Properties

Label 342.6.a.f.1.1
Level $342$
Weight $6$
Character 342.1
Self dual yes
Analytic conductor $54.851$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [342,6,Mod(1,342)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(342, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("342.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.8512663760\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 342.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} +54.0000 q^{5} +104.000 q^{7} +64.0000 q^{8} +216.000 q^{10} +330.000 q^{11} -46.0000 q^{13} +416.000 q^{14} +256.000 q^{16} +618.000 q^{17} +361.000 q^{19} +864.000 q^{20} +1320.00 q^{22} +402.000 q^{23} -209.000 q^{25} -184.000 q^{26} +1664.00 q^{28} +2628.00 q^{29} -2368.00 q^{31} +1024.00 q^{32} +2472.00 q^{34} +5616.00 q^{35} -12130.0 q^{37} +1444.00 q^{38} +3456.00 q^{40} +18864.0 q^{41} -10408.0 q^{43} +5280.00 q^{44} +1608.00 q^{46} +4770.00 q^{47} -5991.00 q^{49} -836.000 q^{50} -736.000 q^{52} +19452.0 q^{53} +17820.0 q^{55} +6656.00 q^{56} +10512.0 q^{58} -30528.0 q^{59} +11138.0 q^{61} -9472.00 q^{62} +4096.00 q^{64} -2484.00 q^{65} +49508.0 q^{67} +9888.00 q^{68} +22464.0 q^{70} -7572.00 q^{71} +2342.00 q^{73} -48520.0 q^{74} +5776.00 q^{76} +34320.0 q^{77} +22424.0 q^{79} +13824.0 q^{80} +75456.0 q^{82} +46734.0 q^{83} +33372.0 q^{85} -41632.0 q^{86} +21120.0 q^{88} +70104.0 q^{89} -4784.00 q^{91} +6432.00 q^{92} +19080.0 q^{94} +19494.0 q^{95} +105710. q^{97} -23964.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 54.0000 0.965981 0.482991 0.875625i \(-0.339550\pi\)
0.482991 + 0.875625i \(0.339550\pi\)
\(6\) 0 0
\(7\) 104.000 0.802210 0.401105 0.916032i \(-0.368626\pi\)
0.401105 + 0.916032i \(0.368626\pi\)
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) 216.000 0.683052
\(11\) 330.000 0.822304 0.411152 0.911567i \(-0.365127\pi\)
0.411152 + 0.911567i \(0.365127\pi\)
\(12\) 0 0
\(13\) −46.0000 −0.0754917 −0.0377459 0.999287i \(-0.512018\pi\)
−0.0377459 + 0.999287i \(0.512018\pi\)
\(14\) 416.000 0.567248
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 618.000 0.518640 0.259320 0.965791i \(-0.416502\pi\)
0.259320 + 0.965791i \(0.416502\pi\)
\(18\) 0 0
\(19\) 361.000 0.229416
\(20\) 864.000 0.482991
\(21\) 0 0
\(22\) 1320.00 0.581456
\(23\) 402.000 0.158455 0.0792276 0.996857i \(-0.474755\pi\)
0.0792276 + 0.996857i \(0.474755\pi\)
\(24\) 0 0
\(25\) −209.000 −0.0668800
\(26\) −184.000 −0.0533807
\(27\) 0 0
\(28\) 1664.00 0.401105
\(29\) 2628.00 0.580270 0.290135 0.956986i \(-0.406300\pi\)
0.290135 + 0.956986i \(0.406300\pi\)
\(30\) 0 0
\(31\) −2368.00 −0.442565 −0.221283 0.975210i \(-0.571024\pi\)
−0.221283 + 0.975210i \(0.571024\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) 2472.00 0.366734
\(35\) 5616.00 0.774920
\(36\) 0 0
\(37\) −12130.0 −1.45665 −0.728327 0.685230i \(-0.759702\pi\)
−0.728327 + 0.685230i \(0.759702\pi\)
\(38\) 1444.00 0.162221
\(39\) 0 0
\(40\) 3456.00 0.341526
\(41\) 18864.0 1.75257 0.876283 0.481798i \(-0.160016\pi\)
0.876283 + 0.481798i \(0.160016\pi\)
\(42\) 0 0
\(43\) −10408.0 −0.858413 −0.429206 0.903206i \(-0.641207\pi\)
−0.429206 + 0.903206i \(0.641207\pi\)
\(44\) 5280.00 0.411152
\(45\) 0 0
\(46\) 1608.00 0.112045
\(47\) 4770.00 0.314973 0.157487 0.987521i \(-0.449661\pi\)
0.157487 + 0.987521i \(0.449661\pi\)
\(48\) 0 0
\(49\) −5991.00 −0.356459
\(50\) −836.000 −0.0472913
\(51\) 0 0
\(52\) −736.000 −0.0377459
\(53\) 19452.0 0.951206 0.475603 0.879660i \(-0.342230\pi\)
0.475603 + 0.879660i \(0.342230\pi\)
\(54\) 0 0
\(55\) 17820.0 0.794330
\(56\) 6656.00 0.283624
\(57\) 0 0
\(58\) 10512.0 0.410313
\(59\) −30528.0 −1.14174 −0.570871 0.821039i \(-0.693395\pi\)
−0.570871 + 0.821039i \(0.693395\pi\)
\(60\) 0 0
\(61\) 11138.0 0.383250 0.191625 0.981468i \(-0.438624\pi\)
0.191625 + 0.981468i \(0.438624\pi\)
\(62\) −9472.00 −0.312941
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −2484.00 −0.0729236
\(66\) 0 0
\(67\) 49508.0 1.34737 0.673687 0.739016i \(-0.264709\pi\)
0.673687 + 0.739016i \(0.264709\pi\)
\(68\) 9888.00 0.259320
\(69\) 0 0
\(70\) 22464.0 0.547951
\(71\) −7572.00 −0.178264 −0.0891322 0.996020i \(-0.528409\pi\)
