Properties

Label 338.4.e.i.23.5
Level $338$
Weight $4$
Character 338.23
Analytic conductor $19.943$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(23,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.23");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.e (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.5
Character \(\chi\) \(=\) 338.23
Dual form 338.4.e.i.147.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 + 1.00000i) q^{2} +(4.07401 + 7.05638i) q^{3} +(2.00000 - 3.46410i) q^{4} +12.6646i q^{5} +(-14.1128 - 8.14801i) q^{6} +(24.9160 + 14.3853i) q^{7} +8.00000i q^{8} +(-19.6950 + 34.1128i) q^{9} +(-12.6646 - 21.9357i) q^{10} +(-45.7613 + 26.4203i) q^{11} +32.5920 q^{12} -57.5411 q^{14} +(-89.3664 + 51.5957i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(35.5161 - 61.5158i) q^{17} -78.7801i q^{18} +(56.9572 + 32.8843i) q^{19} +(43.8715 + 25.3292i) q^{20} +234.423i q^{21} +(52.8406 - 91.5226i) q^{22} +(-22.2154 - 38.4783i) q^{23} +(-56.4511 + 32.5920i) q^{24} -35.3924 q^{25} -100.954 q^{27} +(99.6641 - 57.5411i) q^{28} +(39.2189 + 67.9292i) q^{29} +(103.191 - 178.733i) q^{30} +195.024i q^{31} +(27.7128 + 16.0000i) q^{32} +(-372.863 - 215.273i) q^{33} +142.065i q^{34} +(-182.184 + 315.552i) q^{35} +(78.7801 + 136.451i) q^{36} +(201.948 - 116.595i) q^{37} -131.537 q^{38} -101.317 q^{40} +(-104.319 + 60.2286i) q^{41} +(-234.423 - 406.032i) q^{42} +(202.551 - 350.829i) q^{43} +211.362i q^{44} +(-432.025 - 249.430i) q^{45} +(76.9566 + 44.4309i) q^{46} -400.779i q^{47} +(65.1841 - 112.902i) q^{48} +(242.372 + 419.800i) q^{49} +(61.3014 - 35.3924i) q^{50} +578.772 q^{51} +116.566 q^{53} +(174.858 - 100.954i) q^{54} +(-334.603 - 579.549i) q^{55} +(-115.082 + 199.328i) q^{56} +535.883i q^{57} +(-135.858 - 78.4379i) q^{58} +(-676.744 - 390.718i) q^{59} +412.765i q^{60} +(-26.2781 + 45.5149i) q^{61} +(-195.024 - 337.792i) q^{62} +(-981.444 + 566.637i) q^{63} -64.0000 q^{64} +861.091 q^{66} +(697.414 - 402.652i) q^{67} +(-142.065 - 246.063i) q^{68} +(181.012 - 313.521i) q^{69} -728.735i q^{70} +(-347.771 - 200.786i) q^{71} +(-272.902 - 157.560i) q^{72} +323.057i q^{73} +(-233.189 + 403.895i) q^{74} +(-144.189 - 249.742i) q^{75} +(227.829 - 131.537i) q^{76} -1520.25 q^{77} -794.845 q^{79} +(175.486 - 101.317i) q^{80} +(120.477 + 208.673i) q^{81} +(120.457 - 208.638i) q^{82} -444.820i q^{83} +(812.064 + 468.845i) q^{84} +(779.073 + 449.798i) q^{85} +810.205i q^{86} +(-319.556 + 553.488i) q^{87} +(-211.362 - 366.090i) q^{88} +(68.5435 - 39.5736i) q^{89} +997.720 q^{90} -177.724 q^{92} +(-1376.16 + 794.529i) q^{93} +(400.779 + 694.169i) q^{94} +(-416.467 + 721.341i) q^{95} +260.736i q^{96} +(3.37434 + 1.94818i) q^{97} +(-839.601 - 484.744i) q^{98} -2081.39i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 18 q^{3} + 48 q^{4} - 226 q^{9} + 72 q^{10} - 144 q^{12} + 200 q^{14} - 192 q^{16} + 198 q^{17} - 148 q^{22} + 534 q^{23} - 1472 q^{25} + 2676 q^{27} + 238 q^{29} + 472 q^{30} - 1228 q^{35} + 904 q^{36}+ \cdots - 8186 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 + 1.00000i −0.612372 + 0.353553i
\(3\) 4.07401 + 7.05638i 0.784043 + 1.35800i 0.929569 + 0.368647i \(0.120179\pi\)
−0.145527 + 0.989354i \(0.546488\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 12.6646i 1.13276i 0.824145 + 0.566379i \(0.191656\pi\)
−0.824145 + 0.566379i \(0.808344\pi\)
\(6\) −14.1128 8.14801i −0.960252 0.554402i
\(7\) 24.9160 + 14.3853i 1.34534 + 0.776732i 0.987585 0.157085i \(-0.0502095\pi\)
0.357753 + 0.933816i \(0.383543\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −19.6950 + 34.1128i −0.729446 + 1.26344i
\(10\) −12.6646 21.9357i −0.400490 0.693669i
\(11\) −45.7613 + 26.4203i −1.25432 + 0.724183i −0.971965 0.235126i \(-0.924450\pi\)
−0.282357 + 0.959309i \(0.591116\pi\)
\(12\) 32.5920 0.784043
\(13\) 0 0
\(14\) −57.5411 −1.09846
\(15\) −89.3664 + 51.5957i −1.53829 + 0.888130i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 35.5161 61.5158i 0.506702 0.877633i −0.493268 0.869877i \(-0.664198\pi\)
0.999970 0.00775579i \(-0.00246877\pi\)
\(18\) 78.7801i 1.03159i
\(19\) 56.9572 + 32.8843i 0.687731 + 0.397062i 0.802761 0.596300i \(-0.203363\pi\)
−0.115030 + 0.993362i \(0.536697\pi\)
\(20\) 43.8715 + 25.3292i 0.490498 + 0.283189i
\(21\) 234.423i 2.43596i
\(22\) 52.8406 91.5226i 0.512075 0.886940i
\(23\) −22.2154 38.4783i −0.201402 0.348838i 0.747579 0.664173i \(-0.231216\pi\)
−0.948980 + 0.315335i \(0.897883\pi\)
\(24\) −56.4511 + 32.5920i −0.480126 + 0.277201i
\(25\) −35.3924 −0.283139
\(26\) 0 0
\(27\) −100.954 −0.719581
\(28\) 99.6641 57.5411i 0.672669 0.388366i
\(29\) 39.2189 + 67.9292i 0.251130 + 0.434970i 0.963837 0.266492i \(-0.0858645\pi\)
−0.712707 + 0.701462i \(0.752531\pi\)
\(30\) 103.191 178.733i 0.628003 1.08773i
\(31\) 195.024i 1.12991i 0.825120 + 0.564957i \(0.191107\pi\)
−0.825120 + 0.564957i \(0.808893\pi\)
\(32\) 27.7128 + 16.0000i 0.153093 + 0.0883883i
\(33\) −372.863 215.273i −1.96688 1.13558i
\(34\) 142.065i 0.716584i
\(35\) −182.184 + 315.552i −0.879848 + 1.52394i
\(36\) 78.7801 + 136.451i 0.364723 + 0.631719i
\(37\) 201.948 116.595i 0.897297 0.518055i 0.0209750 0.999780i \(-0.493323\pi\)
0.876322 + 0.481725i \(0.159990\pi\)
\(38\) −131.537 −0.561530
\(39\) 0 0
\(40\) −101.317 −0.400490
\(41\) −104.319 + 60.2286i −0.397363 + 0.229418i −0.685345 0.728218i \(-0.740349\pi\)
0.287983 + 0.957636i \(0.407015\pi\)
\(42\) −234.423 406.032i −0.861243 1.49172i
\(43\) 202.551 350.829i 0.718344 1.24421i −0.243312 0.969948i \(-0.578234\pi\)
0.961656 0.274260i \(-0.0884327\pi\)
\(44\) 211.362i 0.724183i
\(45\) −432.025 249.430i −1.43117 0.826285i
\(46\) 76.9566 + 44.4309i 0.246666 + 0.142413i
\(47\) 400.779i 1.24382i −0.783088 0.621911i \(-0.786357\pi\)
0.783088 0.621911i \(-0.213643\pi\)
\(48\) 65.1841 112.902i 0.196011 0.339500i
\(49\) 242.372 + 419.800i 0.706624 + 1.22391i
\(50\) 61.3014 35.3924i 0.173386 0.100105i
\(51\) 578.772 1.58910
\(52\) 0 0
\(53\) 116.566 0.302105 0.151052 0.988526i \(-0.451734\pi\)
0.151052 + 0.988526i \(0.451734\pi\)
\(54\) 174.858 100.954i 0.440652 0.254410i
\(55\) −334.603 579.549i −0.820324 1.42084i
\(56\) −115.082 + 199.328i −0.274616 + 0.475649i
\(57\) 535.883i 1.24525i
\(58\) −135.858 78.4379i −0.307570 0.177576i
\(59\) −676.744 390.718i −1.49330 0.862155i −0.493326 0.869844i \(-0.664219\pi\)
−0.999970 + 0.00768919i \(0.997552\pi\)
\(60\) 412.765i 0.888130i
\(61\) −26.2781 + 45.5149i −0.0551567 + 0.0955343i −0.892285 0.451472i \(-0.850899\pi\)
0.837129 + 0.547006i \(0.184233\pi\)
\(62\) −195.024 337.792i −0.399485 0.691929i
\(63\) −981.444 + 566.637i −1.96270 + 1.13317i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 861.091 1.60595
\(67\) 697.414 402.652i 1.27168 0.734206i 0.296378 0.955071i \(-0.404221\pi\)
0.975305 + 0.220864i \(0.0708878\pi\)
