693i
\(189\) −540.926 312.304i −0.208183 0.120195i
\(190\) 228.164i 0.0871198i
\(191\) 169.157 292.988i 0.0640825 0.110994i −0.832204 0.554469i \(-0.812921\pi\)
0.896287 + 0.443475i \(0.146255\pi\)
\(192\) −117.276 203.128i −0.0440816 0.0763515i
\(193\) −2324.46 + 1342.03i −0.866933 + 0.500524i −0.866328 0.499476i \(-0.833526\pi\)
−0.000605201 1.00000i \(0.500193\pi\)
\(194\) −2627.77 −0.972489
\(195\) 0 0
\(196\) −1301.40 −0.474273
\(197\) 1643.06 948.620i 0.594229 0.343078i −0.172539 0.985003i \(-0.555197\pi\)
0.766768 + 0.641925i \(0.221864\pi\)
\(198\) −887.020 1536.36i −0.318373 0.551438i
\(199\) −1207.80 + 2091.97i −0.430245 + 0.745207i −0.996894 0.0787527i \(-0.974906\pi\)
0.566649 + 0.823959i \(0.308240\pi\)
\(200\) 417.804i 0.147716i
\(201\) 1383.33 + 798.665i 0.485435 + 0.280266i
\(202\) 2535.24 + 1463.72i 0.883064 + 0.509837i
\(203\) 1265.72i 0.437618i
\(204\) −197.184 + 341.533i −0.0676748 + 0.117216i
\(205\) −1846.50 3198.22i −0.629097 1.08963i
\(206\) −365.265 + 210.886i −0.123540 + 0.0713258i
\(207\) 2170.03 0.728635
\(208\) 0 0
\(209\) 874.225 0.289337
\(210\) 227.492 131.343i 0.0747546 0.0431596i
\(211\) −1334.21 2310.92i −0.435312 0.753982i 0.562009 0.827131i \(-0.310028\pi\)
−0.997321 + 0.0731491i \(0.976695\pi\)
\(212\) −538.924 + 933.443i −0.174592 + 0.302402i
\(213\) 241.743i 0.0777651i
\(214\) −677.338 391.061i −0.216364 0.124918i
\(215\) −2633.84 1520.65i −0.835471 0.482360i
\(216\) 1189.43i 0.374679i
\(217\) −153.387 + 265.674i −0.0479842 + 0.0831112i
\(218\) 1331.40 + 2306.06i 0.413642 + 0.716449i
\(219\) 2810.52 1622.65i 0.867202 0.500680i
\(220\) 2230.72 0.683614
\(221\) 0 0
\(222\) 870.634 0.263212
\(223\) −247.993 + 143.179i −0.0744701 + 0.0429953i −0.536773 0.843727i \(-0.680357\pi\)
0.462303 + 0.886722i \(0.347023\pi\)
\(224\) 67.2167 + 116.423i 0.0200496 + 0.0347269i
\(225\) 354.316 613.694i 0.104983 0.181835i
\(226\) 1423.82i 0.419077i
\(227\) −4504.41 2600.62i −1.31704 0.760393i −0.333788 0.942648i \(-0.608327\pi\)
−0.983251 + 0.182255i \(0.941660\pi\)
\(228\) 169.776 + 98.0204i 0.0493145 + 0.0284718i
\(229\) 890.458i 0.256957i −0.991712 0.128478i \(-0.958991\pi\)
0.991712 0.128478i \(-0.0410093\pi\)
\(230\) −1364.32 + 2363.08i −0.391134 + 0.677463i
\(231\) −503.248 871.651i −0.143339 0.248270i
\(232\) 2087.38 1205.15i 0.590704 0.341043i
\(233\) −4753.11 −1.33642 −0.668212 0.743971i \(-0.732940\pi\)
−0.668212 + 0.743971i \(0.732940\pi\)
\(234\) 0 0
\(235\) 5021.35 1.39386
\(236\) 797.919 460.679i 0.220085 0.127066i
\(237\) −706.337 1223.41i −0.193593 0.335313i
\(238\) 113.016 195.750i 0.0307805 0.0533133i
\(239\) 2292.62i 0.620491i −0.950656 0.310245i \(-0.899589\pi\)
0.950656 0.310245i \(-0.100411\pi\)
\(240\) 433.211 + 250.114i 0.116515 + 0.0672700i
\(241\) 1710.58 + 987.604i 0.457212 + 0.263972i 0.710871 0.703322i \(-0.248301\pi\)
−0.253659 + 0.967294i \(0.581634\pi\)
\(242\) 5885.14i 1.56327i
\(243\) 1680.01 2909.87i 0.443510 0.768182i
\(244\) −761.631 1319.18i −0.199830 0.346115i
\(245\) 2403.66 1387.75i 0.626792 0.361879i
\(246\) −3173.06 −0.822385
\(247\) 0 0
\(248\) −584.186 −0.149580
\(249\) 806.821 465.818i 0.205342 0.118554i
\(250\) 1511.87 + 2618.64i 0.382477 + 0.662470i
\(251\) −3732.87 + 6465.52i −0.938711 + 1.62590i −0.170833 + 0.985300i \(0.554646\pi\)
−0.767879 + 0.640595i \(0.778688\pi\)
\(252\) 228.011i 0.0569974i
\(253\) 9054.27 + 5227.49i 2.24995 + 1.29901i
\(254\) −2029.45 1171.70i −0.501335 0.289446i
\(255\) 841.069i 0.206548i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −277.483 480.615i −0.0673499 0.116653i 0.830384 0.557191i \(-0.188121\pi\)
−0.897734 + 0.440538i \(0.854788\pi\)
\(258\) −2263.02 + 1306.56i −0.546084 + 0.315282i
\(259\) −499.004 −0.119717
\(260\) 0 0
\(261\) 4088.08 0.969525
\(262\) −1954.81 + 1128.61i −0.460949 + 0.266129i
\(263\) 996.534 + 1726.05i 0.233646 + 0.404687i 0.958878 0.283817i \(-0.0916010\pi\)
−0.725232 + 0.688504i \(0.758268\pi\)
\(264\) 958.329 1659.87i 0.223413 0.386963i
\(265\) 2298.72i 0.532866i
\(266\) −97.3074 56.1804i −0.0224297 0.0129498i
\(267\) 1182.63 + 682.789i 0.271069 + 0.156502i
\(268\) 1743.39i 0.397368i
\(269\) 2603.88 4510.06i 0.590191 1.02224i −0.404015 0.914752i \(-0.632386\pi\)
0.994206 0.107489i \(-0.0342811\pi\)
\(270\) 1268.35 + 2196.85i 0.285887 + 0.495170i
\(271\) −3537.63 + 2042.45i −0.792972 + 0.457823i −0.841008 0.541023i \(-0.818037\pi\)
0.0480356 + 0.998846i \(0.484704\pi\)
\(272\) 430.430 0.0959510
\(273\) 0 0
\(274\) −3495.87 −0.770778
\(275\) 2956.71 1707.06i 0.648351 0.374325i
\(276\) 1172.24 + 2030.38i 0.255654 + 0.442806i
\(277\) 218.996 379.313i 0.0475026 0.0822769i −0.841296 0.540574i \(-0.818207\pi\)
0.888799 + 0.458297i \(0.151540\pi\)
\(278\) 3353.07i 0.723395i
\(279\) −858.083 495.415i −0.184129 0.106307i
\(280\) −248.295 143.353i −0.0529945 0.0305964i
\(281\) 5462.34i 1.15963i −0.814748 0.579815i \(-0.803125\pi\)
0.814748 0.579815i \(-0.196875\pi\)
\(282\) 2157.20 3736.38i 0.455529 0.789000i
\(283\) −398.338 689.941i −0.0836704 0.144921i 0.821153 0.570707i \(-0.193331\pi\)
−0.904824 + 0.425786i \(0.859998\pi\)
\(284\) −228.500 + 131.924i −0.0477428 + 0.0275643i
\(285\) −418.096 −0.0868978
\(286\) 0 0
\(287\) 1818.64 0.374045