−0.0891322 + 0.996020i \(0.528409\pi\)
\(72\) 0 0
\(73\) 2342.00 0.0514375 0.0257187 0.999669i \(-0.491813\pi\)
0.0257187 + 0.999669i \(0.491813\pi\)
\(74\) −48520.0 −1.03001
\(75\) 0 0
\(76\) 5776.00 0.114708
\(77\) 34320.0 0.659660
\(78\) 0 0
\(79\) 22424.0 0.404246 0.202123 0.979360i \(-0.435216\pi\)
0.202123 + 0.979360i \(0.435216\pi\)
\(80\) 13824.0 0.241495
\(81\) 0 0
\(82\) 75456.0 1.23925
\(83\) 46734.0 0.744625 0.372313 0.928107i \(-0.378565\pi\)
0.372313 + 0.928107i \(0.378565\pi\)
\(84\) 0 0
\(85\) 33372.0 0.500997
\(86\) −41632.0 −0.606989
\(87\) 0 0
\(88\) 21120.0 0.290728
\(89\) 70104.0 0.938140 0.469070 0.883161i \(-0.344589\pi\)
0.469070 + 0.883161i \(0.344589\pi\)
\(90\) 0 0
\(91\) −4784.00 −0.0605603
\(92\) 6432.00 0.0792276
\(93\) 0 0
\(94\) 19080.0 0.222720
\(95\) 19494.0 0.221611
\(96\) 0 0
\(97\) 105710. 1.14074 0.570370 0.821388i \(-0.306800\pi\)
0.570370 + 0.821388i \(0.306800\pi\)
\(98\) −23964.0 −0.252054
\(99\) 0 0
\(100\) −3344.00 −0.0334400
\(101\) −124542. −1.21482 −0.607411 0.794388i \(-0.707792\pi\)
−0.607411 + 0.794388i \(0.707792\pi\)
\(102\) 0 0
\(103\) 6488.00 0.0602584 0.0301292 0.999546i \(-0.490408\pi\)
0.0301292 + 0.999546i \(0.490408\pi\)
\(104\) −2944.00 −0.0266904
\(105\) 0 0
\(106\) 77808.0 0.672604
\(107\) −50040.0 −0.422530 −0.211265 0.977429i \(-0.567758\pi\)
−0.211265 + 0.977429i \(0.567758\pi\)
\(108\) 0 0
\(109\) 88706.0 0.715133 0.357566 0.933888i \(-0.383607\pi\)
0.357566 + 0.933888i \(0.383607\pi\)
\(110\) 71280.0 0.561676
\(111\) 0 0
\(112\) 26624.0 0.200553
\(113\) 156792. 1.15512 0.577561 0.816348i \(-0.304005\pi\)
0.577561 + 0.816348i \(0.304005\pi\)
\(114\) 0 0
\(115\) 21708.0 0.153065
\(116\) 42048.0 0.290135
\(117\) 0 0
\(118\) −122112. −0.807334
\(119\) 64272.0 0.416059
\(120\) 0 0
\(121\) −52151.0 −0.323817
\(122\) 44552.0 0.270999
\(123\) 0 0
\(124\) −37888.0 −0.221283
\(125\) −180036. −1.03059
\(126\) 0 0
\(127\) −211768. −1.16507 −0.582534 0.812807i \(-0.697939\pi\)
−0.582534 + 0.812807i \(0.697939\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) −9936.00 −0.0515648
\(131\) 4410.00 0.0224523 0.0112261 0.999937i \(-0.496427\pi\)
0.0112261 + 0.999937i \(0.496427\pi\)
\(132\) 0 0
\(133\) 37544.0 0.184040
\(134\) 198032. 0.952738
\(135\) 0 0
\(136\) 39552.0 0.183367
\(137\) −205974. −0.937586 −0.468793 0.883308i \(-0.655311\pi\)
−0.468793 + 0.883308i \(0.655311\pi\)
\(138\) 0 0
\(139\) 315908. 1.38683 0.693416 0.720538i \(-0.256105\pi\)
0.693416 + 0.720538i \(0.256105\pi\)
\(140\) 89856.0 0.387460
\(141\) 0 0
\(142\) −30288.0 −0.126052
\(143\) −15180.0 −0.0620771
\(144\) 0 0
\(145\) 141912. 0.560530
\(146\) 9368.00 0.0363718
\(147\) 0 0
\(148\) −194080. −0.728327
\(149\) −211158. −0.779187 −0.389594 0.920987i \(-0.627385\pi\)
−0.389594 + 0.920987i \(0.627385\pi\)
\(150\) 0 0
\(151\) −118120. −0.421581 −0.210791 0.977531i \(-0.567604\pi\)
−0.210791 + 0.977531i \(0.567604\pi\)
\(152\) 23104.0 0.0811107
\(153\) 0 0
\(154\) 137280. 0.466450
\(155\) −127872. −0.427510
\(156\) 0 0
\(157\) −163990. −0.530968 −0.265484 0.964115i \(-0.585532\pi\)
−0.265484 + 0.964115i \(0.585532\pi\)
\(158\) 89696.0 0.285845
\(159\) 0 0
\(160\) 55296.0 0.170763
\(161\) 41808.0 0.127114
\(162\) 0 0
\(163\) 26948.0 0.0794433 0.0397217 0.999211i \(-0.487353\pi\)
0.0397217 + 0.999211i \(0.487353\pi\)
\(164\) 301824. 0.876283
\(165\) 0 0
\(166\) 186936. 0.526530
\(167\) −5808.00 −0.0161152 −0.00805759 0.999968i \(-0.502565\pi\)
−0.00805759 + 0.999968i \(0.502565\pi\)
\(168\) 0 0
\(169\) −369177. −0.994301
\(170\) 133488. 0.354258
\(171\) 0 0
\(172\) −166528. −0.429206
\(173\) −37104.0 −0.0942552 −0.0471276 0.998889i \(-0.515007\pi\)
−0.0471276 + 0.998889i \(0.515007\pi\)
\(174\) 0 0
\(175\) −21736.0 −0.0536518
\(176\) 84480.0 0.205576
\(177\) 0 0
\(178\) 280416. 0.663365
\(179\) −198360. −0.462723 −0.231362 0.972868i \(-0.574318\pi\)
−0.231362 + 0.972868i \(0.574318\pi\)
\(180\) 0 0
\(181\) −276838. −0.628101 −0.314050 0.949406i \(-0.601686\pi\)
−0.314050 + 0.949406i \(0.601686\pi\)
\(182\) −19136.0 −0.0428226
\(183\) 0 0
\(184\) 25728.0 0.0560224
\(185\) −655020. −1.40710
\(186\) 0 0
\(187\) 203940. 0.426480
\(188\) 76320.0 0.157487
\(189\) 0 0