\(68\) −142.065 246.063i −0.253351 0.438817i
\(69\) 181.012 313.521i 0.315815 0.547008i
\(70\) 728.735i 1.24429i
\(71\) −347.771 200.786i −0.581307 0.335618i 0.180345 0.983603i \(-0.442278\pi\)
−0.761653 + 0.647985i \(0.775612\pi\)
\(72\) −272.902 157.560i −0.446692 0.257898i
\(73\) 323.057i 0.517958i 0.965883 + 0.258979i \(0.0833861\pi\)
−0.965883 + 0.258979i \(0.916614\pi\)
\(74\) −233.189 + 403.895i −0.366320 + 0.634485i
\(75\) −144.189 249.742i −0.221993 0.384503i
\(76\) 227.829 131.537i 0.343865 0.198531i
\(77\) −1520.25 −2.24998
\(78\) 0 0
\(79\) −794.845 −1.13199 −0.565994 0.824409i \(-0.691507\pi\)
−0.565994 + 0.824409i \(0.691507\pi\)
\(80\) 175.486 101.317i 0.245249 0.141595i
\(81\) 120.477 + 208.673i 0.165264 + 0.286245i
\(82\) 120.457 208.638i 0.162223 0.280978i
\(83\) 444.820i 0.588258i −0.955766 0.294129i \(-0.904971\pi\)
0.955766 0.294129i \(-0.0950295\pi\)
\(84\) 812.064 + 468.845i 1.05480 + 0.608991i
\(85\) 779.073 + 449.798i 0.994145 + 0.573970i
\(86\) 810.205i 1.01589i
\(87\) −319.556 + 553.488i −0.393793 + 0.682070i
\(88\) −211.362 366.090i −0.256037 0.443470i
\(89\) 68.5435 39.5736i 0.0816359 0.0471325i −0.458626 0.888629i \(-0.651658\pi\)
0.540262 + 0.841497i \(0.318325\pi\)
\(90\) 997.720 1.16854
\(91\) 0 0
\(92\) −177.724 −0.201402
\(93\) −1376.16 + 794.529i −1.53443 + 0.885901i
\(94\) 400.779 + 694.169i 0.439757 + 0.761682i
\(95\) −416.467 + 721.341i −0.449774 + 0.779032i
\(96\) 260.736i 0.277201i
\(97\) 3.37434 + 1.94818i 0.00353209 + 0.00203925i 0.501765 0.865004i \(-0.332684\pi\)
−0.498233 + 0.867043i \(0.666018\pi\)
\(98\) −839.601 484.744i −0.865434 0.499658i
\(99\) 2081.39i 2.11301i
\(100\) −70.7847 + 122.603i −0.0707847 + 0.122603i
\(101\) −517.657 896.609i −0.509988 0.883326i −0.999933 0.0115723i \(-0.996316\pi\)
0.489945 0.871754i \(-0.337017\pi\)
\(102\) −1002.46 + 578.772i −0.973123 + 0.561833i
\(103\) −1248.51 −1.19436 −0.597181 0.802107i \(-0.703713\pi\)
−0.597181 + 0.802107i \(0.703713\pi\)
\(104\) 0 0
\(105\) −2968.87 −2.75935
\(106\) −201.898 + 116.566i −0.185001 + 0.106810i
\(107\) 581.006 + 1006.33i 0.524934 + 0.909212i 0.999578 + 0.0290348i \(0.00924335\pi\)
−0.474644 + 0.880178i \(0.657423\pi\)
\(108\) −201.909 + 349.716i −0.179895 + 0.311588i
\(109\) 1003.58i 0.881885i 0.897535 + 0.440943i \(0.145356\pi\)
−0.897535 + 0.440943i \(0.854644\pi\)
\(110\) 1159.10 + 669.205i 1.00469 + 0.580057i
\(111\) 1645.47 + 950.014i 1.40704 + 0.812354i
\(112\) 460.329i 0.388366i
\(113\) 372.206 644.679i 0.309860 0.536693i −0.668472 0.743738i \(-0.733051\pi\)
0.978332 + 0.207045i \(0.0663845\pi\)
\(114\) −535.883 928.176i −0.440263 0.762559i
\(115\) 487.312 281.350i 0.395149 0.228139i
\(116\) 313.751 0.251130
\(117\) 0 0
\(118\) 1562.87 1.21927
\(119\) 1769.84 1021.82i 1.36337 0.787142i
\(120\) −412.765 714.931i −0.314001 0.543866i
\(121\) 730.563 1265.37i 0.548883 0.950694i
\(122\) 105.112i 0.0780034i
\(123\) −849.992 490.743i −0.623099 0.359746i
\(124\) 675.583 + 390.048i 0.489267 + 0.282479i
\(125\) 1134.85i 0.812030i
\(126\) 1133.27 1962.89i 0.801270 1.38784i
\(127\) 841.759 + 1457.97i 0.588142 + 1.01869i 0.994476 + 0.104967i \(0.0334737\pi\)
−0.406334 + 0.913725i \(0.633193\pi\)
\(128\) 110.851 64.0000i 0.0765466 0.0441942i
\(129\) 3300.78 2.25285
\(130\) 0 0
\(131\) 2177.87 1.45253 0.726266 0.687414i \(-0.241254\pi\)
0.726266 + 0.687414i \(0.241254\pi\)
\(132\) −1491.45 + 861.091i −0.983442 + 0.567791i
\(133\) 946.098 + 1638.69i 0.616821 + 1.06836i
\(134\) −805.305 + 1394.83i −0.519162 + 0.899215i
\(135\) 1278.55i 0.815110i
\(136\) 492.126 + 284.129i 0.310290 + 0.179146i
\(137\) 1530.84 + 883.829i 0.954658 + 0.551172i 0.894525 0.447018i \(-0.147514\pi\)
0.0601334 + 0.998190i \(0.480847\pi\)
\(138\) 724.047i 0.446630i
\(139\) −502.768 + 870.819i −0.306793 + 0.531381i −0.977659 0.210198i \(-0.932589\pi\)
0.670866 + 0.741579i \(0.265923\pi\)
\(140\) 728.735 + 1262.21i 0.439924 + 0.761971i
\(141\) 2828.05 1632.78i 1.68911 0.975209i
\(142\) 803.143 0.474635
\(143\) 0 0
\(144\) 630.241 0.364723
\(145\) −860.297 + 496.692i −0.492715 + 0.284469i
\(146\) −323.057 559.551i −0.183126 0.317183i
\(147\) −1974.85 + 3420.54i −1.10805 + 1.91919i
\(148\) 932.757i 0.518055i
\(149\) −118.017 68.1369i −0.0648879 0.0374631i 0.467205 0.884149i \(-0.345261\pi\)
−0.532093 + 0.846686i \(0.678594\pi\)
\(150\) 499.484 + 288.377i 0.271885 + 0.156973i
\(151\) 804.394i 0.433514i −0.976226 0.216757i \(-0.930452\pi\)
0.976226 0.216757i \(-0.0695479\pi\)
\(152\) −263.074 + 455.658i −0.140383 + 0.243150i
\(153\) 1398.98 + 2423.11i 0.739223 + 1.28037i
\(154\) 2633.15 1520.25i 1.37783 0.795490i
\(155\) −2469.90 −1.27992
\(156\) 0 0
\(157\) 3730.07 1.89613 0.948064 0.318079i \(-0.103038\pi\)
0.948064 + 0.318079i \(0.103038\pi\)
\(158\) 1376.71 794.845i 0.693198 0.400218i
\(159\) 474.890 + 822.534i 0.236863 + 0.410259i
\(160\) −202.634 + 350.972i −0.100123 + 0.173417i
\(161\) 1278.30i 0.625740i
\(162\) −417.345 240.954i −0.202406 0.116859i
\(163\) −2271.80 1311.63i −1.09166 0.630273i −0.157646 0.987496i \(-0.550390\pi\)
−0.934019 + 0.357223i \(0.883724\pi\)
\(164\) 481.828i 0.229418i
\(165\) 2726.35 4722.17i 1.28634 2.22800i
\(166\) 444.820 + 770.451i 0.207980 + 0.360233i
\(167\) −1106.78 + 639.001i −0.512847 + 0.296092i −0.734003 0.679146i \(-0.762350\pi\)
0.221156 + 0.975238i \(0.429017\pi\)
\(168\) −1875.38 −0.861243
\(169\) 0 0
\(170\) −1799.19 −0.811716
\(171\) −2243.55 + 1295.31i −1.00332 + 0.579270i
\(172\) −810.205 1403.32i −0.359172 0.622104i
\(173\) 534.991 926.631i 0.235113 0.407228i −0.724192 0.689598i \(-0.757787\pi\)
0.959306 + 0.282370i \(0.0911205\pi\)
\(174\) 1278.22i 0.556908i
\(175\) −881.836 509.129i −0.380918 0.219923i
\(176\) 732.181 + 422.725i 0.313581 + 0.181046i
\(177\) 6367.15i 2.70387i
\(178\) −79.1472 + 137.087i −0.0333277 + 0.0577253i
\(179\) 368.774 + 638.736i 0.153986 + 0.266712i 0.932689 0.360681i \(-0.117456\pi\)
−0.778703 + 0.627392i \(0.784122\pi\)
\(180\) −1728.10 + 997.720i −0.715584 + 0.413142i
\(181\) 1457.02 0.598338 0.299169 0.954200i \(-0.403291\pi\)
0.299169 + 0.954200i \(0.403291\pi\)
\(182\) 0 0
\(183\) −428.228 −0.172981
\(184\) 307.826 177.724i 0.123333 0.0712063i
\(185\) 1476.62 + 2557.59i 0.586830 + 1.01642i
\(186\) 1589.06 2752.33i 0.626427 1.08500i
\(187\) 3753.39i 1.46778i
\(188\) −1388.34 801.558i −0.538591 0.310955i
\(189\) −2515.38 1452.26i −0.968080 0.558921i
\(190\) 1665.87i 0.636077i
\(191\) −287.715 + 498.337i −0.108997 + 0.188788i −0.915364 0.402627i \(-0.868097\pi\)
0.806367 + 0.591415i \(0.201430\pi\)
\(192\) −260.736 451.609i −0.0980053 0.169750i
\(193\) 2112.00 1219.36i 0.787694 0.454775i −0.0514564 0.998675i \(-0.516386\pi\)
0.839150 + 0.543900i \(0.183053\pi\)
\(194\) −7.79271 −0.00288394
\(195\) 0 0
\(196\) 1938.98 0.706624
\(197\) −3311.27 + 1911.76i −1.19755 + 0.691408i −0.960009 0.279969i \(-0.909676\pi\)