\(288\) −376.027 + 217.099i −0.0769361 + 0.0444191i
\(289\) 2094.64 + 3628.03i 0.426347 + 0.738455i
\(290\) −2570.22 + 4451.76i −0.520444 + 0.901436i
\(291\) 4815.22i 0.970011i
\(292\) −3067.52 1771.03i −0.614771 0.354938i
\(293\) 1469.93 + 848.662i 0.293085 + 0.169213i 0.639332 0.768931i \(-0.279211\pi\)
−0.346247 + 0.938143i \(0.612544\pi\)
\(294\) 2384.74i 0.473065i
\(295\) −982.490 + 1701.72i −0.193908 + 0.335858i
\(296\) −475.124 822.938i −0.0932973 0.161596i
\(297\) 8417.37 4859.77i 1.64453 0.949469i
\(298\) 1793.92 0.348722
\(299\) 0 0
\(300\) 765.600 0.147340
\(301\) 1297.05 748.853i 0.248375 0.143399i
\(302\) 2078.28 + 3599.69i 0.395999 + 0.685890i
\(303\) −2682.18 + 4645.67i −0.508538 + 0.880814i
\(304\) 213.967i 0.0403680i
\(305\) 2813.42 + 1624.33i 0.528184 + 0.304947i
\(306\) 632.240 + 365.024i 0.118114 + 0.0681929i
\(307\) 9385.86i 1.74488i 0.488718 + 0.872442i \(0.337465\pi\)
−0.488718 + 0.872442i \(0.662535\pi\)
\(308\) −549.266 + 951.357i −0.101615 + 0.176002i
\(309\) −386.435 669.325i −0.0711441 0.123225i
\(310\) 1078.97 622.946i 0.197683 0.114132i
\(311\) 3282.65 0.598527 0.299264 0.954170i \(-0.403259\pi\)
0.299264 + 0.954170i \(0.403259\pi\)
\(312\) 0 0
\(313\) −5924.67 −1.06991 −0.534955 0.844880i \(-0.679672\pi\)
−0.534955 + 0.844880i \(0.679672\pi\)
\(314\) −6053.08 + 3494.75i −1.08788 + 0.628089i
\(315\) −243.139 421.130i −0.0434900 0.0753269i
\(316\) −770.927 + 1335.28i −0.137241 + 0.237708i
\(317\) 6467.88i 1.14597i −0.819566 0.572985i \(-0.805785\pi\)
0.819566 0.572985i \(-0.194215\pi\)
\(318\) −1710.48 987.544i −0.301631 0.174147i
\(319\) 17057.2 + 9847.98i 2.99379 + 1.72847i
\(320\) 545.971i 0.0953772i
\(321\) 716.595 1241.18i 0.124599 0.215813i
\(322\) −671.869 1163.71i −0.116279 0.201401i
\(323\) −311.560 + 179.879i −0.0536707 + 0.0309868i
\(324\) 714.143 0.122452
\(325\) 0 0
\(326\) −902.508 −0.153329
\(327\) −4225.70 + 2439.71i −0.714624 + 0.412588i
\(328\) 1731.61 + 2999.23i 0.291500 + 0.504892i
\(329\) −1236.40 + 2141.50i −0.207188 + 0.358860i
\(330\) 4087.65i 0.681872i
\(331\) 3039.09 + 1754.62i 0.504664 + 0.291368i 0.730637 0.682766i \(-0.239223\pi\)
−0.225974 + 0.974133i \(0.572556\pi\)
\(332\) −880.599 508.414i −0.145570 0.0840447i
\(333\) 1611.70i 0.265227i
\(334\) −3203.35 + 5548.37i −0.524789 + 0.908962i
\(335\) 1859.07 + 3220.00i 0.303199 + 0.525156i
\(336\) −213.337 + 123.170i −0.0346384 + 0.0199985i
\(337\) 1834.82 0.296584 0.148292 0.988944i \(-0.452622\pi\)
0.148292 + 0.988944i \(0.452622\pi\)
\(338\) 0 0
\(339\) 2609.07 0.418010
\(340\) −794.993 + 458.989i −0.126807 + 0.0732123i
\(341\) −2386.86 4134.16i −0.379048 0.656531i
\(342\) 181.454 314.287i 0.0286897 0.0496921i
\(343\) 2807.77i 0.441999i
\(344\) 2469.96 + 1426.03i 0.387126 + 0.223507i
\(345\) −4330.19 2500.03i −0.675737 0.390137i
\(346\) 3798.76i 0.590239i
\(347\) 3629.65 6286.74i 0.561527 0.972593i −0.435837 0.900026i \(-0.643547\pi\)
0.997364 0.0725673i \(-0.0231192\pi\)
\(348\) 2208.36 + 3825.00i 0.340175 + 0.589200i
\(349\) −1554.72 + 897.618i −0.238459 + 0.137674i −0.614468 0.788942i \(-0.710629\pi\)
0.376009 + 0.926616i \(0.377296\pi\)
\(350\) −438.804 −0.0670144
\(351\) 0 0
\(352\) −2091.92 −0.316761
\(353\) 3942.47 2276.19i 0.594438 0.343199i −0.172412 0.985025i \(-0.555156\pi\)
0.766850 + 0.641826i \(0.221823\pi\)
\(354\) 844.165 + 1462.14i 0.126743 + 0.219525i
\(355\) 281.355 487.321i 0.0420641 0.0728572i
\(356\) 1490.45i 0.221892i
\(357\) 358.699 + 207.095i 0.0531775 + 0.0307020i
\(358\) 4591.48 + 2650.89i 0.677841 + 0.391352i
\(359\) 10165.4i 1.49445i 0.664569 + 0.747227i \(0.268615\pi\)
−0.664569 + 0.747227i \(0.731385\pi\)
\(360\) 463.007 801.952i 0.0677850 0.117407i
\(361\) −3340.08 5785.19i −0.486963 0.843445i
\(362\) 3966.30 2289.94i 0.575867 0.332477i
\(363\) 10784.2 1.55929
\(364\) 0 0
\(365\) 7554.16 1.08330
\(366\) 2417.32 1395.64i 0.345233 0.199321i
\(367\) 5200.78 + 9008.01i 0.739723 + 1.28124i 0.952620 + 0.304163i \(0.0983769\pi\)
−0.212897 + 0.977075i \(0.568290\pi\)
\(368\) 1279.43 2216.04i 0.181237 0.313911i
\(369\) 5873.91i 0.828681i
\(370\) 1755.08 + 1013.30i 0.246601 + 0.142375i
\(371\) 980.359 + 566.011i 0.137191 + 0.0792070i
\(372\) 1070.48i 0.149199i
\(373\) 3976.70 6887.85i 0.552027 0.956138i −0.446101 0.894982i \(-0.647188\pi\)
0.998128 0.0611560i \(-0.0194787\pi\)
\(374\) 1758.65 + 3046.06i 0.243148 + 0.421145i
\(375\) −4798.50 + 2770.42i −0.660783 + 0.381503i
\(376\) −4708.91 −0.645861
\(377\) 0 0
\(378\) −1249.22 −0.169981
\(379\) −7807.06 + 4507.41i −1.05810 + 0.610897i −0.924907 0.380193i \(-0.875858\pi\)
−0.133197 + 0.991090i \(0.542524\pi\)
\(380\) 228.164 + 395.192i 0.0308015 + 0.0533497i
\(381\) 2147.07 3718.84i 0.288709 0.500058i
\(382\) 676.627i 0.0906263i
\(383\) −2161.81 1248.12i −0.288415 0.166517i 0.348812 0.937193i \(-0.386585\pi\)
−0.637227 + 0.770676i \(0.719919\pi\)
\(384\) −406.256 234.552i −0.0539887 0.0311704i
\(385\) 2342.84i 0.310135i
\(386\) −2684.05 + 4648.91i −0.353924 + 0.613014i
\(387\) 2418.67 + 4189.26i 0.317695 + 0.550264i
\(388\) −4551.43 + 2627.77i −0.595525 + 0.343827i
\(389\) −10896.9 −1.42029 −0.710145 0.704056i \(-0.751371\pi\)
−0.710145 + 0.704056i \(0.751371\pi\)
\(390\) 0 0