\(190\) 77976.0 0.156703
\(191\) 531222. 1.05364 0.526820 0.849977i \(-0.323384\pi\)
0.526820 + 0.849977i \(0.323384\pi\)
\(192\) 0 0
\(193\) −245062. −0.473568 −0.236784 0.971562i \(-0.576093\pi\)
−0.236784 + 0.971562i \(0.576093\pi\)
\(194\) 422840. 0.806625
\(195\) 0 0
\(196\) −95856.0 −0.178229
\(197\) −219906. −0.403712 −0.201856 0.979415i \(-0.564697\pi\)
−0.201856 + 0.979415i \(0.564697\pi\)
\(198\) 0 0
\(199\) −1.01820e6 −1.82265 −0.911323 0.411693i \(-0.864938\pi\)
−0.911323 + 0.411693i \(0.864938\pi\)
\(200\) −13376.0 −0.0236457
\(201\) 0 0
\(202\) −498168. −0.859008
\(203\) 273312. 0.465499
\(204\) 0 0
\(205\) 1.01866e6 1.69295
\(206\) 25952.0 0.0426091
\(207\) 0 0
\(208\) −11776.0 −0.0188729
\(209\) 119130. 0.188649
\(210\) 0 0
\(211\) 105020. 0.162392 0.0811962 0.996698i \(-0.474126\pi\)
0.0811962 + 0.996698i \(0.474126\pi\)
\(212\) 311232. 0.475603
\(213\) 0 0
\(214\) −200160. −0.298774
\(215\) −562032. −0.829211
\(216\) 0 0
\(217\) −246272. −0.355031
\(218\) 354824. 0.505675
\(219\) 0 0
\(220\) 285120. 0.397165
\(221\) −28428.0 −0.0391531
\(222\) 0 0
\(223\) 988304. 1.33085 0.665424 0.746466i \(-0.268251\pi\)
0.665424 + 0.746466i \(0.268251\pi\)
\(224\) 106496. 0.141812
\(225\) 0 0
\(226\) 627168. 0.816794
\(227\) 515940. 0.664561 0.332280 0.943181i \(-0.392182\pi\)
0.332280 + 0.943181i \(0.392182\pi\)
\(228\) 0 0
\(229\) −277354. −0.349499 −0.174749 0.984613i \(-0.555912\pi\)
−0.174749 + 0.984613i \(0.555912\pi\)
\(230\) 86832.0 0.108233
\(231\) 0 0
\(232\) 168192. 0.205157
\(233\) −1.54151e6 −1.86019 −0.930096 0.367317i \(-0.880276\pi\)
−0.930096 + 0.367317i \(0.880276\pi\)
\(234\) 0 0
\(235\) 257580. 0.304258
\(236\) −488448. −0.570871
\(237\) 0 0
\(238\) 257088. 0.294198
\(239\) 314310. 0.355929 0.177965 0.984037i \(-0.443049\pi\)
0.177965 + 0.984037i \(0.443049\pi\)
\(240\) 0 0
\(241\) 24566.0 0.0272453 0.0136227 0.999907i \(-0.495664\pi\)
0.0136227 + 0.999907i \(0.495664\pi\)
\(242\) −208604. −0.228973
\(243\) 0 0
\(244\) 178208. 0.191625
\(245\) −323514. −0.344332
\(246\) 0 0
\(247\) −16606.0 −0.0173190
\(248\) −151552. −0.156470
\(249\) 0 0
\(250\) −720144. −0.728734
\(251\) −661290. −0.662533 −0.331267 0.943537i \(-0.607476\pi\)
−0.331267 + 0.943537i \(0.607476\pi\)
\(252\) 0 0
\(253\) 132660. 0.130298
\(254\) −847072. −0.823827
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.05035e6 −0.991974 −0.495987 0.868330i \(-0.665194\pi\)
−0.495987 + 0.868330i \(0.665194\pi\)
\(258\) 0 0
\(259\) −1.26152e6 −1.16854
\(260\) −39744.0 −0.0364618
\(261\) 0 0
\(262\) 17640.0 0.0158762
\(263\) 465510. 0.414992 0.207496 0.978236i \(-0.433469\pi\)
0.207496 + 0.978236i \(0.433469\pi\)
\(264\) 0 0
\(265\) 1.05041e6 0.918847
\(266\) 150176. 0.130136
\(267\) 0 0
\(268\) 792128. 0.673687
\(269\) 317112. 0.267197 0.133599 0.991036i \(-0.457347\pi\)
0.133599 + 0.991036i \(0.457347\pi\)
\(270\) 0 0
\(271\) −1.48901e6 −1.23162 −0.615808 0.787897i \(-0.711170\pi\)
−0.615808 + 0.787897i \(0.711170\pi\)
\(272\) 158208. 0.129660
\(273\) 0 0
\(274\) −823896. −0.662973
\(275\) −68970.0 −0.0549957
\(276\) 0 0
\(277\) −1.54028e6 −1.20615 −0.603074 0.797685i \(-0.706058\pi\)
−0.603074 + 0.797685i \(0.706058\pi\)
\(278\) 1.26363e6 0.980638
\(279\) 0 0
\(280\) 359424. 0.273976
\(281\) −1.99595e6 −1.50794 −0.753969 0.656910i \(-0.771863\pi\)
−0.753969 + 0.656910i \(0.771863\pi\)
\(282\) 0 0
\(283\) −946936. −0.702837 −0.351418 0.936219i \(-0.614301\pi\)
−0.351418 + 0.936219i \(0.614301\pi\)
\(284\) −121152. −0.0891322
\(285\) 0 0
\(286\) −60720.0 −0.0438952
\(287\) 1.96186e6 1.40593
\(288\) 0 0
\(289\) −1.03793e6 −0.731012
\(290\) 567648. 0.396355
\(291\) 0 0
\(292\) 37472.0 0.0257187
\(293\) −2.18170e6 −1.48465 −0.742327 0.670038i \(-0.766278\pi\)
−0.742327 + 0.670038i \(0.766278\pi\)
\(294\) 0 0
\(295\) −1.64851e6 −1.10290
\(296\) −776320. −0.515005
\(297\) 0 0
\(298\) −844632. −0.550969
\(299\) −18492.0 −0.0119621
\(300\) 0 0
\(301\) −1.08243e6 −0.688628
\(302\) −472480. −0.298103
\(303\) 0 0
\(304\) 92416.0 0.0573539
\(305\) 601452. 0.370213
\(306\) 0 0
\(307\) −2.50414e6 −1.51640 −0.758198 0.652024i \(-0.773920\pi\)
−0.758198 + 0.652024i \(0.773920\pi\)