−0.237544 + 0.971377i \(0.576342\pi\)
\(198\) 2081.39 + 3605.08i 0.747062 + 1.29395i
\(199\) −1078.71 + 1868.37i −0.384258 + 0.665555i −0.991666 0.128835i \(-0.958876\pi\)
0.607408 + 0.794390i \(0.292210\pi\)
\(200\) 283.139i 0.100105i
\(201\) 5682.54 + 3280.82i 1.99411 + 1.15130i
\(202\) 1793.22 + 1035.31i 0.624606 + 0.360616i
\(203\) 2256.70i 0.780243i
\(204\) 1157.54 2004.92i 0.397276 0.688102i
\(205\) −762.771 1321.16i −0.259874 0.450116i
\(206\) 2162.48 1248.51i 0.731394 0.422271i
\(207\) 1750.14 0.587647
\(208\) 0 0
\(209\) −3475.25 −1.15018
\(210\) 5142.24 2968.87i 1.68975 0.975579i
\(211\) −1681.93 2913.19i −0.548762 0.950484i −0.998360 0.0572525i \(-0.981766\pi\)
0.449598 0.893231i \(-0.351567\pi\)
\(212\) 233.132 403.796i 0.0755262 0.130815i
\(213\) 3272.01i 1.05255i
\(214\) −2012.66 1162.01i −0.642910 0.371184i
\(215\) 4443.11 + 2565.23i 1.40939 + 0.813709i
\(216\) 807.635i 0.254410i
\(217\) −2805.47 + 4859.22i −0.877640 + 1.52012i
\(218\) −1003.58 1738.25i −0.311794 0.540042i
\(219\) −2279.61 + 1316.13i −0.703388 + 0.406101i
\(220\) −2676.82 −0.820324
\(221\) 0 0
\(222\) −3800.06 −1.14884
\(223\) 2852.61 1646.95i 0.856613 0.494566i −0.00626360 0.999980i \(-0.501994\pi\)
0.862877 + 0.505415i \(0.168660\pi\)
\(224\) 460.329 + 797.313i 0.137308 + 0.237824i
\(225\) 697.054 1207.33i 0.206534 0.357728i
\(226\) 1488.82i 0.438208i
\(227\) 470.673 + 271.743i 0.137620 + 0.0794547i 0.567229 0.823560i \(-0.308015\pi\)
−0.429609 + 0.903015i \(0.641349\pi\)
\(228\) 1856.35 + 1071.77i 0.539210 + 0.311313i
\(229\) 3071.66i 0.886379i 0.896428 + 0.443189i \(0.146153\pi\)
−0.896428 + 0.443189i \(0.853847\pi\)
\(230\) −562.700 + 974.625i −0.161319 + 0.279412i
\(231\) −6193.51 10727.5i −1.76408 3.05548i
\(232\) −543.433 + 313.751i −0.153785 + 0.0887879i
\(233\) −3383.06 −0.951208 −0.475604 0.879660i \(-0.657770\pi\)
−0.475604 + 0.879660i \(0.657770\pi\)
\(234\) 0 0
\(235\) 5075.71 1.40895
\(236\) −2706.97 + 1562.87i −0.746648 + 0.431078i
\(237\) −3238.20 5608.73i −0.887527 1.53724i
\(238\) −2043.64 + 3539.68i −0.556594 + 0.964049i
\(239\) 698.550i 0.189060i −0.995522 0.0945302i \(-0.969865\pi\)
0.995522 0.0945302i \(-0.0301349\pi\)
\(240\) 1429.86 + 825.531i 0.384572 + 0.222032i
\(241\) −3217.67 1857.72i −0.860034 0.496541i 0.00398962 0.999992i \(-0.498730\pi\)
−0.864024 + 0.503451i \(0.832063\pi\)
\(242\) 2922.25i 0.776238i
\(243\) −2344.53 + 4060.85i −0.618938 + 1.07203i
\(244\) 105.112 + 182.060i 0.0275784 + 0.0477671i
\(245\) −5316.61 + 3069.55i −1.38639 + 0.800433i
\(246\) 1962.97 0.508758
\(247\) 0 0
\(248\) −1560.19 −0.399485
\(249\) 3138.82 1812.20i 0.798855 0.461219i
\(250\) −1134.85 1965.61i −0.287096 0.497265i
\(251\) −1926.42 + 3336.65i −0.484440 + 0.839074i −0.999840 0.0178750i \(-0.994310\pi\)
0.515400 + 0.856950i \(0.327643\pi\)
\(252\) 4533.09i 1.13317i
\(253\) 2033.21 + 1173.88i 0.505245 + 0.291704i
\(254\) −2915.94 1683.52i −0.720324 0.415879i
\(255\) 7329.92i 1.80007i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 2288.73 + 3964.19i 0.555513 + 0.962177i 0.997863 + 0.0653345i \(0.0208114\pi\)
−0.442350 + 0.896842i \(0.645855\pi\)
\(258\) −5717.12 + 3300.78i −1.37958 + 0.796502i
\(259\) 6708.98 1.60956
\(260\) 0 0
\(261\) −3089.67 −0.732743
\(262\) −3772.19 + 2177.87i −0.889490 + 0.513547i
\(263\) 2411.71 + 4177.21i 0.565447 + 0.979383i 0.997008 + 0.0772990i \(0.0246296\pi\)
−0.431561 + 0.902084i \(0.642037\pi\)
\(264\) 1722.18 2982.91i 0.401489 0.695399i
\(265\) 1476.26i 0.342212i
\(266\) −3277.38 1892.20i −0.755448 0.436158i
\(267\) 558.493 + 322.446i 0.128012 + 0.0739078i
\(268\) 3221.22i 0.734206i
\(269\) 982.898 1702.43i 0.222782 0.385870i −0.732870 0.680369i \(-0.761820\pi\)
0.955652 + 0.294499i \(0.0951529\pi\)
\(270\) 1278.55 + 2214.51i 0.288185 + 0.499151i
\(271\) −3824.29 + 2207.96i −0.857230 + 0.494922i −0.863084 0.505061i \(-0.831470\pi\)
0.00585389 + 0.999983i \(0.498137\pi\)
\(272\) −1136.52 −0.253351
\(273\) 0 0
\(274\) −3535.32 −0.779475
\(275\) 1619.60 935.076i 0.355147 0.205044i
\(276\) −724.047 1254.09i −0.157908 0.273504i
\(277\) 1806.11 3128.28i 0.391765 0.678557i −0.600917 0.799311i \(-0.705198\pi\)
0.992682 + 0.120754i \(0.0385313\pi\)
\(278\) 2011.07i 0.433871i
\(279\) −6652.82 3841.01i −1.42758 0.824212i
\(280\) −2524.41 1457.47i −0.538795 0.311073i
\(281\) 4095.02i 0.869353i 0.900587 + 0.434676i \(0.143137\pi\)
−0.900587 + 0.434676i \(0.856863\pi\)
\(282\) −3265.55 + 5656.10i −0.689577 + 1.19438i
\(283\) 3363.10 + 5825.05i 0.706415 + 1.22355i 0.966179 + 0.257874i \(0.0830219\pi\)
−0.259764 + 0.965672i \(0.583645\pi\)
\(284\) −1391.08 + 803.143i −0.290654 + 0.167809i
\(285\) −6786.75 −1.41057
\(286\) 0 0
\(287\) −3465.62 −0.712783
\(288\) −1091.61 + 630.241i −0.223346 + 0.128949i
\(289\) −66.2919 114.821i −0.0134932 0.0233709i
\(290\) 993.385 1720.59i 0.201150 0.348402i
\(291\) 31.7475i 0.00639544i
\(292\) 1119.10 + 646.114i 0.224282 + 0.129490i
\(293\) −3900.10 2251.72i −0.777632 0.448966i 0.0579584 0.998319i \(-0.481541\pi\)
−0.835590 + 0.549353i \(0.814874\pi\)
\(294\) 7899.40i 1.56701i
\(295\) 4948.29 8570.69i 0.976613 1.69154i
\(296\) 932.757 + 1615.58i 0.183160 + 0.317243i
\(297\) 4619.80 2667.24i 0.902586 0.521109i
\(298\) 272.548 0.0529808
\(299\) 0 0
\(300\) −1153.51 −0.221993
\(301\) 10093.5 5827.51i 1.93283 1.11592i
\(302\) 804.394 + 1393.25i 0.153270 + 0.265472i
\(303\) 4217.88 7305.58i 0.799705 1.38513i
\(304\) 1052.30i 0.198531i
\(305\) −576.429 332.801i −0.108217 0.0624792i
\(306\) −4846.22 2797.97i −0.905359 0.522709i
\(307\) 1934.75i 0.359681i −0.983696 0.179841i \(-0.942442\pi\)
0.983696 0.179841i \(-0.0575582\pi\)
\(308\) −3040.50 + 5266.31i −0.562496 + 0.974272i
\(309\) −5086.43 8809.96i −0.936431 1.62195i
\(310\) 4278.00 2469.90i 0.783787 0.452520i
\(311\) 2655.72 0.484219 0.242110 0.970249i \(-0.422161\pi\)
0.242110 + 0.970249i \(0.422161\pi\)
\(312\) 0 0
\(313\) 6102.36 1.10200 0.550999 0.834506i \(-0.314247\pi\)
0.550999 + 0.834506i \(0.314247\pi\)
\(314\) −6460.67 + 3730.07i −1.16114 + 0.670383i
\(315\) −7176.23 12429.6i −1.28360 2.22327i
\(316\) −1589.69 + 2753.42i −0.282997 + 0.490165i
\(317\) 1382.99i 0.245037i −0.992466 0.122518i \(-0.960903\pi\)
0.992466 0.122518i \(-0.0390971\pi\)
\(318\) −1645.07 949.781i −0.290097 0.167488i
\(319\) −3589.42 2072.35i −0.629996 0.363728i
\(320\) 810.535i 0.141595i
\(321\) −4734.04 + 8199.60i −0.823141 + 1.42572i
\(322\) 1278.30 + 2214.08i 0.221233 + 0.383186i
\(323\) 4045.80 2335.85i 0.696949 0.402384i
\(324\) 963.817 0.165264
\(325\) 0 0
\(326\) 5246.50 0.891340
\(327\) −7081.64 + 4088.59i −1.19760 + 0.691436i
\(328\) −481.828 834.551i −0.0811114 0.140489i
\(329\) 5765.31 9985.81i 0.966115 1.67336i
\(330\) 10905.4i 1.81916i
\(331\) −8666.02 5003.33i −1.43906 0.830839i −0.441271 0.897374i \(-0.645472\pi\)