\(391\) −4302.40 −0.556475
\(392\) −2254.10 + 1301.40i −0.290432 + 0.167681i
\(393\) −2068.11 3582.07i −0.265451 0.459774i
\(394\) 1897.24 3286.12i 0.242593 0.420183i
\(395\) 3288.31i 0.418868i
\(396\) −3072.73 1774.04i −0.389925 0.225123i
\(397\) −9428.55 5443.57i −1.19195 0.688174i −0.233203 0.972428i \(-0.574921\pi\)
−0.958749 + 0.284254i \(0.908254\pi\)
\(398\) 4831.21i 0.608459i
\(399\) 102.947 178.310i 0.0129168 0.0223725i
\(400\) −417.804 723.658i −0.0522255 0.0904573i
\(401\) 8633.20 4984.38i 1.07512 0.620718i 0.145541 0.989352i \(-0.453508\pi\)
0.929575 + 0.368634i \(0.120174\pi\)
\(402\) 3194.66 0.396356
\(403\) 0 0
\(404\) 5854.89 0.721019
\(405\) −1319.00 + 761.526i −0.161831 + 0.0934334i
\(406\) −1265.72 2192.30i −0.154721 0.267985i
\(407\) 3882.50 6724.70i 0.472847 0.818994i
\(408\) 788.737i 0.0957066i
\(409\) 3495.56 + 2018.16i 0.422602 + 0.243989i 0.696190 0.717858i \(-0.254877\pi\)
−0.273588 + 0.961847i \(0.588210\pi\)
\(410\) −6396.45 3692.99i −0.770483 0.444839i
\(411\) 6405.96i 0.768814i
\(412\) −421.772 + 730.530i −0.0504350 + 0.0873559i
\(413\) −483.833 838.024i −0.0576462 0.0998462i
\(414\) 3758.60 2170.03i 0.446196 0.257611i
\(415\) 2168.59 0.256510
\(416\) 0 0
\(417\) −6144.29 −0.721552
\(418\) 1514.20 874.225i 0.177182 0.102296i
\(419\) −7597.43 13159.1i −0.885821 1.53429i −0.844770 0.535129i \(-0.820263\pi\)
−0.0410504 0.999157i \(-0.513070\pi\)
\(420\) 262.685 454.985i 0.0305184 0.0528595i
\(421\) 10154.8i 1.17556i −0.809019 0.587782i \(-0.800001\pi\)
0.809019 0.587782i \(-0.199999\pi\)
\(422\) −4621.84 2668.42i −0.533146 0.307812i
\(423\) −6916.71 3993.36i −0.795040 0.459017i
\(424\) 2155.69i 0.246910i
\(425\) −702.483 + 1216.74i −0.0801775 + 0.138872i
\(426\) −241.743 418.711i −0.0274941 0.0476212i
\(427\) −1385.49 + 799.912i −0.157022 + 0.0906568i
\(428\) −1564.24 −0.176660
\(429\) 0 0
\(430\) −6082.59 −0.682159
\(431\) 5730.35 3308.42i 0.640420 0.369747i −0.144356 0.989526i \(-0.546111\pi\)
0.784776 + 0.619779i \(0.212778\pi\)
\(432\) −1189.43 2060.16i −0.132469 0.229443i
\(433\) 2848.80 4934.27i 0.316177 0.547635i −0.663510 0.748167i \(-0.730934\pi\)
0.979687 + 0.200533i \(0.0642673\pi\)
\(434\) 613.548i 0.0678600i
\(435\) −8157.57 4709.77i −0.899139 0.519118i
\(436\) 4612.11 + 2662.81i 0.506606 + 0.292489i
\(437\) 2138.73i 0.234117i
\(438\) 3245.31 5621.04i 0.354034 0.613205i
\(439\) 218.004 + 377.593i 0.0237010 + 0.0410513i 0.877633 0.479334i \(-0.159122\pi\)
−0.853932 + 0.520385i \(0.825788\pi\)
\(440\) 3863.72 2230.72i 0.418626 0.241694i
\(441\) −4414.59 −0.476686
\(442\) 0 0
\(443\) 6609.58 0.708873 0.354436 0.935080i \(-0.384673\pi\)
0.354436 + 0.935080i \(0.384673\pi\)
\(444\) 1507.98 870.634i 0.161184 0.0930596i
\(445\) 1589.34 + 2752.82i 0.169308 + 0.293250i
\(446\) −286.358 + 495.986i −0.0304023 + 0.0526583i
\(447\) 3287.25i 0.347833i
\(448\) 232.846 + 134.433i 0.0245556 + 0.0141772i
\(449\) −6941.46 4007.65i −0.729594 0.421231i 0.0886795 0.996060i \(-0.471735\pi\)
−0.818274 + 0.574829i \(0.805069\pi\)
\(450\) 1417.26i 0.148468i
\(451\) −14149.9 + 24508.4i −1.47737 + 2.55888i
\(452\) −1423.82 2466.14i −0.148166 0.256631i
\(453\) −6596.20 + 3808.32i −0.684142 + 0.394990i
\(454\) −10402.5 −1.07536
\(455\) 0 0
\(456\) 392.082 0.0402652
\(457\) 3903.21 2253.52i 0.399528 0.230668i −0.286752 0.958005i \(-0.592576\pi\)
0.686280 + 0.727337i \(0.259242\pi\)
\(458\) −890.458 1542.32i −0.0908480 0.157353i
\(459\) −1999.88 + 3463.89i −0.203369 + 0.352245i
\(460\) 5457.29i 0.553146i
\(461\) 1821.73 + 1051.78i 0.184048 + 0.106260i 0.589193 0.807992i \(-0.299446\pi\)
−0.405145 + 0.914252i \(0.632779\pi\)
\(462\) −1743.30 1006.50i −0.175554 0.101356i
\(463\) 5468.28i 0.548883i 0.961604 + 0.274441i \(0.0884929\pi\)
−0.961604 + 0.274441i \(0.911507\pi\)
\(464\) 2410.30 4174.77i 0.241154 0.417691i
\(465\) 1141.51 + 1977.15i 0.113841 + 0.197179i
\(466\) −8232.63 + 4753.11i −0.818389 + 0.472497i
\(467\) 6043.79 0.598872 0.299436 0.954116i \(-0.403201\pi\)
0.299436 + 0.954116i \(0.403201\pi\)
\(468\) 0 0
\(469\) −1831.02 −0.180274
\(470\) 8697.23 5021.35i 0.853560 0.492803i
\(471\) −6403.90 11091.9i −0.626489 1.08511i
\(472\) 921.358 1595.84i 0.0898495 0.155624i
\(473\) 23305.8i 2.26555i
\(474\) −2446.82 1412.67i −0.237102 0.136891i
\(475\) 604.841 + 349.205i 0.0584253 + 0.0337318i
\(476\) 452.065i 0.0435301i
\(477\) −1828.12 + 3166.40i −0.175480 + 0.303940i
\(478\) −2292.62 3970.94i −0.219377 0.379972i
\(479\) −7345.02 + 4240.65i −0.700632 + 0.404510i −0.807583 0.589754i \(-0.799225\pi\)
0.106951 + 0.994264i \(0.465891\pi\)
\(480\) 1000.46 0.0951342
\(481\) 0 0
\(482\) 3950.42 0.373312
\(483\) 2132.43 1231.16i 0.200888 0.115983i
\(484\) −5885.14 10193.4i −0.552699 0.957303i
\(485\) 5604.24 9706.83i 0.524691 0.908792i
\(486\) 6720.05i 0.627218i
\(487\) −5735.99 3311.68i −0.533722 0.308145i 0.208809 0.977957i \(-0.433041\pi\)
−0.742531 + 0.669812i \(0.766375\pi\)
\(488\) −2638.37 1523.26i −0.244740 0.141301i
\(489\) 1653.79i 0.152939i
\(490\) 2775.50 4807.31i 0.255887 0.443209i
\(491\) 8189.68 + 14184.9i 0.752739 + 1.30378i 0.946490 + 0.322732i \(0.104601\pi\)
−0.193751 + 0.981051i \(0.562065\pi\)
\(492\) −5495.90 + 3173.06i −0.503606 + 0.290757i