\(308\) 549120. 0.329830
\(309\) 0 0
\(310\) −511488. −0.302295
\(311\) 785658. 0.460609 0.230305 0.973119i \(-0.426028\pi\)
0.230305 + 0.973119i \(0.426028\pi\)
\(312\) 0 0
\(313\) 364334. 0.210203 0.105101 0.994462i \(-0.466483\pi\)
0.105101 + 0.994462i \(0.466483\pi\)
\(314\) −655960. −0.375451
\(315\) 0 0
\(316\) 358784. 0.202123
\(317\) 1.46938e6 0.821268 0.410634 0.911800i \(-0.365307\pi\)
0.410634 + 0.911800i \(0.365307\pi\)
\(318\) 0 0
\(319\) 867240. 0.477158
\(320\) 221184. 0.120748
\(321\) 0 0
\(322\) 167232. 0.0898834
\(323\) 223098. 0.118984
\(324\) 0 0
\(325\) 9614.00 0.00504889
\(326\) 107792. 0.0561749
\(327\) 0 0
\(328\) 1.20730e6 0.619625
\(329\) 496080. 0.252675
\(330\) 0 0
\(331\) 1.67414e6 0.839889 0.419944 0.907550i \(-0.362050\pi\)
0.419944 + 0.907550i \(0.362050\pi\)
\(332\) 747744. 0.372313
\(333\) 0 0
\(334\) −23232.0 −0.0113952
\(335\) 2.67343e6 1.30154
\(336\) 0 0
\(337\) 3.02010e6 1.44859 0.724297 0.689488i \(-0.242164\pi\)
0.724297 + 0.689488i \(0.242164\pi\)
\(338\) −1.47671e6 −0.703077
\(339\) 0 0
\(340\) 533952. 0.250498
\(341\) −781440. −0.363923
\(342\) 0 0
\(343\) −2.37099e6 −1.08817
\(344\) −666112. −0.303495
\(345\) 0 0
\(346\) −148416. −0.0666485
\(347\) −2.79531e6 −1.24625 −0.623127 0.782121i \(-0.714138\pi\)
−0.623127 + 0.782121i \(0.714138\pi\)
\(348\) 0 0
\(349\) −3.92975e6 −1.72703 −0.863517 0.504320i \(-0.831743\pi\)
−0.863517 + 0.504320i \(0.831743\pi\)
\(350\) −86944.0 −0.0379376
\(351\) 0 0
\(352\) 337920. 0.145364
\(353\) 1.56554e6 0.668693 0.334347 0.942450i \(-0.391484\pi\)
0.334347 + 0.942450i \(0.391484\pi\)
\(354\) 0 0
\(355\) −408888. −0.172200
\(356\) 1.12166e6 0.469070
\(357\) 0 0
\(358\) −793440. −0.327195
\(359\) 2.19680e6 0.899609 0.449805 0.893127i \(-0.351494\pi\)
0.449805 + 0.893127i \(0.351494\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) −1.10735e6 −0.444134
\(363\) 0 0
\(364\) −76544.0 −0.0302801
\(365\) 126468. 0.0496877
\(366\) 0 0
\(367\) −4.24772e6 −1.64623 −0.823115 0.567875i \(-0.807766\pi\)
−0.823115 + 0.567875i \(0.807766\pi\)
\(368\) 102912. 0.0396138
\(369\) 0 0
\(370\) −2.62008e6 −0.994971
\(371\) 2.02301e6 0.763067
\(372\) 0 0
\(373\) 4.24597e6 1.58018 0.790088 0.612994i \(-0.210035\pi\)
0.790088 + 0.612994i \(0.210035\pi\)
\(374\) 815760. 0.301567
\(375\) 0 0
\(376\) 305280. 0.111360
\(377\) −120888. −0.0438056
\(378\) 0 0
\(379\) 3.06794e6 1.09711 0.548553 0.836116i \(-0.315179\pi\)
0.548553 + 0.836116i \(0.315179\pi\)
\(380\) 311904. 0.110806
\(381\) 0 0
\(382\) 2.12489e6 0.745037
\(383\) −5.23012e6 −1.82186 −0.910929 0.412564i \(-0.864633\pi\)
−0.910929 + 0.412564i \(0.864633\pi\)
\(384\) 0 0
\(385\) 1.85328e6 0.637220
\(386\) −980248. −0.334863
\(387\) 0 0
\(388\) 1.69136e6 0.570370
\(389\) 3.36209e6 1.12651 0.563256 0.826282i \(-0.309548\pi\)
0.563256 + 0.826282i \(0.309548\pi\)
\(390\) 0 0
\(391\) 248436. 0.0821812
\(392\) −383424. −0.126027
\(393\) 0 0
\(394\) −879624. −0.285467
\(395\) 1.21090e6 0.390494
\(396\) 0 0
\(397\) 2.92432e6 0.931211 0.465606 0.884992i \(-0.345836\pi\)
0.465606 + 0.884992i \(0.345836\pi\)
\(398\) −4.07282e6 −1.28880
\(399\) 0 0
\(400\) −53504.0 −0.0167200
\(401\) −5.80702e6 −1.80340 −0.901700 0.432362i \(-0.857680\pi\)
−0.901700 + 0.432362i \(0.857680\pi\)
\(402\) 0 0
\(403\) 108928. 0.0334100
\(404\) −1.99267e6 −0.607411
\(405\) 0 0
\(406\) 1.09325e6 0.329157
\(407\) −4.00290e6 −1.19781
\(408\) 0 0
\(409\) 1.80028e6 0.532147 0.266073 0.963953i \(-0.414274\pi\)
0.266073 + 0.963953i \(0.414274\pi\)
\(410\) 4.07462e6 1.19709
\(411\) 0 0
\(412\) 103808. 0.0301292
\(413\) −3.17491e6 −0.915918
\(414\) 0 0
\(415\) 2.52364e6 0.719294
\(416\) −47104.0 −0.0133452
\(417\) 0 0
\(418\) 476520. 0.133395
\(419\) 1.38477e6 0.385339 0.192669 0.981264i \(-0.438286\pi\)
0.192669 + 0.981264i \(0.438286\pi\)
\(420\) 0 0
\(421\) −315598. −0.0867819 −0.0433909 0.999058i \(-0.513816\pi\)
−0.0433909 + 0.999058i \(0.513816\pi\)
\(422\) 420080. 0.114829
\(423\) 0 0
\(424\) 1.24493e6 0.336302
\(425\) −129162. −0.0346867
\(426\) 0 0
\(427\) 1.15835e6 0.307447
\(428\) −800640. −0.211265
\(429\) 0 0
\(430\) −2.24813e6 −0.586341
\(431\) 6.52696e6 1.69246 0.846228 0.532821i \(-0.178868\pi\)