−0.997784 + 0.0665347i \(0.978806\pi\)
\(332\) −1540.90 889.641i −0.254723 0.147064i
\(333\) 9185.34i 1.51157i
\(334\) 1278.00 2213.57i 0.209369 0.362637i
\(335\) 5099.44 + 8832.48i 0.831678 + 1.44051i
\(336\) 3248.26 1875.38i 0.527401 0.304495i
\(337\) −11057.1 −1.78730 −0.893649 0.448767i \(-0.851863\pi\)
−0.893649 + 0.448767i \(0.851863\pi\)
\(338\) 0 0
\(339\) 6065.47 0.971773
\(340\) 3116.29 1799.19i 0.497073 0.286985i
\(341\) −5152.59 8924.55i −0.818266 1.41728i
\(342\) 2590.63 4487.10i 0.409606 0.709458i
\(343\) 4078.05i 0.641964i
\(344\) 2806.63 + 1620.41i 0.439894 + 0.253973i
\(345\) 3970.63 + 2292.44i 0.619627 + 0.357742i
\(346\) 2139.96i 0.332500i
\(347\) 4316.98 7477.22i 0.667860 1.15677i −0.310642 0.950527i \(-0.600544\pi\)
0.978501 0.206240i \(-0.0661228\pi\)
\(348\) 1278.22 + 2213.95i 0.196897 + 0.341035i
\(349\) 8113.84 4684.53i 1.24448 0.718502i 0.274478 0.961593i \(-0.411495\pi\)
0.970003 + 0.243092i \(0.0781616\pi\)
\(350\) 2036.51 0.311018
\(351\) 0 0
\(352\) −1690.90 −0.256037
\(353\) 4345.59 2508.93i 0.655220 0.378291i −0.135233 0.990814i \(-0.543178\pi\)
0.790453 + 0.612522i \(0.209845\pi\)
\(354\) 6367.15 + 11028.2i 0.955961 + 1.65577i
\(355\) 2542.87 4404.38i 0.380174 0.658480i
\(356\) 316.589i 0.0471325i
\(357\) 14420.7 + 8325.79i 2.13788 + 1.23431i
\(358\) −1277.47 737.549i −0.188594 0.108885i
\(359\) 7268.33i 1.06855i 0.845312 + 0.534273i \(0.179414\pi\)
−0.845312 + 0.534273i \(0.820586\pi\)
\(360\) 1995.44 3456.20i 0.292136 0.505994i
\(361\) −1266.75 2194.07i −0.184684 0.319882i
\(362\) −2523.63 + 1457.02i −0.366406 + 0.211545i
\(363\) 11905.3 1.72139
\(364\) 0 0
\(365\) −4091.39 −0.586721
\(366\) 741.712 428.228i 0.105929 0.0611580i
\(367\) −5943.72 10294.8i −0.845394 1.46427i −0.885279 0.465061i \(-0.846032\pi\)
0.0398848 0.999204i \(-0.487301\pi\)
\(368\) −355.447 + 615.652i −0.0503504 + 0.0872095i
\(369\) 4744.81i 0.669391i
\(370\) −5115.18 2953.25i −0.718718 0.414952i
\(371\) 2904.36 + 1676.83i 0.406433 + 0.234654i
\(372\) 6356.23i 0.885901i
\(373\) 7117.28 12327.5i 0.987986 1.71124i 0.360156 0.932892i \(-0.382723\pi\)
0.627830 0.778350i \(-0.283943\pi\)
\(374\) −3753.39 6501.06i −0.518939 0.898828i
\(375\) −8007.91 + 4623.37i −1.10274 + 0.636666i
\(376\) 3206.23 0.439757
\(377\) 0 0
\(378\) 5809.03 0.790434
\(379\) −6859.00 + 3960.04i −0.929612 + 0.536712i −0.886689 0.462366i \(-0.847000\pi\)
−0.0429233 + 0.999078i \(0.513667\pi\)
\(380\) 1665.87 + 2885.37i 0.224887 + 0.389516i
\(381\) −6858.66 + 11879.5i −0.922257 + 1.59740i
\(382\) 1150.86i 0.154144i
\(383\) 9203.20 + 5313.47i 1.22784 + 0.708892i 0.966577 0.256376i \(-0.0825287\pi\)
0.261260 + 0.965268i \(0.415862\pi\)
\(384\) 903.217 + 521.473i 0.120032 + 0.0693002i
\(385\) 19253.4i 2.54869i
\(386\) −2438.72 + 4223.99i −0.321575 + 0.556983i
\(387\) 7978.51 + 13819.2i 1.04799 + 1.81516i
\(388\) 13.4974 7.79271i 0.00176604 0.00101963i
\(389\) 10183.7 1.32733 0.663667 0.748028i \(-0.268999\pi\)
0.663667 + 0.748028i \(0.268999\pi\)
\(390\) 0 0
\(391\) −3156.03 −0.408202
\(392\) −3358.40 + 1938.98i −0.432717 + 0.249829i
\(393\) 8872.66 + 15367.9i 1.13885 + 1.97254i
\(394\) 3823.52 6622.53i 0.488899 0.846798i
\(395\) 10066.4i 1.28227i
\(396\) −7210.16 4162.79i −0.914960 0.528252i
\(397\) −3162.78 1826.03i −0.399837 0.230846i 0.286577 0.958057i \(-0.407483\pi\)
−0.686414 + 0.727211i \(0.740816\pi\)
\(398\) 4314.82i 0.543424i
\(399\) −7708.82 + 13352.1i −0.967227 + 1.67529i
\(400\) 283.139 + 490.411i 0.0353924 + 0.0613014i
\(401\) −7694.37 + 4442.35i −0.958200 + 0.553217i −0.895619 0.444823i \(-0.853267\pi\)
−0.0625817 + 0.998040i \(0.519933\pi\)
\(402\) −13123.3 −1.62818
\(403\) 0 0
\(404\) −4141.26 −0.509988
\(405\) −2642.76 + 1525.80i −0.324246 + 0.187204i
\(406\) −2256.70 3908.72i −0.275857 0.477799i
\(407\) −6160.93 + 10671.0i −0.750334 + 1.29962i
\(408\) 4630.17i 0.561833i
\(409\) −9931.55 5733.99i −1.20069 0.693221i −0.239984 0.970777i \(-0.577142\pi\)
−0.960709 + 0.277556i \(0.910476\pi\)
\(410\) 2642.32 + 1525.54i 0.318280 + 0.183759i
\(411\) 14402.9i 1.72857i
\(412\) −2497.02 + 4324.96i −0.298590 + 0.517174i
\(413\) −11241.2 19470.3i −1.33933 2.31978i
\(414\) −3031.32 + 1750.14i −0.359859 + 0.207764i
\(415\) 5633.48 0.666353
\(416\) 0 0
\(417\) −8193.11 −0.962155
\(418\) 6019.31 3475.25i 0.704340 0.406651i
\(419\) 7957.04 + 13782.0i 0.927749 + 1.60691i 0.787080 + 0.616851i \(0.211592\pi\)
0.140669 + 0.990057i \(0.455075\pi\)
\(420\) −5937.74 + 10284.5i −0.689839 + 1.19484i
\(421\) 3091.64i 0.357904i 0.983858 + 0.178952i \(0.0572706\pi\)
−0.983858 + 0.178952i \(0.942729\pi\)
\(422\) 5826.37 + 3363.86i 0.672093 + 0.388033i
\(423\) 13671.7 + 7893.35i 1.57149 + 0.907300i
\(424\) 932.528i 0.106810i
\(425\) −1257.00 + 2177.19i −0.143467 + 0.248492i
\(426\) 3272.01 + 5667.28i 0.372134 + 0.644556i
\(427\) −1309.49 + 756.034i −0.148409 + 0.0856840i
\(428\) 4648.05 0.524934
\(429\) 0 0
\(430\) −10260.9 −1.15076
\(431\) −4327.26 + 2498.35i −0.483612 + 0.279214i −0.721921 0.691976i \(-0.756740\pi\)
0.238308 + 0.971190i \(0.423407\pi\)
\(432\) 807.635 + 1398.87i 0.0899476 + 0.155794i
\(433\) −920.918 + 1595.08i −0.102209 + 0.177031i −0.912594 0.408866i \(-0.865924\pi\)
0.810386 + 0.585897i \(0.199258\pi\)
\(434\) 11221.9i 1.24117i
\(435\) −7009.71 4047.06i −0.772620 0.446072i
\(436\) 3476.50 + 2007.16i 0.381868 + 0.220471i
\(437\) 2922.16i 0.319876i
\(438\) 2632.27 4559.23i 0.287157 0.497370i
\(439\) 4981.61 + 8628.40i 0.541593 + 0.938066i 0.998813 + 0.0487128i \(0.0155119\pi\)
−0.457220 + 0.889354i \(0.651155\pi\)
\(440\) 4636.39 2676.82i 0.502344 0.290028i
\(441\) −19094.1 −2.06177
\(442\) 0 0
\(443\) −8480.02 −0.909476 −0.454738 0.890625i \(-0.650267\pi\)
−0.454738 + 0.890625i \(0.650267\pi\)
\(444\) 6581.89 3800.06i 0.703519 0.406177i
\(445\) 501.184 + 868.076i 0.0533897 + 0.0924736i
\(446\) −3293.91 + 5705.21i −0.349711 + 0.605717i
\(447\) 1110.36i 0.117491i
\(448\) −1594.63 920.657i −0.168167 0.0970914i
\(449\) −2988.37 1725.34i −0.314098 0.181344i 0.334661 0.942339i \(-0.391378\pi\)
−0.648759 + 0.760994i \(0.724712\pi\)
\(450\) 2788.21i 0.292084i
\(451\) 3182.51 5512.27i 0.332281 0.575527i
\(452\) −1488.82 2578.72i −0.154930 0.268347i
\(453\) 5676.11 3277.10i 0.588713 0.339893i
\(454\) −1086.97 −0.112366
\(455\) 0 0
\(456\) −4287.06 −0.440263
\(457\) −5664.87 + 3270.61i −0.579850 + 0.334776i −0.761074 0.648666i \(-0.775327\pi\)
0.181224 + 0.983442i \(0.441994\pi\)
\(458\) −3071.66 5320.27i −0.313382 0.542794i
\(459\) −3585.51 + 6210.29i −0.364613 + 0.631528i
\(460\) 2250.80i 0.228139i
\(461\) 12656.0 + 7306.92i 1.27863 + 0.738215i 0.976596 0.215083i \(-0.0690023\pi\)
0.302030 + 0.953298i \(0.402336\pi\)
\(462\) 21455.0 + 12387.0i 2.16055 + 1.24740i
\(463\) 3680.01i 0.369383i −0.982797 0.184692i \(-0.940871\pi\)