\(493\) −8105.21 −0.740447
\(494\) 0 0
\(495\) 7566.99 0.687093
\(496\) −1011.84 + 584.186i −0.0915986 + 0.0528845i
\(497\) 138.555 + 239.985i 0.0125051 + 0.0216595i
\(498\) 931.637 1613.64i 0.0838306 0.145199i
\(499\) 7915.70i 0.710131i 0.934841 + 0.355065i \(0.115541\pi\)
−0.934841 + 0.355065i \(0.884459\pi\)
\(500\) 5237.29 + 3023.75i 0.468437 + 0.270452i
\(501\) −10167.0 5869.94i −0.906646 0.523452i
\(502\) 14931.5i 1.32754i
\(503\) 239.755 415.269i 0.0212528 0.0368110i −0.855203 0.518293i \(-0.826568\pi\)
0.876456 + 0.481482i \(0.159901\pi\)
\(504\) 228.011 + 394.926i 0.0201516 + 0.0349036i
\(505\) −10813.8 + 6243.36i −0.952888 + 0.550150i
\(506\) 20909.9 1.83708
\(507\) 0 0
\(508\) −4686.82 −0.409338
\(509\) −1032.59 + 596.164i −0.0899186 + 0.0519145i −0.544285 0.838900i \(-0.683199\pi\)
0.454366 + 0.890815i \(0.349866\pi\)
\(510\) −841.069 1456.77i −0.0730258 0.126484i
\(511\) −1860.05 + 3221.70i −0.161025 + 0.278903i
\(512\) 512.000i 0.0441942i
\(513\) 1721.90 + 994.140i 0.148195 + 0.0855602i
\(514\) −961.229 554.966i −0.0824864 0.0476236i
\(515\) 1799.02i 0.153931i
\(516\) −2613.11 + 4526.04i −0.222938 + 0.386140i
\(517\) −19239.6 33324.0i −1.63667 2.83479i
\(518\) −864.300 + 499.004i −0.0733111 + 0.0423262i
\(519\) 6961.00 0.588736
\(520\) 0 0
\(521\) −23238.5 −1.95412 −0.977062 0.212955i \(-0.931691\pi\)
−0.977062 + 0.212955i \(0.931691\pi\)
\(522\) 7080.77 4088.08i 0.593710 0.342779i
\(523\) 5513.14 + 9549.03i 0.460942 + 0.798375i 0.999008 0.0445277i \(-0.0141783\pi\)
−0.538066 + 0.842903i \(0.680845\pi\)
\(524\) −2257.22 + 3909.62i −0.188181 + 0.325940i
\(525\) 804.080i 0.0668437i
\(526\) 3452.10 + 1993.07i 0.286157 + 0.165213i
\(527\) 1701.27 + 982.231i 0.140624 + 0.0811891i
\(528\) 3833.32i 0.315954i
\(529\) −6705.15 + 11613.7i −0.551093 + 0.954522i
\(530\) −2298.72 3981.51i −0.188397 0.326312i
\(531\) 2706.68 1562.70i 0.221205 0.127713i
\(532\) −224.722 −0.0183138
\(533\) 0 0
\(534\) 2731.16 0.221327
\(535\) 2889.11 1668.03i 0.233472 0.134795i
\(536\) −1743.39 3019.65i −0.140491 0.243337i
\(537\) −4857.59 + 8413.59i −0.390355 + 0.676114i
\(538\) 10415.5i 0.834657i
\(539\) −18419.5 10634.5i −1.47196 0.849835i
\(540\) 4393.70 + 2536.70i 0.350138 + 0.202152i
\(541\) 8987.70i 0.714254i 0.934056 + 0.357127i \(0.116244\pi\)
−0.934056 + 0.357127i \(0.883756\pi\)
\(542\) −4084.90 + 7075.25i −0.323730 + 0.560716i
\(543\) 4196.17 + 7267.99i 0.331630 + 0.574400i
\(544\) 745.527 430.430i 0.0587578 0.0339238i
\(545\) −11357.9 −0.892697
\(546\) 0 0
\(547\) −10734.8 −0.839101 −0.419550 0.907732i \(-0.637812\pi\)
−0.419550 + 0.907732i \(0.637812\pi\)
\(548\) −6055.02 + 3495.87i −0.472003 + 0.272511i
\(549\) −2583.59 4474.90i −0.200847 0.347876i
\(550\) 3414.12 5913.42i 0.264688 0.458453i
\(551\) 4029.11i 0.311517i
\(552\) 4060.76 + 2344.48i 0.313111 + 0.180775i
\(553\) 1402.40 + 809.675i 0.107841 + 0.0622620i
\(554\) 875.985i 0.0671788i
\(555\) −1856.80 + 3216.07i −0.142012 + 0.245972i
\(556\) 3353.07 + 5807.69i 0.255759 + 0.442987i
\(557\) 11456.0 6614.13i 0.871466 0.503141i 0.00363111 0.999993i \(-0.498844\pi\)
0.867835 + 0.496852i \(0.165511\pi\)
\(558\) −1981.66 −0.150341
\(559\) 0 0
\(560\) −573.412 −0.0432698
\(561\) −5581.72 + 3222.61i −0.420072 + 0.242529i
\(562\) −5462.34 9461.06i −0.409991 0.710126i
\(563\) 5366.98 9295.89i 0.401761 0.695870i −0.592178 0.805807i \(-0.701732\pi\)
0.993939 + 0.109937i \(0.0350649\pi\)
\(564\) 8628.79i 0.644216i
\(565\) 5259.53 + 3036.59i 0.391628 + 0.226107i
\(566\) −1379.88 796.676i −0.102475 0.0591639i
\(567\) 750.037i 0.0555531i
\(568\) −263.849 + 457.000i −0.0194909 + 0.0337593i
\(569\) 2656.73 + 4601.58i 0.195739 + 0.339031i 0.947143 0.320813i \(-0.103956\pi\)
−0.751403 + 0.659843i \(0.770623\pi\)
\(570\) −724.164 + 418.096i −0.0532138 + 0.0307230i
\(571\) −4629.37 −0.339287 −0.169644 0.985505i \(-0.554262\pi\)
−0.169644 + 0.985505i \(0.554262\pi\)
\(572\) 0 0
\(573\) 1239.88 0.0903954
\(574\) 3149.97 1818.64i 0.229055 0.132245i
\(575\) 4176.19 + 7233.37i 0.302886 + 0.524613i
\(576\) −434.198 + 752.053i −0.0314090 + 0.0544020i
\(577\) 504.750i 0.0364177i 0.999834 + 0.0182088i \(0.00579638\pi\)
−0.999834 + 0.0182088i \(0.994204\pi\)
\(578\) 7256.06 + 4189.29i 0.522167 + 0.301473i
\(579\) −8518.84 4918.36i −0.611453 0.353022i
\(580\) 10280.9i 0.736019i
\(581\) −533.968 + 924.859i −0.0381286 + 0.0660407i
\(582\) −4815.22 8340.21i −0.342951 0.594008i
\(583\) −15255.4 + 8807.70i −1.08373 + 0.625691i
\(584\) −7084.14 −0.501958
\(585\) 0 0
\(586\) 3394.65 0.239303
\(587\) −4791.66 + 2766.47i −0.336922 + 0.194522i −0.658910 0.752222i \(-0.728982\pi\)
0.321988 + 0.946744i \(0.395649\pi\)
\(588\) −2384.74 4130.50i −0.167254 0.289692i
\(589\) 488.268 845.705i 0.0341575 0.0591624i
\(590\) 3929.96i 0.274227i
\(591\) 6021.60 + 3476.57i 0.419113 + 0.241975i
\(592\) −1645.88 950.247i −0.114265 0.0659711i
\(593\) 18079.8i 1.25202i −0.779816 0.626009i \(-0.784687\pi\)
0.779816 0.626009i \(-0.215313\pi\)
\(594\) 9719.54 16834.7i 0.671376 1.16286i
\(595\) 482.059 + 834.950i 0.0332143 + 0.0575288i
\(596\) 3107.16 1793.92i 0.213548 0.123292i
\(597\) −8852.88 −0.606909
\(598\) 0 0
\(599\) −1837.55 −0.125342 −0.0626712 0.998034i \(-0.519962\pi\)