0.846228 + 0.532821i \(0.178868\pi\)
\(432\) 0 0
\(433\) 2.63139e6 0.674473 0.337237 0.941420i \(-0.390508\pi\)
0.337237 + 0.941420i \(0.390508\pi\)
\(434\) −985088. −0.251044
\(435\) 0 0
\(436\) 1.41930e6 0.357566
\(437\) 145122. 0.0363521
\(438\) 0 0
\(439\) 3.09445e6 0.766341 0.383170 0.923678i \(-0.374832\pi\)
0.383170 + 0.923678i \(0.374832\pi\)
\(440\) 1.14048e6 0.280838
\(441\) 0 0
\(442\) −113712. −0.0276854
\(443\) −985086. −0.238487 −0.119244 0.992865i \(-0.538047\pi\)
−0.119244 + 0.992865i \(0.538047\pi\)
\(444\) 0 0
\(445\) 3.78562e6 0.906226
\(446\) 3.95322e6 0.941052
\(447\) 0 0
\(448\) 425984. 0.100276
\(449\) 2.91582e6 0.682566 0.341283 0.939961i \(-0.389138\pi\)
0.341283 + 0.939961i \(0.389138\pi\)
\(450\) 0 0
\(451\) 6.22512e6 1.44114
\(452\) 2.50867e6 0.577561
\(453\) 0 0
\(454\) 2.06376e6 0.469915
\(455\) −258336. −0.0585001
\(456\) 0 0
\(457\) −3.54721e6 −0.794505 −0.397252 0.917709i \(-0.630036\pi\)
−0.397252 + 0.917709i \(0.630036\pi\)
\(458\) −1.10942e6 −0.247133
\(459\) 0 0
\(460\) 347328. 0.0765324
\(461\) −4.57057e6 −1.00165 −0.500827 0.865547i \(-0.666971\pi\)
−0.500827 + 0.865547i \(0.666971\pi\)
\(462\) 0 0
\(463\) 5.91304e6 1.28191 0.640957 0.767577i \(-0.278538\pi\)
0.640957 + 0.767577i \(0.278538\pi\)
\(464\) 672768. 0.145068
\(465\) 0 0
\(466\) −6.16606e6 −1.31535
\(467\) 3.73808e6 0.793152 0.396576 0.918002i \(-0.370198\pi\)
0.396576 + 0.918002i \(0.370198\pi\)
\(468\) 0 0
\(469\) 5.14883e6 1.08088
\(470\) 1.03032e6 0.215143
\(471\) 0 0
\(472\) −1.95379e6 −0.403667
\(473\) −3.43464e6 −0.705876
\(474\) 0 0
\(475\) −75449.0 −0.0153433
\(476\) 1.02835e6 0.208029
\(477\) 0 0
\(478\) 1.25724e6 0.251680
\(479\) 3.79193e6 0.755130 0.377565 0.925983i \(-0.376761\pi\)
0.377565 + 0.925983i \(0.376761\pi\)
\(480\) 0 0
\(481\) 557980. 0.109965
\(482\) 98264.0 0.0192653
\(483\) 0 0
\(484\) −834416. −0.161908
\(485\) 5.70834e6 1.10193
\(486\) 0 0
\(487\) 2.78559e6 0.532225 0.266112 0.963942i \(-0.414261\pi\)
0.266112 + 0.963942i \(0.414261\pi\)
\(488\) 712832. 0.135499
\(489\) 0 0
\(490\) −1.29406e6 −0.243480
\(491\) −1.70523e6 −0.319212 −0.159606 0.987181i \(-0.551022\pi\)
−0.159606 + 0.987181i \(0.551022\pi\)
\(492\) 0 0
\(493\) 1.62410e6 0.300952
\(494\) −66424.0 −0.0122464
\(495\) 0 0
\(496\) −606208. −0.110641
\(497\) −787488. −0.143006
\(498\) 0 0
\(499\) 3.60026e6 0.647266 0.323633 0.946183i \(-0.395096\pi\)
0.323633 + 0.946183i \(0.395096\pi\)
\(500\) −2.88058e6 −0.515293
\(501\) 0 0
\(502\) −2.64516e6 −0.468482
\(503\) 8.68129e6 1.52990 0.764952 0.644087i \(-0.222763\pi\)
0.764952 + 0.644087i \(0.222763\pi\)
\(504\) 0 0
\(505\) −6.72527e6 −1.17349
\(506\) 530640. 0.0921348
\(507\) 0 0
\(508\) −3.38829e6 −0.582534
\(509\) 1.09767e7 1.87792 0.938962 0.344022i \(-0.111789\pi\)
0.938962 + 0.344022i \(0.111789\pi\)
\(510\) 0 0
\(511\) 243568. 0.0412637
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −4.20139e6 −0.701432
\(515\) 350352. 0.0582085
\(516\) 0 0
\(517\) 1.57410e6 0.259004
\(518\) −5.04608e6 −0.826285
\(519\) 0 0
\(520\) −158976. −0.0257824
\(521\) 9.09036e6 1.46719 0.733596 0.679586i \(-0.237841\pi\)
0.733596 + 0.679586i \(0.237841\pi\)
\(522\) 0 0
\(523\) 8.46276e6 1.35287 0.676437 0.736500i \(-0.263523\pi\)
0.676437 + 0.736500i \(0.263523\pi\)
\(524\) 70560.0 0.0112261
\(525\) 0 0
\(526\) 1.86204e6 0.293444
\(527\) −1.46342e6 −0.229532
\(528\) 0 0
\(529\) −6.27474e6 −0.974892
\(530\) 4.20163e6 0.649723
\(531\) 0 0
\(532\) 600704. 0.0920198
\(533\) −867744. −0.132304
\(534\) 0 0
\(535\) −2.70216e6 −0.408156
\(536\) 3.16851e6 0.476369
\(537\) 0 0
\(538\) 1.26845e6 0.188937
\(539\) −1.97703e6 −0.293117
\(540\) 0 0
\(541\) −8.03851e6 −1.18082 −0.590408 0.807105i \(-0.701033\pi\)
−0.590408 + 0.807105i \(0.701033\pi\)
\(542\) −5.95605e6 −0.870883
\(543\) 0 0
\(544\) 632832. 0.0916835
\(545\) 4.79012e6 0.690805
\(546\) 0 0
\(547\) −1.32779e7 −1.89741 −0.948704 0.316167i \(-0.897604\pi\)
−0.948704 + 0.316167i \(0.897604\pi\)
\(548\) −3.29558e6 −0.468793
\(549\) 0 0
\(550\) −275880. −0.0388878
\(551\) 948708. 0.133123
\(552\) 0 0
\(553\) 2.33210e6 0.324290
\(554\) −6.16113e6 −0.852876
\(555\) 0 0
\(556\) 5.05453e6 0.693416