0.982797 0.184692i \(-0.0591286\pi\)
\(464\) 627.503 1086.87i 0.0627825 0.108743i
\(465\) −10062.4 17428.6i −1.00351 1.73813i
\(466\) 5859.63 3383.06i 0.582494 0.336303i
\(467\) −457.544 −0.0453375 −0.0226687 0.999743i \(-0.507216\pi\)
−0.0226687 + 0.999743i \(0.507216\pi\)
\(468\) 0 0
\(469\) 23169.1 2.28112
\(470\) −8791.39 + 5075.71i −0.862801 + 0.498138i
\(471\) 15196.3 + 26320.8i 1.48665 + 2.57495i
\(472\) 3125.74 5413.95i 0.304818 0.527960i
\(473\) 21405.9i 2.08085i
\(474\) 11217.5 + 6476.40i 1.08699 + 0.627576i
\(475\) −2015.85 1163.85i −0.194723 0.112424i
\(476\) 8174.55i 0.787142i
\(477\) −2295.77 + 3976.39i −0.220369 + 0.381691i
\(478\) 698.550 + 1209.92i 0.0668429 + 0.115775i
\(479\) −8461.88 + 4885.47i −0.807167 + 0.466018i −0.845971 0.533229i \(-0.820979\pi\)
0.0388039 + 0.999247i \(0.487645\pi\)
\(480\) −3302.12 −0.314001
\(481\) 0 0
\(482\) 7430.89 0.702215
\(483\) 9020.18 5207.80i 0.849756 0.490607i
\(484\) −2922.25 5061.49i −0.274442 0.475347i
\(485\) −24.6729 + 42.7347i −0.00230998 + 0.00400100i
\(486\) 9378.13i 0.875310i
\(487\) 17537.2 + 10125.1i 1.63180 + 0.942118i 0.983539 + 0.180698i \(0.0578355\pi\)
0.648258 + 0.761421i \(0.275498\pi\)
\(488\) −364.120 210.225i −0.0337765 0.0195009i
\(489\) 21374.3i 1.97664i
\(490\) 6139.09 10633.2i 0.565992 0.980326i
\(491\) −8639.72 14964.4i −0.794104 1.37543i −0.923407 0.383823i \(-0.874607\pi\)
0.129303 0.991605i \(-0.458726\pi\)
\(492\) −3399.97 + 1962.97i −0.311549 + 0.179873i
\(493\) 5571.62 0.508992
\(494\) 0 0
\(495\) 26360.0 2.39353
\(496\) 2702.33 1560.19i 0.244634 0.141239i
\(497\) −5776.71 10005.6i −0.521370 0.903039i
\(498\) −3624.40 + 6277.65i −0.326131 + 0.564876i
\(499\) 16994.7i 1.52462i −0.647212 0.762310i \(-0.724065\pi\)
0.647212 0.762310i \(-0.275935\pi\)
\(500\) 3931.22 + 2269.69i 0.351619 + 0.203007i
\(501\) −9018.08 5206.59i −0.804188 0.464298i
\(502\) 7705.67i 0.685101i
\(503\) −1550.97 + 2686.35i −0.137483 + 0.238128i −0.926543 0.376188i \(-0.877235\pi\)
0.789060 + 0.614316i \(0.210568\pi\)
\(504\) −4533.09 7851.55i −0.400635 0.693920i
\(505\) 11355.2 6555.93i 1.00059 0.577693i
\(506\) −4695.51 −0.412531
\(507\) 0 0
\(508\) 6734.07 0.588142
\(509\) 17275.2 9973.82i 1.50434 0.868530i 0.504350 0.863499i \(-0.331732\pi\)
0.999987 0.00503052i \(-0.00160127\pi\)
\(510\) −7329.92 12695.8i −0.636420 1.10231i
\(511\) −4647.26 + 8049.29i −0.402314 + 0.696829i
\(512\) 512.000i 0.0441942i
\(513\) −5750.09 3319.81i −0.494878 0.285718i
\(514\) −7928.38 4577.45i −0.680362 0.392807i
\(515\) 15811.9i 1.35292i
\(516\) 6601.56 11434.2i 0.563212 0.975512i
\(517\) 10588.7 + 18340.2i 0.900755 + 1.56015i
\(518\) −11620.3 + 6708.98i −0.985649 + 0.569065i
\(519\) 8718.22 0.737355
\(520\) 0 0
\(521\) −18106.1 −1.52254 −0.761270 0.648436i \(-0.775424\pi\)
−0.761270 + 0.648436i \(0.775424\pi\)
\(522\) 5351.47 3089.67i 0.448712 0.259064i
\(523\) 427.606 + 740.635i 0.0357512 + 0.0619229i 0.883347 0.468719i \(-0.155284\pi\)
−0.847596 + 0.530642i \(0.821951\pi\)
\(524\) 4355.74 7544.37i 0.363133 0.628964i
\(525\) 8296.77i 0.689716i
\(526\) −8354.42 4823.42i −0.692528 0.399831i
\(527\) 11997.1 + 6926.50i 0.991651 + 0.572530i
\(528\) 6888.73i 0.567791i
\(529\) 5096.45 8827.31i 0.418875 0.725512i
\(530\) −1476.26 2556.96i −0.120990 0.209561i
\(531\) 26657.0 15390.4i 2.17856 1.25779i
\(532\) 7568.79 0.616821
\(533\) 0 0
\(534\) −1289.78 −0.104521
\(535\) −12744.8 + 7358.21i −1.02992 + 0.594623i
\(536\) 3221.22 + 5579.32i 0.259581 + 0.449608i
\(537\) −3004.78 + 5204.43i −0.241463 + 0.418226i
\(538\) 3931.59i 0.315061i
\(539\) −22182.5 12807.1i −1.77267 1.02345i
\(540\) −4429.02 2557.10i −0.352953 0.203778i
\(541\) 12326.5i 0.979592i −0.871837 0.489796i \(-0.837071\pi\)
0.871837 0.489796i \(-0.162929\pi\)
\(542\) 4415.91 7648.59i 0.349963 0.606153i
\(543\) 5935.90 + 10281.3i 0.469123 + 0.812544i
\(544\) 1968.50 1136.52i 0.155145 0.0895730i
\(545\) −12709.9 −0.998962
\(546\) 0 0
\(547\) 7326.20 0.572661 0.286330 0.958131i \(-0.407564\pi\)
0.286330 + 0.958131i \(0.407564\pi\)
\(548\) 6123.35 3535.32i 0.477329 0.275586i
\(549\) −1035.09 1792.84i −0.0804677 0.139374i
\(550\) −1870.15 + 3239.20i −0.144988 + 0.251127i
\(551\) 5158.75i 0.398857i
\(552\) 2508.17 + 1448.09i 0.193396 + 0.111658i
\(553\) −19804.4 11434.1i −1.52291 0.879251i
\(554\) 7224.46i 0.554039i
\(555\) −12031.6 + 20839.3i −0.920200 + 1.59383i
\(556\) 2011.07 + 3483.28i 0.153396 + 0.265690i
\(557\) 505.212 291.685i 0.0384318 0.0221886i −0.480661 0.876907i \(-0.659603\pi\)
0.519093 + 0.854718i \(0.326270\pi\)
\(558\) 15364.0 1.16561
\(559\) 0 0
\(560\) 5829.88 0.439924
\(561\) −26485.3 + 15291.3i −1.99325 + 1.15080i
\(562\) −4095.02 7092.78i −0.307363 0.532368i
\(563\) 2719.97 4711.13i 0.203611 0.352665i −0.746078 0.665858i \(-0.768065\pi\)
0.949689 + 0.313193i \(0.101399\pi\)
\(564\) 13062.2i 0.975209i
\(565\) 8164.61 + 4713.84i 0.607943 + 0.350996i
\(566\) −11650.1 6726.19i −0.865178 0.499511i
\(567\) 6932.39i 0.513462i
\(568\) 1606.29 2782.17i 0.118659 0.205523i
\(569\) 9071.62 + 15712.5i 0.668369 + 1.15765i 0.978360 + 0.206910i \(0.0663406\pi\)
−0.309991 + 0.950739i \(0.600326\pi\)
\(570\) 11755.0 6786.75i 0.863794 0.498712i
\(571\) −12916.3 −0.946634 −0.473317 0.880892i \(-0.656944\pi\)
−0.473317 + 0.880892i \(0.656944\pi\)
\(572\) 0 0
\(573\) −4688.61 −0.341832
\(574\) 6002.62 3465.62i 0.436489 0.252007i
\(575\) 786.257 + 1361.84i 0.0570247 + 0.0987696i
\(576\) 1260.48 2183.22i 0.0911807 0.157930i
\(577\) 1345.12i 0.0970504i −0.998822 0.0485252i \(-0.984548\pi\)
0.998822 0.0485252i \(-0.0154521\pi\)
\(578\) 229.642 + 132.584i 0.0165257 + 0.00954111i
\(579\) 17208.6 + 9935.37i 1.23517 + 0.713126i
\(580\) 3973.54i 0.284469i
\(581\) 6398.86 11083.2i 0.456918 0.791405i
\(582\) −31.7475 54.9883i −0.00226113 0.00391639i
\(583\) −5334.21 + 3079.71i −0.378937 + 0.218779i
\(584\) −2584.45 −0.183126
\(585\) 0 0
\(586\) 9006.89 0.634934
\(587\) 8605.67 4968.49i 0.605100 0.349355i −0.165945 0.986135i \(-0.553067\pi\)
0.771045 + 0.636780i \(0.219734\pi\)
\(588\) 7899.40 + 13682.2i 0.554023 + 0.959596i
\(589\) −6413.23 + 11108.0i −0.448646 + 0.777077i
\(590\) 19793.2i 1.38114i
\(591\) −26980.2 15577.0i −1.87787 1.08419i
\(592\) −3231.16 1865.51i −0.224324 0.129514i
\(593\) 15740.8i 1.09005i −0.838420 0.545024i \(-0.816520\pi\)
0.838420 0.545024i \(-0.183480\pi\)
\(594\) −5334.49 + 9239.61i −0.368479 + 0.638225i
\(595\) 12940.9 + 22414.4i 0.891641 + 1.54437i
\(596\) −472.067 + 272.548i −0.0324440 + 0.0187315i
\(597\) −17578.6 −1.20510
\(598\) 0 0
\(599\) −6079.68 −0.414706 −0.207353 0.978266i \(-0.566485\pi\)
−0.207353 + 0.978266i \(0.566485\pi\)
\(600\) 1997.94 1153.51i 0.135942 0.0784863i
\(601\) 6882.14 + 11920.2i 0.467102 + 0.809045i 0.999294 0.0375793i \(-0.0119647\pi\)
−0.532191 + 0.846624i \(0.678631\pi\)