−0.0626712 + 0.998034i \(0.519962\pi\)
\(600\) 1326.06 765.600i 0.0902268 0.0520925i
\(601\) 11743.6 + 20340.6i 0.797060 + 1.38055i 0.921523 + 0.388324i \(0.126946\pi\)
−0.124463 + 0.992224i \(0.539721\pi\)
\(602\) 1497.71 2594.10i 0.101399 0.175627i
\(603\) 5913.89i 0.399390i
\(604\) 7199.37 + 4156.56i 0.484997 + 0.280013i
\(605\) 21739.4 + 12551.2i 1.46088 + 0.843438i
\(606\) 10728.7i 0.719182i
\(607\) 8155.42 14125.6i 0.545335 0.944548i −0.453251 0.891383i \(-0.649736\pi\)
0.998586 0.0531648i \(-0.0169309\pi\)
\(608\) −213.967 370.602i −0.0142722 0.0247202i
\(609\) 4017.25 2319.36i 0.267302 0.154327i
\(610\) 6497.32 0.431260
\(611\) 0 0
\(612\) 1460.09 0.0964393
\(613\) −7320.61 + 4226.56i −0.482344 + 0.278481i −0.721393 0.692526i \(-0.756498\pi\)
0.239049 + 0.971008i \(0.423164\pi\)
\(614\) 9385.86 + 16256.8i 0.616910 + 1.06852i
\(615\) 6767.18 11721.1i 0.443705 0.768520i
\(616\) 2197.06i 0.143705i
\(617\) −11613.7 6705.17i −0.757779 0.437504i 0.0707186 0.997496i \(-0.477471\pi\)
−0.828498 + 0.559992i \(0.810804\pi\)
\(618\) −1338.65 772.870i −0.0871334 0.0503065i
\(619\) 890.135i 0.0577990i −0.999582 0.0288995i \(-0.990800\pi\)
0.999582 0.0288995i \(-0.00920027\pi\)
\(620\) 1245.89 2157.95i 0.0807036 0.139783i
\(621\) 11889.1 + 20592.5i 0.768263 + 1.33067i
\(622\) 5685.72 3282.65i 0.366522 0.211611i
\(623\) −1565.36 −0.100666
\(624\) 0 0
\(625\) −6369.30 −0.407635
\(626\) −10261.8 + 5924.67i −0.655184 + 0.378271i
\(627\) 1601.96 + 2774.68i 0.102035 + 0.176730i
\(628\) −6989.49 + 12106.2i −0.444126 + 0.769249i
\(629\) 3195.43i 0.202560i
\(630\) −842.259 486.278i −0.0532641 0.0307521i
\(631\) 9164.66 + 5291.22i 0.578192 + 0.333819i 0.760415 0.649438i \(-0.224996\pi\)
−0.182222 + 0.983257i \(0.558329\pi\)
\(632\) 3083.71i 0.194087i
\(633\) 4889.71 8469.22i 0.307028 0.531787i
\(634\) −6467.88 11202.7i −0.405161 0.701760i
\(635\) 8656.42 4997.78i 0.540975 0.312332i
\(636\) −3950.17 −0.246281
\(637\) 0 0
\(638\) 39391.9 2.44442
\(639\) −775.111 + 447.510i −0.0479858 + 0.0277046i
\(640\) −545.971 945.649i −0.0337209 0.0584064i
\(641\) 13442.1 23282.4i 0.828286 1.43463i −0.0710952 0.997470i \(-0.522649\pi\)
0.899382 0.437164i \(-0.144017\pi\)
\(642\) 2866.38i 0.176210i
\(643\) 4928.66 + 2845.56i 0.302282 + 0.174523i 0.643468 0.765473i \(-0.277495\pi\)
−0.341186 + 0.939996i \(0.610828\pi\)
\(644\) −2327.42 1343.74i −0.142412 0.0822216i
\(645\) 11146.0i 0.680422i
\(646\) −359.758 + 623.119i −0.0219110 + 0.0379509i
\(647\) 904.896 + 1567.33i 0.0549847 + 0.0952364i 0.892208 0.451625i \(-0.149156\pi\)
−0.837223 + 0.546862i \(0.815822\pi\)
\(648\) 1236.93 714.143i 0.0749865 0.0432935i
\(649\) 15057.9 0.910745
\(650\) 0 0
\(651\) −1124.29 −0.0676871
\(652\) −1563.19 + 902.508i −0.0938945 + 0.0542100i
\(653\) −4729.58 8191.88i −0.283435 0.490923i 0.688794 0.724957i \(-0.258141\pi\)
−0.972228 + 0.234034i \(0.924807\pi\)
\(654\) −4879.42 + 8451.41i −0.291744 + 0.505315i
\(655\) 9627.94i 0.574343i
\(656\) 5998.46 + 3463.21i 0.357013 + 0.206121i
\(657\) −10405.6 6007.66i −0.617899 0.356744i
\(658\) 4945.59i 0.293008i
\(659\) −507.660 + 879.293i −0.0300085 + 0.0519763i −0.880640 0.473787i \(-0.842887\pi\)
0.850631 + 0.525763i \(0.176220\pi\)
\(660\) 4087.65 + 7080.02i 0.241078 + 0.417560i
\(661\) 20480.2 11824.2i 1.20512 0.695778i 0.243433 0.969918i \(-0.421727\pi\)
0.961690 + 0.274140i \(0.0883932\pi\)
\(662\) 7018.49 0.412056
\(663\) 0 0
\(664\) −2033.66 −0.118857
\(665\) 415.055 239.632i 0.0242032 0.0139737i
\(666\) −1611.70 2791.55i −0.0937720 0.162418i
\(667\) −24092.3 + 41729.2i −1.39859 + 2.42243i
\(668\) 12813.4i 0.742164i
\(669\) −908.863 524.732i −0.0525242 0.0303248i
\(670\) 6439.99 + 3718.13i 0.371341 + 0.214394i
\(671\) 24894.9i 1.43228i
\(672\) −246.341 + 426.675i −0.0141411 + 0.0244931i
\(673\) 8873.48 + 15369.3i 0.508243 + 0.880303i 0.999954 + 0.00954455i \(0.00303817\pi\)
−0.491711 + 0.870758i \(0.663628\pi\)
\(674\) 3178.00 1834.82i 0.181620 0.104858i
\(675\) 7764.85 0.442769
\(676\) 0 0
\(677\) 10754.2 0.610511 0.305256 0.952270i \(-0.401258\pi\)
0.305256 + 0.952270i \(0.401258\pi\)
\(678\) 4519.04 2609.07i 0.255977 0.147789i
\(679\) 2759.84 + 4780.19i 0.155984 + 0.270172i
\(680\) −917.978 + 1589.99i −0.0517689 + 0.0896664i
\(681\) 19061.9i 1.07262i
\(682\) −8268.31 4773.71i −0.464238 0.268028i
\(683\) 20768.8 + 11990.9i 1.16354 + 0.671768i 0.952149 0.305635i \(-0.0988687\pi\)
0.211387 + 0.977402i \(0.432202\pi\)
\(684\) 725.815i 0.0405734i
\(685\) 7455.63 12913.5i 0.415862 0.720293i
\(686\) 2807.77 + 4863.21i 0.156270 + 0.270668i
\(687\) 2826.20 1631.71i 0.156953 0.0906166i
\(688\) 5704.13 0.316087
\(689\) 0 0
\(690\) −10000.1 −0.551737
\(691\) −25116.0 + 14500.7i −1.38272 + 0.798312i −0.992480 0.122403i \(-0.960940\pi\)
−0.390236 + 0.920715i \(0.627607\pi\)
\(692\) −3798.76 6579.65i −0.208681 0.361446i
\(693\) −1863.21 + 3227.17i −0.102132 + 0.176898i
\(694\) 14518.6i 0.794119i
\(695\) −12386.1 7151.09i −0.676014 0.390297i
\(696\) 7650.00 + 4416.73i 0.416627 + 0.240540i
\(697\) 11645.9i 0.632882i
\(698\) −1795.24 + 3109.44i −0.0973505 + 0.168616i
\(699\) −8709.78 15085.8i −0.471293 0.816304i
\(700\) −760.030 + 438.804i −0.0410378 + 0.0236932i