\(557\) 9.11080e6 1.24428 0.622141 0.782905i \(-0.286263\pi\)
0.622141 + 0.782905i \(0.286263\pi\)
\(558\) 0 0
\(559\) 478768. 0.0648031
\(560\) 1.43770e6 0.193730
\(561\) 0 0
\(562\) −7.98379e6 −1.06627
\(563\) 5.07313e6 0.674536 0.337268 0.941409i \(-0.390497\pi\)
0.337268 + 0.941409i \(0.390497\pi\)
\(564\) 0 0
\(565\) 8.46677e6 1.11583
\(566\) −3.78774e6 −0.496981
\(567\) 0 0
\(568\) −484608. −0.0630260
\(569\) −2.30192e6 −0.298065 −0.149032 0.988832i \(-0.547616\pi\)
−0.149032 + 0.988832i \(0.547616\pi\)
\(570\) 0 0
\(571\) −1.14948e7 −1.47540 −0.737702 0.675127i \(-0.764089\pi\)
−0.737702 + 0.675127i \(0.764089\pi\)
\(572\) −242880. −0.0310386
\(573\) 0 0
\(574\) 7.84742e6 0.994140
\(575\) −84018.0 −0.0105975
\(576\) 0 0
\(577\) 308198. 0.0385381 0.0192690 0.999814i \(-0.493866\pi\)
0.0192690 + 0.999814i \(0.493866\pi\)
\(578\) −4.15173e6 −0.516904
\(579\) 0 0
\(580\) 2.27059e6 0.280265
\(581\) 4.86034e6 0.597346
\(582\) 0 0
\(583\) 6.41916e6 0.782180
\(584\) 149888. 0.0181859
\(585\) 0 0
\(586\) −8.72678e6 −1.04981
\(587\) −5.02053e6 −0.601387 −0.300694 0.953721i \(-0.597218\pi\)
−0.300694 + 0.953721i \(0.597218\pi\)
\(588\) 0 0
\(589\) −854848. −0.101531
\(590\) −6.59405e6 −0.779870
\(591\) 0 0
\(592\) −3.10528e6 −0.364164
\(593\) −1.70294e7 −1.98867 −0.994335 0.106288i \(-0.966103\pi\)
−0.994335 + 0.106288i \(0.966103\pi\)
\(594\) 0 0
\(595\) 3.47069e6 0.401905
\(596\) −3.37853e6 −0.389594
\(597\) 0 0
\(598\) −73968.0 −0.00845845
\(599\) −2.86572e6 −0.326337 −0.163169 0.986598i \(-0.552171\pi\)
−0.163169 + 0.986598i \(0.552171\pi\)
\(600\) 0 0
\(601\) −1.03461e7 −1.16840 −0.584200 0.811609i \(-0.698592\pi\)
−0.584200 + 0.811609i \(0.698592\pi\)
\(602\) −4.32973e6 −0.486933
\(603\) 0 0
\(604\) −1.88992e6 −0.210791
\(605\) −2.81615e6 −0.312801
\(606\) 0 0
\(607\) 3.56084e6 0.392266 0.196133 0.980577i \(-0.437162\pi\)
0.196133 + 0.980577i \(0.437162\pi\)
\(608\) 369664. 0.0405554
\(609\) 0 0
\(610\) 2.40581e6 0.261780
\(611\) −219420. −0.0237779
\(612\) 0 0
\(613\) 7.56115e6 0.812712 0.406356 0.913715i \(-0.366799\pi\)
0.406356 + 0.913715i \(0.366799\pi\)
\(614\) −1.00166e7 −1.07225
\(615\) 0 0
\(616\) 2.19648e6 0.233225
\(617\) −5.03233e6 −0.532177 −0.266088 0.963949i \(-0.585731\pi\)
−0.266088 + 0.963949i \(0.585731\pi\)
\(618\) 0 0
\(619\) −5.87528e6 −0.616313 −0.308157 0.951336i \(-0.599712\pi\)
−0.308157 + 0.951336i \(0.599712\pi\)
\(620\) −2.04595e6 −0.213755
\(621\) 0 0
\(622\) 3.14263e6 0.325700
\(623\) 7.29082e6 0.752586
\(624\) 0 0
\(625\) −9.06882e6 −0.928647
\(626\) 1.45734e6 0.148636
\(627\) 0 0
\(628\) −2.62384e6 −0.265484
\(629\) −7.49634e6 −0.755479
\(630\) 0 0
\(631\) −4.33809e6 −0.433735 −0.216868 0.976201i \(-0.569584\pi\)
−0.216868 + 0.976201i \(0.569584\pi\)
\(632\) 1.43514e6 0.142922
\(633\) 0 0
\(634\) 5.87750e6 0.580724
\(635\) −1.14355e7 −1.12543
\(636\) 0 0
\(637\) 275586. 0.0269097
\(638\) 3.46896e6 0.337402
\(639\) 0 0
\(640\) 884736. 0.0853815
\(641\) −1.35603e7 −1.30354 −0.651769 0.758417i \(-0.725973\pi\)
−0.651769 + 0.758417i \(0.725973\pi\)
\(642\) 0 0
\(643\) 6.02612e6 0.574792 0.287396 0.957812i \(-0.407211\pi\)
0.287396 + 0.957812i \(0.407211\pi\)
\(644\) 668928. 0.0635572
\(645\) 0 0
\(646\) 892392. 0.0841345
\(647\) 8.69474e6 0.816574 0.408287 0.912854i \(-0.366126\pi\)
0.408287 + 0.912854i \(0.366126\pi\)
\(648\) 0 0
\(649\) −1.00742e7 −0.938859
\(650\) 38456.0 0.00357010
\(651\) 0 0
\(652\) 431168. 0.0397217
\(653\) 1.09929e6 0.100886 0.0504428 0.998727i \(-0.483937\pi\)
0.0504428 + 0.998727i \(0.483937\pi\)
\(654\) 0 0
\(655\) 238140. 0.0216885
\(656\) 4.82918e6 0.438141
\(657\) 0 0
\(658\) 1.98432e6 0.178668
\(659\) 3.94808e6 0.354138 0.177069 0.984198i \(-0.443338\pi\)
0.177069 + 0.984198i \(0.443338\pi\)
\(660\) 0 0
\(661\) −1.96958e7 −1.75335 −0.876676 0.481082i \(-0.840244\pi\)
−0.876676 + 0.481082i \(0.840244\pi\)
\(662\) 6.69656e6 0.593891
\(663\) 0 0
\(664\) 2.99098e6 0.263265
\(665\) 2.02738e6 0.177779
\(666\) 0 0
\(667\) 1.05646e6 0.0919468
\(668\) −92928.0 −0.00805759
\(669\) 0 0
\(670\) 1.06937e7 0.920327
\(671\) 3.67554e6 0.315148
\(672\) 0 0
\(673\) −2.06650e7 −1.75873 −0.879363 0.476151i \(-0.842031\pi\)