\(602\) −11655.0 + 20187.1i −0.789075 + 1.36672i
\(603\) 31721.0i 2.14225i
\(604\) −2786.50 1608.79i −0.187717 0.108379i
\(605\) 16025.5 + 9252.30i 1.07690 + 0.621751i
\(606\) 16871.5i 1.13095i
\(607\) −8132.99 + 14086.8i −0.543835 + 0.941950i 0.454844 + 0.890571i \(0.349695\pi\)
−0.998679 + 0.0513790i \(0.983638\pi\)
\(608\) 1052.30 + 1822.63i 0.0701913 + 0.121575i
\(609\) −15924.1 + 9193.81i −1.05957 + 0.611743i
\(610\) 1331.21 0.0883589
\(611\) 0 0
\(612\) 11191.9 0.739223
\(613\) 10820.4 6247.17i 0.712940 0.411616i −0.0992084 0.995067i \(-0.531631\pi\)
0.812149 + 0.583450i \(0.198298\pi\)
\(614\) 1934.75 + 3351.09i 0.127167 + 0.220259i
\(615\) 6215.07 10764.8i 0.407505 0.705820i
\(616\) 12162.0i 0.795490i
\(617\) −12529.5 7233.90i −0.817534 0.472003i 0.0320316 0.999487i \(-0.489802\pi\)
−0.849565 + 0.527484i \(0.823136\pi\)
\(618\) 17619.9 + 10172.9i 1.14689 + 0.662156i
\(619\) 7989.85i 0.518803i 0.965770 + 0.259401i \(0.0835253\pi\)
−0.965770 + 0.259401i \(0.916475\pi\)
\(620\) −4939.81 + 8556.00i −0.319980 + 0.554221i
\(621\) 2242.75 + 3884.55i 0.144925 + 0.251017i
\(622\) −4599.85 + 2655.72i −0.296523 + 0.171197i
\(623\) 2277.11 0.146437
\(624\) 0 0
\(625\) −18796.4 −1.20297
\(626\) −10569.6 + 6102.36i −0.674834 + 0.389615i
\(627\) −14158.2 24522.7i −0.901792 1.56195i
\(628\) 7460.14 12921.3i 0.474032 0.821048i
\(629\) 16564.0i 1.05000i
\(630\) 24859.2 + 14352.5i 1.57209 + 0.907644i
\(631\) −16427.2 9484.25i −1.03638 0.598355i −0.117575 0.993064i \(-0.537512\pi\)
−0.918806 + 0.394709i \(0.870845\pi\)
\(632\) 6358.76i 0.400218i
\(633\) 13704.4 23736.7i 0.860506 1.49044i
\(634\) 1382.99 + 2395.42i 0.0866336 + 0.150054i
\(635\) −18464.6 + 10660.5i −1.15393 + 0.666222i
\(636\) 3799.12 0.236863
\(637\) 0 0
\(638\) 8289.40 0.514390
\(639\) 13698.7 7908.96i 0.848064 0.489630i
\(640\) 810.535 + 1403.89i 0.0500613 + 0.0867087i
\(641\) 12260.2 21235.3i 0.755459 1.30849i −0.189687 0.981845i \(-0.560747\pi\)
0.945146 0.326649i \(-0.105919\pi\)
\(642\) 18936.2i 1.16410i
\(643\) 10198.0 + 5887.83i 0.625460 + 0.361110i 0.778992 0.627034i \(-0.215731\pi\)
−0.153532 + 0.988144i \(0.549065\pi\)
\(644\) −4428.16 2556.60i −0.270954 0.156435i
\(645\) 41803.1i 2.55193i
\(646\) −4671.69 + 8091.61i −0.284528 + 0.492817i
\(647\) −10917.4 18909.5i −0.663382 1.14901i −0.979721 0.200365i \(-0.935787\pi\)
0.316340 0.948646i \(-0.397546\pi\)
\(648\) −1669.38 + 963.817i −0.101203 + 0.0584295i
\(649\) 41291.5 2.49743
\(650\) 0 0
\(651\) −45718.1 −2.75243
\(652\) −9087.21 + 5246.50i −0.545832 + 0.315136i
\(653\) −3663.85 6345.98i −0.219567 0.380302i 0.735108 0.677950i \(-0.237131\pi\)
−0.954676 + 0.297648i \(0.903798\pi\)
\(654\) 8177.18 14163.3i 0.488919 0.846832i
\(655\) 27581.9i 1.64537i
\(656\) 1669.10 + 963.657i 0.0993407 + 0.0573544i
\(657\) −11020.4 6362.61i −0.654407 0.377822i
\(658\) 23061.2i 1.36629i
\(659\) 4184.17 7247.20i 0.247333 0.428393i −0.715452 0.698662i \(-0.753779\pi\)
0.962785 + 0.270269i \(0.0871126\pi\)
\(660\) −10905.4 18888.7i −0.643169 1.11400i
\(661\) 13148.1 7591.06i 0.773679 0.446684i −0.0605065 0.998168i \(-0.519272\pi\)
0.834185 + 0.551484i \(0.185938\pi\)
\(662\) 20013.3 1.17498
\(663\) 0 0
\(664\) 3558.56 0.207980
\(665\) −20753.4 + 11982.0i −1.21020 + 0.698708i
\(666\) −9185.34 15909.5i −0.534421 0.925645i
\(667\) 1742.53 3018.15i 0.101156 0.175207i
\(668\) 5112.01i 0.296092i
\(669\) 23243.1 + 13419.4i 1.34324 + 0.775521i
\(670\) −17665.0 10198.9i −1.01859 0.588085i
\(671\) 2777.10i 0.159774i
\(672\) −3750.76 + 6496.51i −0.215311 + 0.372929i
\(673\) −9952.15 17237.6i −0.570026 0.987314i −0.996563 0.0828434i \(-0.973600\pi\)
0.426537 0.904470i \(-0.359733\pi\)
\(674\) 19151.5 11057.1i 1.09449 0.631905i
\(675\) 3573.01 0.203741
\(676\) 0 0
\(677\) −10760.9 −0.610896 −0.305448 0.952209i \(-0.598806\pi\)
−0.305448 + 0.952209i \(0.598806\pi\)
\(678\) −10505.7 + 6065.47i −0.595087 + 0.343574i
\(679\) 56.0501 + 97.0816i 0.00316790 + 0.00548697i
\(680\) −3598.38 + 6232.58i −0.202929 + 0.351483i
\(681\) 4428.33i 0.249183i
\(682\) 17849.1 + 10305.2i 1.00217 + 0.578601i
\(683\) 20073.0 + 11589.1i 1.12456 + 0.649262i 0.942560 0.334037i \(-0.108411\pi\)
0.181995 + 0.983299i \(0.441744\pi\)
\(684\) 10362.5i 0.579270i
\(685\) −11193.3 + 19387.4i −0.624344 + 1.08140i
\(686\) −4078.05 7063.38i −0.226969 0.393121i
\(687\) −21674.8 + 12513.9i −1.20370 + 0.694959i
\(688\) −6481.64 −0.359172
\(689\) 0 0
\(690\) −9169.77 −0.505923
\(691\) −15026.3 + 8675.41i −0.827244 + 0.477610i −0.852908 0.522061i \(-0.825163\pi\)
0.0256641 + 0.999671i \(0.491830\pi\)
\(692\) −2139.96 3706.53i −0.117557 0.203614i
\(693\) 29941.4 51860.1i 1.64124 2.84271i
\(694\) 17267.9i 0.944497i
\(695\) −11028.6 6367.36i −0.601925 0.347522i
\(696\) −4427.90 2556.45i −0.241148 0.139227i
\(697\) 8556.34i 0.464985i
\(698\) −9369.06 + 16227.7i −0.508057 + 0.879981i
\(699\) −13782.6 23872.2i −0.745788 1.29174i
\(700\) −3527.35 + 2036.51i −0.190459 + 0.109961i
\(701\) −50.2552 −0.00270772 −0.00135386 0.999999i \(-0.500431\pi\)
−0.00135386 + 0.999999i \(0.500431\pi\)
\(702\) 0 0
\(703\) 15336.5 0.822799
\(704\) 2928.72 1690.90i 0.156790 0.0905229i
\(705\) 20678.5 + 35816.1i 1.10468 + 1.91335i
\(706\) −5017.86 + 8691.19i −0.267492 + 0.463311i
\(707\) 29786.6i 1.58450i
\(708\) −22056.5 12734.3i −1.17081 0.675966i
\(709\) 22044.2 + 12727.2i 1.16768 + 0.674163i 0.953133 0.302550i \(-0.0978380\pi\)
0.214550 + 0.976713i \(0.431171\pi\)
\(710\) 10171.5i 0.537647i
\(711\) 15654.5 27114.4i 0.825724 1.43020i
\(712\) 316.589 + 548.348i 0.0166639 + 0.0288626i
\(713\) 7504.19 4332.55i 0.394157 0.227567i
\(714\) −33303.1 −1.74557
\(715\) 0 0
\(716\) 2950.20 0.153986
\(717\) 4929.24 2845.90i 0.256744 0.148231i
\(718\) −7268.33 12589.1i −0.377788 0.654348i
\(719\) 3742.99 6483.06i 0.194145 0.336269i −0.752475 0.658621i \(-0.771140\pi\)
0.946620 + 0.322352i \(0.104473\pi\)
\(720\) 7981.76i 0.413142i
\(721\) −31107.9 17960.1i −1.60682 0.927698i
\(722\) 4388.14 + 2533.50i 0.226191 + 0.130591i
\(723\) 30273.5i 1.55724i
\(724\) 2914.03 5047.26i 0.149585 0.259088i
\(725\) −1388.05 2404.17i −0.0711047 0.123157i
\(726\) −20620.5 + 11905.3i −1.05413 + 0.608604i
\(727\) −19443.6 −0.991919 −0.495959 0.868346i \(-0.665183\pi\)
−0.495959 + 0.868346i \(0.665183\pi\)
\(728\) 0 0
\(729\) −31700.8 −1.61057
\(730\) 7086.49 4091.39i 0.359292 0.207437i
\(731\) −14387.7 24920.2i −0.727972 1.26088i
\(732\) −856.456 + 1483.42i −0.0432452 + 0.0749030i
\(733\) 24222.3i 1.22056i −0.792186 0.610280i \(-0.791057\pi\)
0.792186 0.610280i \(-0.208943\pi\)
\(734\) 20589.6 + 11887.4i 1.03539 + 0.597784i
\(735\) −43319.8 25010.7i −2.17398 1.25515i
\(736\) 1421.79i 0.0712063i
\(737\) −21276.4 + 36851.8i −1.06340 + 1.84186i
\(738\) 4744.81 + 8218.26i 0.236665 + 0.409916i
\(739\) 3126.92 1805.33i 0.155650 0.0898647i −0.420152 0.907454i \(-0.638023\pi\)