\(701\) 31031.5 1.67196 0.835979 0.548761i \(-0.184900\pi\)
0.835979 + 0.548761i \(0.184900\pi\)
\(702\) 0 0
\(703\) 1588.45 0.0852199
\(704\) −3623.31 + 2091.92i −0.193976 + 0.111992i
\(705\) 9201.30 + 15937.1i 0.491548 + 0.851386i
\(706\) 4552.38 7884.94i 0.242678 0.420331i
\(707\) 6149.16i 0.327105i
\(708\) 2924.27 + 1688.33i 0.155227 + 0.0896206i
\(709\) 3795.43 + 2191.29i 0.201044 + 0.116073i 0.597143 0.802135i \(-0.296303\pi\)
−0.396098 + 0.918208i \(0.629636\pi\)
\(710\) 1125.42i 0.0594877i
\(711\) −2615.12 + 4529.52i −0.137939 + 0.238917i
\(712\) −1490.45 2581.54i −0.0784508 0.135881i
\(713\) 10113.9 5839.27i 0.531232 0.306707i
\(714\) 828.380 0.0434192
\(715\) 0 0
\(716\) 10603.6 0.553455
\(717\) 7276.49 4201.08i 0.379004 0.218818i
\(718\) 10165.4 + 17607.0i 0.528369 + 0.915162i
\(719\) −14382.3 + 24910.9i −0.745994 + 1.29210i 0.203735 + 0.979026i \(0.434692\pi\)
−0.949729 + 0.313073i \(0.898642\pi\)
\(720\) 1852.03i 0.0958625i
\(721\) 767.248 + 442.971i 0.0396308 + 0.0228808i
\(722\) −11570.4 6680.16i −0.596406 0.344335i
\(723\) 7238.89i 0.372361i
\(724\) 4579.88 7932.59i 0.235097 0.407200i
\(725\) 7867.46 + 13626.8i 0.403021 + 0.698052i
\(726\) 18678.7 10784.2i 0.954864 0.551291i
\(727\) −25408.5 −1.29621 −0.648107 0.761549i \(-0.724439\pi\)
−0.648107 + 0.761549i \(0.724439\pi\)
\(728\) 0 0
\(729\) 17134.5 0.870525
\(730\) 13084.2 7554.16i 0.663381 0.383003i
\(731\) −4795.37 8305.82i −0.242631 0.420249i
\(732\) 2791.28 4834.64i 0.140941 0.244117i
\(733\) 22341.8i 1.12580i 0.826524 + 0.562902i \(0.190315\pi\)
−0.826524 + 0.562902i \(0.809685\pi\)
\(734\) 18016.0 + 10401.6i 0.905972 + 0.523063i
\(735\) 8809.10 + 5085.94i 0.442080 + 0.255235i
\(736\) 5117.73i 0.256307i
\(737\) 14246.3 24675.2i 0.712032 1.23328i
\(738\) 5873.91 + 10173.9i 0.292983 + 0.507461i
\(739\) −7110.84 + 4105.45i −0.353960 + 0.204359i −0.666428 0.745569i \(-0.732178\pi\)
0.312468 + 0.949928i \(0.398844\pi\)
\(740\) 4053.18 0.201349
\(741\) 0 0
\(742\) 2264.04 0.112016
\(743\) 28364.3 16376.1i 1.40052 0.808590i 0.406073 0.913841i \(-0.366898\pi\)
0.994446 + 0.105251i \(0.0335646\pi\)
\(744\) −1070.48 1854.13i −0.0527498 0.0913653i
\(745\) −3825.90 + 6626.65i −0.188148 + 0.325881i
\(746\) 15906.8i 0.780684i
\(747\) −2987.14 1724.63i −0.146310 0.0844724i
\(748\) 6092.13 + 3517.29i 0.297794 + 0.171932i
\(749\) 1642.87i 0.0801455i
\(750\) −5540.83 + 9597.00i −0.269763 + 0.467244i
\(751\) 4453.70 + 7714.04i 0.216402 + 0.374819i 0.953705 0.300742i \(-0.0972344\pi\)
−0.737303 + 0.675562i \(0.763901\pi\)
\(752\) −8156.08 + 4708.91i −0.395507 + 0.228346i
\(753\) −27361.0 −1.32416
\(754\) 0 0
\(755\) −17729.4 −0.854620
\(756\) −2163.71 + 1249.22i −0.104092 + 0.0600973i
\(757\) 5372.32 + 9305.13i 0.257940 + 0.446765i 0.965690 0.259698i \(-0.0836231\pi\)
−0.707750 + 0.706463i \(0.750290\pi\)
\(758\) −9014.81 + 15614.1i −0.431969 + 0.748193i
\(759\) 38316.2i 1.83240i
\(760\) 790.383 + 456.328i 0.0377240 + 0.0217799i
\(761\) 14720.5 + 8498.89i 0.701206 + 0.404841i 0.807796 0.589462i \(-0.200660\pi\)
−0.106590 + 0.994303i \(0.533993\pi\)
\(762\) 8588.30i 0.408296i
\(763\) 2796.64 4843.93i 0.132694 0.229832i
\(764\) −676.627 1171.95i −0.0320412 0.0554970i
\(765\) −2696.75 + 1556.97i −0.127453 + 0.0735849i
\(766\) −4992.48 −0.235490
\(767\) 0 0
\(768\) −938.208 −0.0440816
\(769\) −16482.6 + 9516.21i −0.772921 + 0.446246i −0.833916 0.551892i \(-0.813906\pi\)
0.0609948 + 0.998138i \(0.480573\pi\)
\(770\) −2342.84 4057.92i −0.109649 0.189918i
\(771\) 1016.94 1761.39i 0.0475022 0.0822763i
\(772\) 10736.2i 0.500524i
\(773\) 20568.6 + 11875.3i 0.957053 + 0.552555i 0.895265 0.445535i \(-0.146986\pi\)
0.0617879 + 0.998089i \(0.480320\pi\)
\(774\) 8378.53 + 4837.35i 0.389096 + 0.224644i
\(775\) 3813.68i 0.176763i
\(776\) −5255.54 + 9102.86i −0.243122 + 0.421100i
\(777\) −914.393 1583.78i −0.0422184 0.0731244i
\(778\) −18873.9 + 10896.9i −0.869746 + 0.502148i
\(779\) −5789.17 −0.266263
\(780\) 0 0
\(781\) −4312.12 −0.197567
\(782\) −7451.97 + 4302.40i −0.340770 + 0.196743i
\(783\) 22397.6 + 38793.8i 1.02225 + 1.77060i
\(784\) −2602.81 + 4508.20i −0.118568 + 0.205366i
\(785\) 29813.0i 1.35550i
\(786\) −7164.13 4136.21i −0.325109 0.187702i
\(787\) −15437.7 8912.97i −0.699232 0.403702i 0.107829 0.994169i \(-0.465610\pi\)
−0.807061 + 0.590468i \(0.798943\pi\)
\(788\) 7588.96i 0.343078i
\(789\) −3652.17 + 6325.75i −0.164792 + 0.285428i
\(790\) −3288.31 5695.52i −0.148092 0.256503i
\(791\) −2590.09 + 1495.39i −0.116426 + 0.0672186i
\(792\) −7096.16 −0.318373
\(793\) 0 0
\(794\) −21774.3 −0.973225
\(795\) 7295.86 4212.27i 0.325481 0.187917i
\(796\) 4831.21 + 8367.90i 0.215123 + 0.372603i
\(797\) −13230.6 + 22916.1i −0.588020 + 1.01848i 0.406471 + 0.913663i \(0.366759\pi\)
−0.994492 + 0.104817i \(0.966574\pi\)
\(798\) 411.788i 0.0182671i
\(799\) 13713.4 + 7917.42i 0.607190 + 0.350561i
\(800\) −1447.32 835.609i −0.0639630 0.0369290i
\(801\) 5055.87i 0.223021i
\(802\) 9968.76 17266.4i 0.438914 0.760221i
\(803\) −28944.3 50132.9i −1.27201 2.20318i
\(804\) 5533.31 3194.66i 0.242717 0.140133i
\(805\) 5731.58 0.250946
\(806\) 0 0
\(807\) 19085.8 0.832530
\(808\) 10141.0 5854.89i 0.441532 0.254919i