−0.879363 + 0.476151i \(0.842031\pi\)
\(674\) 1.20804e7 1.02431
\(675\) 0 0
\(676\) −5.90683e6 −0.497150
\(677\) −1.64591e7 −1.38018 −0.690090 0.723724i \(-0.742429\pi\)
−0.690090 + 0.723724i \(0.742429\pi\)
\(678\) 0 0
\(679\) 1.09938e7 0.915114
\(680\) 2.13581e6 0.177129
\(681\) 0 0
\(682\) −3.12576e6 −0.257333
\(683\) 876672. 0.0719094 0.0359547 0.999353i \(-0.488553\pi\)
0.0359547 + 0.999353i \(0.488553\pi\)
\(684\) 0 0
\(685\) −1.11226e7 −0.905690
\(686\) −9.48397e6 −0.769449
\(687\) 0 0
\(688\) −2.66445e6 −0.214603
\(689\) −894792. −0.0718082
\(690\) 0 0
\(691\) 1.64070e7 1.30717 0.653586 0.756852i \(-0.273264\pi\)
0.653586 + 0.756852i \(0.273264\pi\)
\(692\) −593664. −0.0471276
\(693\) 0 0
\(694\) −1.11812e7 −0.881234
\(695\) 1.70590e7 1.33965
\(696\) 0 0
\(697\) 1.16580e7 0.908951
\(698\) −1.57190e7 −1.22120
\(699\) 0 0
\(700\) −347776. −0.0268259
\(701\) −1.03676e6 −0.0796861 −0.0398430 0.999206i \(-0.512686\pi\)
−0.0398430 + 0.999206i \(0.512686\pi\)
\(702\) 0 0
\(703\) −4.37893e6 −0.334179
\(704\) 1.35168e6 0.102788
\(705\) 0 0
\(706\) 6.26215e6 0.472837
\(707\) −1.29524e7 −0.974542
\(708\) 0 0
\(709\) −2.00637e6 −0.149898 −0.0749491 0.997187i \(-0.523879\pi\)
−0.0749491 + 0.997187i \(0.523879\pi\)
\(710\) −1.63555e6 −0.121764
\(711\) 0 0
\(712\) 4.48666e6 0.331683
\(713\) −951936. −0.0701268
\(714\) 0 0
\(715\) −819720. −0.0599654
\(716\) −3.17376e6 −0.231362
\(717\) 0 0
\(718\) 8.78719e6 0.636120
\(719\) 8.95036e6 0.645682 0.322841 0.946453i \(-0.395362\pi\)
0.322841 + 0.946453i \(0.395362\pi\)
\(720\) 0 0
\(721\) 674752. 0.0483399
\(722\) 521284. 0.0372161
\(723\) 0 0
\(724\) −4.42941e6 −0.314050
\(725\) −549252. −0.0388085
\(726\) 0 0
\(727\) −614668. −0.0431325 −0.0215662 0.999767i \(-0.506865\pi\)
−0.0215662 + 0.999767i \(0.506865\pi\)
\(728\) −306176. −0.0214113
\(729\) 0 0
\(730\) 505872. 0.0351345
\(731\) −6.43214e6 −0.445207
\(732\) 0 0
\(733\) −8.47041e6 −0.582297 −0.291149 0.956678i \(-0.594037\pi\)
−0.291149 + 0.956678i \(0.594037\pi\)
\(734\) −1.69909e7 −1.16406
\(735\) 0 0
\(736\) 411648. 0.0280112
\(737\) 1.63376e7 1.10795
\(738\) 0 0
\(739\) −9.40491e6 −0.633495 −0.316748 0.948510i \(-0.602591\pi\)
−0.316748 + 0.948510i \(0.602591\pi\)
\(740\) −1.04803e7 −0.703550
\(741\) 0 0
\(742\) 8.09203e6 0.539570
\(743\) −2.73198e7 −1.81554 −0.907769 0.419471i \(-0.862216\pi\)
−0.907769 + 0.419471i \(0.862216\pi\)
\(744\) 0 0
\(745\) −1.14025e7 −0.752680
\(746\) 1.69839e7 1.11735
\(747\) 0 0
\(748\) 3.26304e6 0.213240
\(749\) −5.20416e6 −0.338958
\(750\) 0 0
\(751\) −1.07808e7 −0.697509 −0.348755 0.937214i \(-0.613395\pi\)
−0.348755 + 0.937214i \(0.613395\pi\)
\(752\) 1.22112e6 0.0787433
\(753\) 0 0
\(754\) −483552. −0.0309752
\(755\) −6.37848e6 −0.407239
\(756\) 0 0
\(757\) −543058. −0.0344434 −0.0172217 0.999852i \(-0.505482\pi\)
−0.0172217 + 0.999852i \(0.505482\pi\)
\(758\) 1.22718e7 0.775772
\(759\) 0 0
\(760\) 1.24762e6 0.0783514
\(761\) −9.07913e6 −0.568307 −0.284153 0.958779i \(-0.591712\pi\)
−0.284153 + 0.958779i \(0.591712\pi\)
\(762\) 0 0
\(763\) 9.22542e6 0.573687
\(764\) 8.49955e6 0.526820
\(765\) 0 0
\(766\) −2.09205e7 −1.28825
\(767\) 1.40429e6 0.0861922
\(768\) 0 0
\(769\) 5.14583e6 0.313790 0.156895 0.987615i \(-0.449852\pi\)
0.156895 + 0.987615i \(0.449852\pi\)
\(770\) 7.41312e6 0.450582
\(771\) 0 0
\(772\) −3.92099e6 −0.236784
\(773\) −7.50322e6 −0.451647 −0.225823 0.974168i \(-0.572507\pi\)
−0.225823 + 0.974168i \(0.572507\pi\)
\(774\) 0 0
\(775\) 494912. 0.0295988
\(776\) 6.76544e6 0.403313
\(777\) 0 0
\(778\) 1.34484e7 0.796564
\(779\) 6.80990e6 0.402066
\(780\) 0 0
\(781\) −2.49876e6 −0.146588
\(782\) 993744. 0.0581109
\(783\) 0 0
\(784\) −1.53370e6 −0.0891147
\(785\) −8.85546e6 −0.512905
\(786\) 0 0
\(787\) 1.48747e7 0.856076 0.428038 0.903761i \(-0.359205\pi\)
0.428038 + 0.903761i \(0.359205\pi\)
\(788\) −3.51850e6 −0.201856
\(789\) 0 0
\(790\) 4.84358e6 0.276121
\(791\) 1.63064e7 0.926651
\(792\) 0 0
\(793\) −512348. −0.0289322
\(794\) 1.16973e7 0.658466
\(795\) 0 0
\(796\) −1.62913e7 −0.911323
\(797\) −2.77279e7 −1.54622 −0.773109 0.634273i \(-0.781299\pi\)
−0.773109 + 0.634273i \(0.781299\pi\)
\(798\) 0 0
\(799\) 2.94786e6 0.163358