0.575802 + 0.817589i \(0.304690\pi\)
\(740\) 11813.0 0.586830
\(741\) 0 0
\(742\) −6707.33 −0.331852
\(743\) 22672.2 13089.8i 1.11947 0.646324i 0.178201 0.983994i \(-0.442972\pi\)
0.941264 + 0.337670i \(0.109639\pi\)
\(744\) −6356.23 11009.3i −0.313213 0.542502i
\(745\) 862.928 1494.63i 0.0424365 0.0735022i
\(746\) 28469.1i 1.39722i
\(747\) 15174.1 + 8760.75i 0.743226 + 0.429102i
\(748\) 13002.1 + 7506.77i 0.635567 + 0.366945i
\(749\) 33431.7i 1.63093i
\(750\) 9246.74 16015.8i 0.450191 0.779753i
\(751\) 6379.01 + 11048.8i 0.309951 + 0.536851i 0.978351 0.206950i \(-0.0663539\pi\)
−0.668400 + 0.743802i \(0.733021\pi\)
\(752\) −5553.36 + 3206.23i −0.269295 + 0.155478i
\(753\) −31392.9 −1.51929
\(754\) 0 0
\(755\) 10187.3 0.491066
\(756\) −10061.5 + 5809.03i −0.484040 + 0.279461i
\(757\) −39.2371 67.9606i −0.00188388 0.00326297i 0.865082 0.501631i \(-0.167266\pi\)
−0.866966 + 0.498368i \(0.833933\pi\)
\(758\) 7920.09 13718.0i 0.379513 0.657335i
\(759\) 19129.5i 0.914832i
\(760\) −5770.73 3331.73i −0.275429 0.159019i
\(761\) 14703.1 + 8488.84i 0.700377 + 0.404363i 0.807488 0.589884i \(-0.200827\pi\)
−0.107111 + 0.994247i \(0.534160\pi\)
\(762\) 27434.6i 1.30427i
\(763\) −14436.8 + 25005.2i −0.684988 + 1.18643i
\(764\) 1150.86 + 1993.35i 0.0544983 + 0.0943938i
\(765\) −30687.7 + 17717.6i −1.45035 + 0.837360i
\(766\) −21253.9 −1.00252
\(767\) 0 0
\(768\) −2085.89 −0.0980053
\(769\) 19909.4 11494.7i 0.933616 0.539024i 0.0456629 0.998957i \(-0.485460\pi\)
0.887954 + 0.459933i \(0.152127\pi\)
\(770\) 19253.4 + 33347.9i 0.901096 + 1.56074i
\(771\) −18648.6 + 32300.3i −0.871092 + 1.50878i
\(772\) 9754.90i 0.454775i
\(773\) −5225.10 3016.71i −0.243123 0.140367i 0.373488 0.927635i \(-0.378162\pi\)
−0.616611 + 0.787268i \(0.711495\pi\)
\(774\) −27638.4 15957.0i −1.28351 0.741038i
\(775\) 6902.36i 0.319923i
\(776\) −15.5854 + 26.9947i −0.000720984 + 0.00124878i
\(777\) 27332.4 + 47341.1i 1.26196 + 2.18578i
\(778\) −17638.6 + 10183.7i −0.812823 + 0.469283i
\(779\) −7922.29 −0.364372
\(780\) 0 0
\(781\) 21219.3 0.972196
\(782\) 5466.40 3156.03i 0.249972 0.144321i
\(783\) −3959.32 6857.75i −0.180708 0.312996i
\(784\) 3877.95 6716.81i 0.176656 0.305977i
\(785\) 47239.9i 2.14785i
\(786\) −30735.8 17745.3i −1.39480 0.805286i
\(787\) −32610.9 18827.9i −1.47707 0.852786i −0.477404 0.878684i \(-0.658422\pi\)
−0.999665 + 0.0258980i \(0.991755\pi\)
\(788\) 15294.1i 0.691408i
\(789\) −19650.7 + 34035.9i −0.886669 + 1.53576i
\(790\) 10066.4 + 17435.5i 0.453350 + 0.785225i
\(791\) 18547.8 10708.6i 0.833733 0.481356i
\(792\) 16651.2 0.747062
\(793\) 0 0
\(794\) 7304.13 0.326466
\(795\) −10417.1 + 6014.30i −0.464724 + 0.268308i
\(796\) 4314.82 + 7473.49i 0.192129 + 0.332778i
\(797\) 12114.0 20982.1i 0.538395 0.932527i −0.460596 0.887610i \(-0.652364\pi\)
0.998991 0.0449170i \(-0.0143023\pi\)
\(798\) 30835.3i 1.36787i
\(799\) −24654.2 14234.1i −1.09162 0.630246i
\(800\) −980.822 566.278i −0.0433466 0.0250262i
\(801\) 3117.61i 0.137522i
\(802\) 8884.69 15388.7i 0.391184 0.677550i
\(803\) −8535.25 14783.5i −0.375097 0.649686i
\(804\) 22730.2 13123.3i 0.997053 0.575649i
\(805\) 16189.2 0.708812
\(806\) 0 0
\(807\) 16017.3 0.698682
\(808\) 7172.87 4141.26i 0.312303 0.180308i
\(809\) −19987.2 34618.9i −0.868621 1.50450i −0.863407 0.504509i \(-0.831674\pi\)
−0.00521394 0.999986i \(-0.501660\pi\)
\(810\) 3051.59 5285.51i 0.132373 0.229277i
\(811\) 13394.4i 0.579953i −0.957034 0.289977i \(-0.906352\pi\)
0.957034 0.289977i \(-0.0936475\pi\)
\(812\) 7817.44 + 4513.40i 0.337855 + 0.195061i
\(813\) −31160.4 17990.5i −1.34421 0.776080i
\(814\) 24643.7i 1.06113i
\(815\) 16611.2 28771.5i 0.713946 1.23659i
\(816\) −4630.17 8019.70i −0.198638 0.344051i
\(817\) 23073.5 13321.5i 0.988054 0.570453i
\(818\) 22935.9 0.980362
\(819\) 0 0
\(820\) −6102.17 −0.259874
\(821\) −27313.8 + 15769.6i −1.16109 + 0.670358i −0.951566 0.307445i \(-0.900526\pi\)
−0.209528 + 0.977803i \(0.567193\pi\)
\(822\) −14402.9 24946.5i −0.611142 1.05853i
\(823\) −13443.2 + 23284.2i −0.569379 + 0.986193i 0.427249 + 0.904134i \(0.359483\pi\)
−0.996627 + 0.0820590i \(0.973850\pi\)
\(824\) 9988.07i 0.422271i
\(825\) 13196.5 + 7619.01i 0.556901 + 0.321527i
\(826\) 38940.5 + 22482.3i 1.64033 + 0.947047i
\(827\) 16064.3i 0.675466i 0.941242 + 0.337733i \(0.109660\pi\)
−0.941242 + 0.337733i \(0.890340\pi\)
\(828\) 3500.27 6062.65i 0.146912 0.254458i
\(829\) 3927.65 + 6802.90i 0.164551 + 0.285011i 0.936496 0.350679i \(-0.114049\pi\)
−0.771945 + 0.635690i \(0.780716\pi\)
\(830\) −9757.47 + 5633.48i −0.408056 + 0.235591i
\(831\) 29432.5 1.22864
\(832\) 0 0
\(833\) 34432.5 1.43219
\(834\) 14190.9 8193.11i 0.589197 0.340173i
\(835\) −8092.70 14017.0i −0.335401 0.580931i
\(836\) −6950.50 + 12038.6i −0.287545 + 0.498043i
\(837\) 19688.5i 0.813065i
\(838\) −27564.0 15914.1i −1.13626 0.656017i
\(839\) −4508.98 2603.26i −0.185539 0.107121i 0.404354 0.914603i \(-0.367497\pi\)
−0.589892 + 0.807482i \(0.700830\pi\)
\(840\) 23751.0i 0.975579i
\(841\) 9118.25 15793.3i 0.373867 0.647557i
\(842\) −3091.64 5354.88i −0.126538 0.219170i
\(843\) −28896.0 + 16683.1i −1.18058 + 0.681610i
\(844\) −13455.4 −0.548762
\(845\) 0 0
\(846\) −31573.4 −1.28312
\(847\) 36405.5 21018.7i 1.47687 0.852670i
\(848\) −932.528 1615.19i −0.0377631 0.0654077i
\(849\) −27402.5 + 47462.6i −1.10772 + 1.91862i
\(850\) 5028.00i 0.202893i
\(851\) −8972.72 5180.40i −0.361435 0.208674i
\(852\) −11334.6 6544.01i −0.455770 0.263139i
\(853\) 11007.6i 0.441842i −0.975292 0.220921i \(-0.929094\pi\)
0.975292 0.220921i \(-0.0709064\pi\)
\(854\) 1512.07 2618.98i 0.0605877 0.104941i
\(855\) −16404.6 28413.7i −0.656172 1.13652i
\(856\) −8050.65 + 4648.05i −0.321455 + 0.185592i
\(857\) 15769.9 0.628576 0.314288 0.949328i \(-0.398234\pi\)
0.314288 + 0.949328i \(0.398234\pi\)
\(858\) 0 0
\(859\) 13386.6 0.531716 0.265858 0.964012i \(-0.414345\pi\)
0.265858 + 0.964012i \(0.414345\pi\)
\(860\) 17772.5 10260.9i 0.704693 0.406854i
\(861\) −14118.9 24454.7i −0.558853 0.967961i
\(862\) 4996.69 8654.52i 0.197434 0.341965i
\(863\) 13233.1i 0.521968i −0.965343 0.260984i \(-0.915953\pi\)
0.965343 0.260984i \(-0.0840471\pi\)
\(864\) −2797.73 1615.27i −0.110163 0.0636026i
\(865\) 11735.4 + 6775.45i 0.461291 + 0.266326i
\(866\) 3683.67i 0.144545i
\(867\) 540.147 935.563i 0.0211584 0.0366475i
\(868\) 11221.9 + 19436.9i 0.438820 + 0.760059i
\(869\) 36373.1 21000.0i 1.41988 0.819767i
\(870\) 16188.2 0.630841
\(871\) 0 0
\(872\) −8028.64 −0.311794
\(873\) −132.916 + 76.7388i −0.00515293 + 0.00297505i
\(874\) 2922.16 + 5061.32i 0.113093 + 0.195883i
\(875\) −16325.1 + 28275.8i −0.630729 + 1.09245i
\(876\) 10529.1i 0.406101i
\(877\) 30934.9 + 17860.3i 1.19110 + 0.687684i 0.958557 0.284901i \(-0.0919608\pi\)
0.232547 + 0.972585i \(0.425294\pi\)
\(878\) −17256.8 9963.22i −0.663313 0.382964i