\(809\) −10936.7 18942.9i −0.475294 0.823234i 0.524305 0.851530i \(-0.324325\pi\)
−0.999600 + 0.0282967i \(0.990992\pi\)
\(810\) −1523.05 + 2638.00i −0.0660674 + 0.114432i
\(811\) 39113.8i 1.69355i −0.531949 0.846776i \(-0.678540\pi\)
0.531949 0.846776i \(-0.321460\pi\)
\(812\) −4384.60 2531.45i −0.189494 0.109404i
\(813\) −12965.0 7485.32i −0.559288 0.322905i
\(814\) 15530.0i 0.668706i
\(815\) 1924.78 3333.81i 0.0827264 0.143286i
\(816\) 788.737 + 1366.13i 0.0338374 + 0.0586081i
\(817\) −4128.83 + 2383.78i −0.176805 + 0.102078i
\(818\) 8072.65 0.345053
\(819\) 0 0
\(820\) −14772.0 −0.629097
\(821\) 22773.7 13148.4i 0.968097 0.558931i 0.0694411 0.997586i \(-0.477878\pi\)
0.898655 + 0.438655i \(0.144545\pi\)
\(822\) −6405.96 11095.4i −0.271817 0.470801i
\(823\) 12340.5 21374.4i 0.522678 0.905306i −0.476973 0.878918i \(-0.658266\pi\)
0.999652 0.0263878i \(-0.00840047\pi\)
\(824\) 1687.09i 0.0713258i
\(825\) 10836.0 + 6256.15i 0.457285 + 0.264014i
\(826\) −1676.05 967.667i −0.0706019 0.0407620i
\(827\) 3081.68i 0.129578i −0.997899 0.0647888i \(-0.979363\pi\)
0.997899 0.0647888i \(-0.0206374\pi\)
\(828\) 4340.06 7517.20i 0.182159 0.315508i
\(829\) −4249.27 7359.95i −0.178026 0.308349i 0.763179 0.646188i \(-0.223638\pi\)
−0.941204 + 0.337838i \(0.890304\pi\)
\(830\) 3756.10 2168.59i 0.157080 0.0906901i
\(831\) 1605.19 0.0670076
\(832\) 0 0
\(833\) 8752.57 0.364056
\(834\) −10642.2 + 6144.29i −0.441859 + 0.255107i
\(835\) −13663.6 23666.0i −0.566284 0.980833i
\(836\) 1748.45 3028.40i 0.0723342 0.125286i
\(837\) 10857.0i 0.448356i
\(838\) −26318.3 15194.9i −1.08490 0.626370i
\(839\) −16177.5 9340.06i −0.665683 0.384332i 0.128756 0.991676i \(-0.458902\pi\)
−0.794439 + 0.607344i \(0.792235\pi\)
\(840\) 1050.74i 0.0431596i
\(841\) −33192.7 + 57491.4i −1.36097 + 2.35727i
\(842\) −10154.8 17588.5i −0.415625 0.719883i
\(843\) 17336.8 10009.4i 0.708317 0.408947i
\(844\) −10673.7 −0.435312
\(845\) 0 0
\(846\) −15973.5 −0.649147
\(847\) −10705.7 + 6180.94i −0.434300 + 0.250743i
\(848\) 2155.69 + 3733.77i 0.0872958 + 0.151201i
\(849\) 1459.86 2528.55i 0.0590132 0.102214i
\(850\) 2809.93i 0.113388i
\(851\) 16451.5 + 9498.26i 0.662690 + 0.382604i
\(852\) −837.423 483.486i −0.0336733 0.0194413i
\(853\) 24129.9i 0.968574i 0.874909 + 0.484287i \(0.160921\pi\)
−0.874909 + 0.484287i \(0.839079\pi\)
\(854\) −1599.82 + 2770.98i −0.0641040 + 0.111031i
\(855\) 773.972 + 1340.56i 0.0309582 + 0.0536212i
\(856\) −2709.35 + 1564.24i −0.108182 + 0.0624588i
\(857\) 7739.30 0.308482 0.154241 0.988033i \(-0.450707\pi\)
0.154241 + 0.988033i \(0.450707\pi\)
\(858\) 0 0
\(859\) 4302.59 0.170899 0.0854496 0.996342i \(-0.472767\pi\)
0.0854496 + 0.996342i \(0.472767\pi\)
\(860\) −10535.4 + 6082.59i −0.417736 + 0.241180i
\(861\) 3332.54 + 5772.13i 0.131908 + 0.228471i
\(862\) 6616.84 11460.7i 0.261451 0.452846i
\(863\) 16253.2i 0.641096i 0.947232 + 0.320548i \(0.103867\pi\)
−0.947232 + 0.320548i \(0.896133\pi\)
\(864\) −4120.32 2378.87i −0.162241 0.0936698i
\(865\) 14032.4 + 8101.62i 0.551580 + 0.318455i
\(866\) 11395.2i 0.447142i
\(867\) −7676.61 + 13296.3i −0.300705 + 0.520836i
\(868\) 613.548 + 1062.70i 0.0239921 + 0.0415556i
\(869\) −21822.7 + 12599.4i −0.851882 + 0.491834i
\(870\) −18839.1 −0.734144
\(871\) 0 0
\(872\) 10651.2 0.413642
\(873\) −15439.2 + 8913.85i −0.598556 + 0.345576i
\(874\) 2138.73 + 3704.38i 0.0827728 + 0.143367i
\(875\) 3175.73 5500.52i 0.122696 0.212516i
\(876\) 12981.2i 0.500680i
\(877\) −8176.43 4720.67i −0.314822 0.181762i 0.334260 0.942481i \(-0.391513\pi\)
−0.649082 + 0.760718i \(0.724847\pi\)
\(878\) 755.186 + 436.007i 0.0290277 + 0.0167591i
\(879\) 6220.48i 0.238693i
\(880\) 4461.44 7727.44i 0.170903 0.296014i
\(881\) −5936.22 10281.8i −0.227011 0.393194i 0.729910 0.683543i \(-0.239562\pi\)
−0.956921 + 0.290349i \(0.906229\pi\)
\(882\) −7646.30 + 4414.59i −0.291910 + 0.168534i
\(883\) 493.891 0.0188231 0.00941153 0.999956i \(-0.497004\pi\)
0.00941153 + 0.999956i \(0.497004\pi\)
\(884\) 0 0
\(885\) −7201.40 −0.273528
\(886\) 11448.1 6609.58i 0.434094 0.250624i
\(887\) −10271.8 17791.3i −0.388832 0.673477i 0.603461 0.797393i \(-0.293788\pi\)
−0.992293 + 0.123916i \(0.960455\pi\)
\(888\) 1741.27 3015.96i 0.0658031 0.113974i
\(889\) 4922.38i 0.185705i
\(890\) 5505.64 + 3178.68i 0.207359 + 0.119719i
\(891\) 10107.7 + 5835.67i 0.380045 + 0.219419i
\(892\) 1145.43i 0.0429953i
\(893\) 3935.76 6816.93i 0.147486 0.255453i
\(894\) 3287.25 + 5693.68i 0.122978 + 0.213004i
\(895\) −19584.5 + 11307.1i −0.731438 + 0.422296i
\(896\) 537.734 0.0200496
\(897\) 0 0
\(898\) −16030.6 −0.595711
\(899\) 19053.4 11000.5i 0.706860 0.408106i
\(900\) −1417.26 2454.77i −0.0524913 0.0909176i
\(901\) 3624.52 6277.85i 0.134018 0.232126i
\(902\) 56599.7i 2.08932i
\(903\) 4753.53 + 2744.45i 0.175180 + 0.101140i
\(904\) −4932.27 2847.65i −0.181466 0.104769i
\(905\) 19535.0i 0.717532i
\(906\) −7616.64 + 13192.4i −0.279300 + 0.483762i
\(907\) −2693.30 4664.94i −0.0985994 0.170779i 0.812506 0.582953i \(-0.198103\pi\)
−0.911105 + 0.412174i \(0.864770\pi\)
\(908\) −18017.6 + 10402.5i −0.658520 + 0.380196i
\(909\) 19860.8 0.724688
\(910\) 0 0
\(911\) 31793.5 1.15627 0.578137 0.815940i \(-0.303780\pi\)
0.578137 + 0.815940i \(0.303780\pi\)
\(912\) 679.106 392.082i 0.0246573 0.0142359i
\(913\) −8309.08 14391.8i −0.301194 0.521684i
\(914\) 4507.03 7806.41i 0.163107 0.282509i
\(915\) 11905.9i 0.430162i
\(916\) −3084.64 1780.92i −0.111266 0.0642392i
\(917\) 4106.12 + 2370.67i 0.147869 + 0.0853723i
\(918\) 7999.51i 0.287607i
\(919\) 21495.7 37231.6i 0.771575 1.33641i −0.165125 0.986273i \(-0.552803\pi\)
0.936700 0.350134i \(-0.113864\pi\)
\(920\) 5457.29 + 9452.30i 0.195567 + 0.338732i
\(921\) −29789.5 + 17199.0i −1.06580 + 0.615338i
\(922\) 4207.10 0.150275
\(923\) 0 0
\(924\) −4025.98 −0.143339
\(925\) 5372.30 3101.70i 0.190962 0.110252i
\(926\) 5468.28 + 9471.34i 0.194059 + 0.336121i
\(927\) −1430.72 + 2478.09i −0.0506916 + 0.0878004i
\(928\) 9641.21i 0.341043i
\(929\) −35227.0 20338.3i −1.24409 0.718277i −0.274168 0.961682i \(-0.588402\pi\)
−0.969925 + 0.243405i \(0.921736\pi\)
\(930\) 3954.30 + 2283.02i 0.139427 + 0.0804980i
\(931\) 4350.91i 0.153164i
\(932\) −9506.22 + 16465.3i −0.334106 + 0.578688i
\(933\) 6015.25 + 10418.7i 0.211072 + 0.365588i
\(934\) 10468.2 6043.79i 0.366733 0.211733i
\(935\) −15002.6 −0.524748
\(936\) 0 0
\(937\) 21008.3 0.732456 0.366228 0.930525i \(-0.380649\pi\)
0.366228 + 0.930525i \(0.380649\pi\)
\(938\) −3171.42 + 1831.02i −0.110395 + 0.0637365i
\(939\) −10856.6 18804.2i −0.377307 0.653515i
\(940\) 10042.7 17394.5i 0.348465 0.603558i
\(941\) 4525.50i 0.156777i −0.996923 0.0783885i \(-0.975023\pi\)
0.996923 0.0783885i \(-0.0249775\pi\)
\(942\) −22183.8 12807.8i −0.767289 0.442994i
\(943\) −59958.0 34616.7i −2.07052 1.19542i
\(944\) 3685.43i 0.127066i
\(945\) 2664.20 4614.53i 0.0917106 0.158847i
\(946\) 23305.8 + 40366.9i 0.800991 + 1.38736i
\(947\) 23730.5 13700.8i 0.814295 0.470134i −0.0341499 0.999417i \(-0.510872\pi\)
0.848445 + 0.529283i \(0.177539\pi\)
\(948\) −5650.70 −0.193593
\(949\) 0 0
\(950\) 1396.82 0.0477040
\(951\) 20528.2 11852.0i 0.699973 0.404129i
\(952\) −452.065 782.999i −0.0153902 0.0266567i
\(953\) 13113.1 22712.6i 0.445725 0.772017i −0.552378 0.833594i \(-0.686279\pi\)
0.998102 + 0.0615763i \(0.0196128\pi\)
\(954\) 7312.49i 0.248166i
\(955\) 2499.42 + 1443.04i 0.0846904 + 0.0488960i
\(956\) −7941.87 4585.24i −0.268680 0.155123i
\(957\) 72183.2i 2.43819i
\(958\) −8481.30 + 14690.0i −0.286032 + 0.495421i
\(959\) 3671.58 + 6359.36i 0.123630 + 0.214134i
\(960\) 1732.84 1000.46i 0.0582576 0.0336350i
\(961\) 24458.6 0.821007
\(962\) 0 0
\(963\) −5306.19 −0.177559
\(964\) 6842.32 3950.42i 0.228606 0.131986i
\(965\) −11448.5 19829.5i −0.381909 0.661485i
\(966\) 2462.32 4264.86i 0.0820122 0.142049i
\(967\) 20843.6i 0.693158i 0.938021 + 0.346579i \(0.112657\pi\)
−0.938021 + 0.346579i \(0.887343\pi\)
\(968\) −20386.7 11770.3i −0.676916 0.390817i
\(969\) −1141.83 659.234i −0.0378542 0.0218552i
\(970\) 22417.0i 0.742026i
\(971\) −16288.6 + 28212.7i −0.538339 + 0.932430i 0.460655 + 0.887579i \(0.347615\pi\)
−0.998994 + 0.0448508i \(0.985719\pi\)
\(972\) −6720.05 11639.5i −0.221755 0.384091i
\(973\) 6099.59 3521.60i 0.200970 0.116030i
\(974\) −13246.7 −0.435782
\(975\) 0 0
\(976\) −6093.05 −0.199830
\(977\) −37987.4 + 21932.0i −1.24394 + 0.718186i −0.969893 0.243531i \(-0.921694\pi\)
−0.274042 + 0.961718i \(0.588361\pi\)
\(978\) −1653.79 2864.45i −0.0540719 0.0936553i
\(979\) 12179.3 21095.2i 0.397602 0.688667i
\(980\) 11102.0i 0.361879i
\(981\) 15645.1 + 9032.70i 0.509184 + 0.293977i
\(982\) 28369.9 + 16379.4i 0.921914 + 0.532267i
\(983\) 14758.8i 0.478875i 0.970912 + 0.239437i \(0.0769630\pi\)
−0.970912 + 0.239437i \(0.923037\pi\)
\(984\) −6346.12 + 10991.8i −0.205596 + 0.356103i
\(985\) 8092.48 + 14016.6i 0.261775 + 0.453407i
\(986\) −14038.6 + 8105.21i −0.453430 + 0.261788i
\(987\) −9062.49 −0.292262
\(988\) 0 0
\(989\) −57016.0 −1.83317
\(990\) 13106.4 7566.99i 0.420757 0.242924i
\(991\) −24311.2 42108.2i −0.779284 1.34976i −0.932355 0.361544i \(-0.882250\pi\)
0.153071 0.988215i \(-0.451084\pi\)
\(992\) −1168.37 + 2023.68i −0.0373950 + 0.0647700i
\(993\) 12860.9i 0.411006i
\(994\) 479.969 + 277.110i 0.0153156 + 0.00884246i
\(995\) −17846.2 10303.5i −0.568606 0.328285i
\(996\) 3726.55i 0.118554i
\(997\) 9406.17 16292.0i 0.298793 0.517525i −0.677067 0.735921i \(-0.736749\pi\)
0.975860 + 0.218397i \(0.0700827\pi\)
\(998\) 7915.70 + 13710.4i 0.251069 + 0.434865i
\(999\) 15294.2 8830.12i 0.484372 0.279652i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.e.h.23.5 12
13.2 odd 12 338.4.a.k.1.2 yes 3
13.3 even 3 338.4.b.f.337.5 6
13.4 even 6 inner 338.4.e.h.147.5 12
13.5 odd 4 338.4.c.k.315.2 6
13.6 odd 12 338.4.c.k.191.2 6
13.7 odd 12 338.4.c.l.191.2 6
13.8 odd 4 338.4.c.l.315.2 6
13.9 even 3 inner 338.4.e.h.147.2 12
13.10 even 6 338.4.b.f.337.2 6
13.11 odd 12 338.4.a.j.1.2 3
13.12 even 2 inner 338.4.e.h.23.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.j.1.2 3 13.11 odd 12
338.4.a.k.1.2 yes 3 13.2 odd 12
338.4.b.f.337.2 6 13.10 even 6
338.4.b.f.337.5 6 13.3 even 3
338.4.c.k.191.2 6 13.6 odd 12
338.4.c.k.315.2 6 13.5 odd 4
338.4.c.l.191.2 6 13.7 odd 12
338.4.c.l.315.2 6 13.8 odd 4
338.4.e.h.23.2 12 13.12 even 2 inner
338.4.e.h.23.5 12 1.1 even 1 trivial
338.4.e.h.147.2 12 13.9 even 3 inner
338.4.e.h.147.5 12 13.4 even 6 inner