\(879\) 36694.1i 1.40803i
\(880\) −5353.64 + 9272.78i −0.205081 + 0.355211i
\(881\) 263.170 + 455.824i 0.0100641 + 0.0174315i 0.871014 0.491259i \(-0.163463\pi\)
−0.860950 + 0.508690i \(0.830130\pi\)
\(882\) 33071.9 19094.1i 1.26257 0.728947i
\(883\) −39626.2 −1.51022 −0.755112 0.655596i \(-0.772417\pi\)
−0.755112 + 0.655596i \(0.772417\pi\)
\(884\) 0 0
\(885\) 80637.5 3.06282
\(886\) 14687.8 8480.02i 0.556938 0.321548i
\(887\) 18332.2 + 31752.3i 0.693951 + 1.20196i 0.970533 + 0.240968i \(0.0774650\pi\)
−0.276582 + 0.960990i \(0.589202\pi\)
\(888\) −7600.11 + 13163.8i −0.287211 + 0.497463i
\(889\) 48435.7i 1.82731i
\(890\) −1736.15 1002.37i −0.0653887 0.0377522i
\(891\) −11026.4 6366.08i −0.414588 0.239362i
\(892\) 13175.6i 0.494566i
\(893\) 13179.3 22827.3i 0.493874 0.855415i
\(894\) 1110.36 + 1923.20i 0.0415392 + 0.0719480i
\(895\) −8089.34 + 4670.38i −0.302119 + 0.174429i
\(896\) 3682.63 0.137308
\(897\) 0 0
\(898\) 6901.34 0.256460
\(899\) −13247.8 + 7648.64i −0.491479 + 0.283756i
\(900\) −2788.21 4829.33i −0.103267 0.178864i
\(901\) 4139.97 7170.64i 0.153077 0.265137i
\(902\) 12730.0i 0.469916i
\(903\) 82242.3 + 47482.6i 3.03084 + 1.74986i
\(904\) 5157.43 + 2977.65i 0.189750 + 0.109552i
\(905\) 18452.6i 0.677772i
\(906\) −6554.21 + 11352.2i −0.240341 + 0.416283i
\(907\) −17715.0 30683.3i −0.648530 1.12329i −0.983474 0.181049i \(-0.942051\pi\)
0.334944 0.942238i \(-0.391283\pi\)
\(908\) 1882.69 1086.97i 0.0688098 0.0397273i
\(909\) 40781.1 1.48804
\(910\) 0 0
\(911\) −1970.18 −0.0716521 −0.0358261 0.999358i \(-0.511406\pi\)
−0.0358261 + 0.999358i \(0.511406\pi\)
\(912\) 7425.41 4287.06i 0.269605 0.155657i
\(913\) 11752.3 + 20355.6i 0.426006 + 0.737865i
\(914\) 6541.22 11329.7i 0.236723 0.410016i
\(915\) 5423.34i 0.195945i
\(916\) 10640.5 + 6143.31i 0.383813 + 0.221595i
\(917\) 54263.9 + 31329.3i 1.95415 + 1.12823i
\(918\) 14342.0i 0.515640i
\(919\) −3499.62 + 6061.52i −0.125617 + 0.217575i −0.921974 0.387252i \(-0.873424\pi\)
0.796357 + 0.604827i \(0.206758\pi\)
\(920\) 2250.80 + 3898.50i 0.0806594 + 0.139706i
\(921\) 13652.4 7882.19i 0.488448 0.282005i
\(922\) −29227.7 −1.04399
\(923\) 0 0
\(924\) −49548.1 −1.76408
\(925\) −7147.41 + 4126.56i −0.254060 + 0.146681i
\(926\) 3680.01 + 6373.96i 0.130597 + 0.226200i
\(927\) 24589.4 42590.1i 0.871222 1.50900i
\(928\) 2510.01i 0.0887879i
\(929\) 20466.4 + 11816.3i 0.722801 + 0.417309i 0.815783 0.578358i \(-0.196306\pi\)
−0.0929817 + 0.995668i \(0.529640\pi\)
\(930\) 34857.2 + 20124.8i 1.22905 + 0.709590i
\(931\) 31880.9i 1.12229i
\(932\) −6766.11 + 11719.3i −0.237802 + 0.411885i
\(933\) 10819.4 + 18739.8i 0.379649 + 0.657571i
\(934\) 792.489 457.544i 0.0277634 0.0160292i
\(935\) −47535.2 −1.66264
\(936\) 0 0
\(937\) −30872.4 −1.07637 −0.538183 0.842828i \(-0.680889\pi\)
−0.538183 + 0.842828i \(0.680889\pi\)
\(938\) −40130.0 + 23169.1i −1.39690 + 0.806499i
\(939\) 24861.0 + 43060.6i 0.864014 + 1.49652i
\(940\) 10151.4 17582.8i 0.352237 0.610092i
\(941\) 6690.77i 0.231788i 0.993262 + 0.115894i \(0.0369733\pi\)
−0.993262 + 0.115894i \(0.963027\pi\)
\(942\) −52641.6 30392.7i −1.82076 1.05122i
\(943\) 4634.98 + 2676.01i 0.160059 + 0.0924102i
\(944\) 12503.0i 0.431078i
\(945\) 18392.3 31856.3i 0.633122 1.09660i
\(946\) −21405.9 37076.0i −0.735692 1.27426i
\(947\) 18599.7 10738.6i 0.638237 0.368486i −0.145698 0.989329i \(-0.546543\pi\)
0.783935 + 0.620843i \(0.213209\pi\)
\(948\) −25905.6 −0.887527
\(949\) 0 0
\(950\) 4655.41 0.158991
\(951\) 9758.94 5634.33i 0.332761 0.192119i
\(952\) 8174.55 + 14158.7i 0.278297 + 0.482024i
\(953\) −3925.25 + 6798.73i −0.133422 + 0.231094i −0.924994 0.379983i \(-0.875930\pi\)
0.791571 + 0.611077i \(0.209263\pi\)
\(954\) 9183.08i 0.311649i
\(955\) −6311.25 3643.80i −0.213851 0.123467i
\(956\) −2419.85 1397.10i −0.0818656 0.0472651i
\(957\) 33771.1i 1.14071i
\(958\) 9770.94 16923.8i 0.329525 0.570753i
\(959\) 25428.2 + 44043.0i 0.856226 + 1.48303i
\(960\) 5719.45 3302.12i 0.192286 0.111016i
\(961\) −8243.39 −0.276707
\(962\) 0 0
\(963\) −45771.7 −1.53164
\(964\) −12870.7 + 7430.89i −0.430017 + 0.248270i
\(965\) 15442.7 + 26747.6i 0.515150 + 0.892266i
\(966\) −10415.6 + 18040.4i −0.346912 + 0.600869i
\(967\) 44143.2i 1.46799i −0.679152 0.733997i \(-0.737652\pi\)
0.679152 0.733997i \(-0.262348\pi\)
\(968\) 10123.0 + 5844.51i 0.336121 + 0.194060i
\(969\) 32965.2 + 19032.5i 1.09288 + 0.630972i
\(970\) 98.6916i 0.00326680i
\(971\) −14315.9 + 24795.8i −0.473139 + 0.819500i −0.999527 0.0307439i \(-0.990212\pi\)
0.526389 + 0.850244i \(0.323546\pi\)
\(972\) 9378.13 + 16243.4i 0.309469 + 0.536016i
\(973\) −25053.9 + 14464.9i −0.825481 + 0.476591i
\(974\) −40500.4 −1.33236
\(975\) 0 0
\(976\) 840.898 0.0275784
\(977\) 8058.88 4652.80i 0.263896 0.152360i −0.362215 0.932095i \(-0.617979\pi\)
0.626110 + 0.779734i \(0.284646\pi\)
\(978\) 21374.3 + 37021.3i 0.698849 + 1.21044i
\(979\) −2091.09 + 3621.88i −0.0682651 + 0.118239i
\(980\) 24556.4i 0.800433i
\(981\) −34234.9 19765.5i −1.11421 0.643287i
\(982\) 29928.9 + 17279.4i 0.972574 + 0.561516i
\(983\) 28467.2i 0.923666i −0.886967 0.461833i \(-0.847192\pi\)
0.886967 0.461833i \(-0.152808\pi\)
\(984\) 3925.94 6799.93i 0.127190 0.220299i
\(985\) −24211.7 41935.9i −0.783197 1.35654i
\(986\) −9650.33 + 5571.62i −0.311693 + 0.179956i
\(987\) 93951.6 3.02990
\(988\) 0 0
\(989\) −17999.1 −0.578703
\(990\) −45656.9 + 26360.0i −1.46573 + 0.846240i
\(991\) −7749.06 13421.8i −0.248393 0.430229i 0.714687 0.699444i \(-0.246569\pi\)
−0.963080 + 0.269215i \(0.913236\pi\)
\(992\) −3120.39 + 5404.67i −0.0998713 + 0.172982i
\(993\) 81534.3i 2.60565i
\(994\) 20011.1 + 11553.4i 0.638545 + 0.368664i
\(995\) −23662.2 13661.4i −0.753912 0.435272i
\(996\) 14497.6i 0.461219i
\(997\) −630.399 + 1091.88i −0.0200250 + 0.0346844i −0.875864 0.482558i \(-0.839708\pi\)
0.855839 + 0.517242i \(0.173041\pi\)
\(998\) 16994.7 + 29435.6i 0.539035 + 0.933636i
\(999\) −20387.5 + 11770.7i −0.645678 + 0.372782i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.e.i.23.5 24
13.2 odd 12 338.4.a.n.1.1 6
13.3 even 3 338.4.b.h.337.1 12
13.4 even 6 inner 338.4.e.i.147.5 24
13.5 odd 4 338.4.c.p.315.6 12
13.6 odd 12 338.4.c.p.191.6 12
13.7 odd 12 338.4.c.o.191.6 12
13.8 odd 4 338.4.c.o.315.6 12
13.9 even 3 inner 338.4.e.i.147.12 24
13.10 even 6 338.4.b.h.337.7 12
13.11 odd 12 338.4.a.o.1.1 yes 6
13.12 even 2 inner 338.4.e.i.23.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.n.1.1 6 13.2 odd 12
338.4.a.o.1.1 yes 6 13.11 odd 12
338.4.b.h.337.1 12 13.3 even 3
338.4.b.h.337.7 12 13.10 even 6
338.4.c.o.191.6 12 13.7 odd 12
338.4.c.o.315.6 12 13.8 odd 4
338.4.c.p.191.6 12 13.6 odd 12
338.4.c.p.315.6 12 13.5 odd 4
338.4.e.i.23.5 24 1.1 even 1 trivial
338.4.e.i.23.12 24 13.12 even 2 inner
338.4.e.i.147.5 24 13.4 even 6 inner
338.4.e.i.147.12 24 13.9 even 3 inner