\(800\) −214016. −0.0118228
\(801\) 0 0
\(802\) −2.32281e7 −1.27520
\(803\) 772860. 0.0422972
\(804\) 0 0
\(805\) 2.25763e6 0.122790
\(806\) 435712. 0.0236245
\(807\) 0 0
\(808\) −7.97069e6 −0.429504
\(809\) 3.46147e7 1.85947 0.929735 0.368229i \(-0.120036\pi\)
0.929735 + 0.368229i \(0.120036\pi\)
\(810\) 0 0
\(811\) 1.42801e7 0.762392 0.381196 0.924494i \(-0.375512\pi\)
0.381196 + 0.924494i \(0.375512\pi\)
\(812\) 4.37299e6 0.232749
\(813\) 0 0
\(814\) −1.60116e7 −0.846981
\(815\) 1.45519e6 0.0767408
\(816\) 0 0
\(817\) −3.75729e6 −0.196933
\(818\) 7.20111e6 0.376284
\(819\) 0 0
\(820\) 1.62985e7 0.846473
\(821\) −3.69632e6 −0.191387 −0.0956933 0.995411i \(-0.530507\pi\)
−0.0956933 + 0.995411i \(0.530507\pi\)
\(822\) 0 0
\(823\) 2.05703e7 1.05862 0.529310 0.848428i \(-0.322451\pi\)
0.529310 + 0.848428i \(0.322451\pi\)
\(824\) 415232. 0.0213046
\(825\) 0 0
\(826\) −1.26996e7 −0.647652
\(827\) 2.42257e7 1.23172 0.615860 0.787856i \(-0.288809\pi\)
0.615860 + 0.787856i \(0.288809\pi\)
\(828\) 0 0
\(829\) −1.93936e7 −0.980102 −0.490051 0.871694i \(-0.663022\pi\)
−0.490051 + 0.871694i \(0.663022\pi\)
\(830\) 1.00945e7 0.508618
\(831\) 0 0
\(832\) −188416. −0.00943647
\(833\) −3.70244e6 −0.184874
\(834\) 0 0
\(835\) −313632. −0.0155670
\(836\) 1.90608e6 0.0943247
\(837\) 0 0
\(838\) 5.53908e6 0.272476
\(839\) 3.44560e7 1.68990 0.844949 0.534847i \(-0.179631\pi\)
0.844949 + 0.534847i \(0.179631\pi\)
\(840\) 0 0
\(841\) −1.36048e7 −0.663286
\(842\) −1.26239e6 −0.0613640
\(843\) 0 0
\(844\) 1.68032e6 0.0811962
\(845\) −1.99356e7 −0.960476
\(846\) 0 0
\(847\) −5.42370e6 −0.259769
\(848\) 4.97971e6 0.237802
\(849\) 0 0
\(850\) −516648. −0.0245272
\(851\) −4.87626e6 −0.230814
\(852\) 0 0
\(853\) 1.43023e7 0.673029 0.336514 0.941678i \(-0.390752\pi\)
0.336514 + 0.941678i \(0.390752\pi\)
\(854\) 4.63341e6 0.217398
\(855\) 0 0
\(856\) −3.20256e6 −0.149387
\(857\) −1.96706e7 −0.914882 −0.457441 0.889240i \(-0.651234\pi\)
−0.457441 + 0.889240i \(0.651234\pi\)
\(858\) 0 0
\(859\) 9.60088e6 0.443944 0.221972 0.975053i \(-0.428751\pi\)
0.221972 + 0.975053i \(0.428751\pi\)
\(860\) −8.99251e6 −0.414605
\(861\) 0 0
\(862\) 2.61078e7 1.19675
\(863\) −1.46481e7 −0.669508 −0.334754 0.942306i \(-0.608653\pi\)
−0.334754 + 0.942306i \(0.608653\pi\)
\(864\) 0 0
\(865\) −2.00362e6 −0.0910488
\(866\) 1.05255e7 0.476925
\(867\) 0 0
\(868\) −3.94035e6 −0.177515
\(869\) 7.39992e6 0.332413
\(870\) 0 0
\(871\) −2.27737e6 −0.101716
\(872\) 5.67718e6 0.252838
\(873\) 0 0
\(874\) 580488. 0.0257048
\(875\) −1.87237e7 −0.826747
\(876\) 0 0
\(877\) −1.17035e7 −0.513825 −0.256913 0.966435i \(-0.582705\pi\)
−0.256913 + 0.966435i \(0.582705\pi\)
\(878\) 1.23778e7 0.541885
\(879\) 0 0
\(880\) 4.56192e6 0.198583
\(881\) 4.52787e7 1.96541 0.982706 0.185171i \(-0.0592838\pi\)
0.982706 + 0.185171i \(0.0592838\pi\)
\(882\) 0 0
\(883\) 2.59473e7 1.11993 0.559965 0.828517i \(-0.310815\pi\)
0.559965 + 0.828517i \(0.310815\pi\)
\(884\) −454848. −0.0195765
\(885\) 0 0
\(886\) −3.94034e6 −0.168636
\(887\) 2.07015e7 0.883473 0.441737 0.897145i \(-0.354363\pi\)
0.441737 + 0.897145i \(0.354363\pi\)
\(888\) 0 0
\(889\) −2.20239e7 −0.934629
\(890\) 1.51425e7 0.640799
\(891\) 0 0
\(892\) 1.58129e7 0.665424
\(893\) 1.72197e6 0.0722598
\(894\) 0 0
\(895\) −1.07114e7 −0.446982
\(896\) 1.70394e6 0.0709060
\(897\) 0 0
\(898\) 1.16633e7 0.482647
\(899\) −6.22310e6 −0.256808
\(900\) 0 0
\(901\) 1.20213e7 0.493334
\(902\) 2.49005e7 1.01904
\(903\) 0 0
\(904\) 1.00347e7 0.408397
\(905\) −1.49493e7 −0.606734
\(906\) 0 0
\(907\) 4.76595e7 1.92367 0.961836 0.273628i \(-0.0882236\pi\)
0.961836 + 0.273628i \(0.0882236\pi\)
\(908\) 8.25504e6 0.332280
\(909\) 0 0
\(910\) −1.03334e6 −0.0413658
\(911\) 387816. 0.0154821 0.00774105 0.999970i \(-0.497536\pi\)
0.00774105 + 0.999970i \(0.497536\pi\)
\(912\) 0 0
\(913\) 1.54222e7 0.612308
\(914\) −1.41888e7 −0.561800
\(915\) 0 0
\(916\) −4.43766e6 −0.174749
\(917\) 458640. 0.0180114
\(918\) 0 0
\(919\) 3.45269e7 1.34855 0.674277 0.738479i \(-0.264455\pi\)
0.674277 + 0.738479i \(0.264455\pi\)
\(920\) 1.38931e6 0.0541166
\(921\) 0 0
\(922\) −1.82823e7 −0.708276
\(923\) 348312. 0.0134575
\(924\) 0 0
\(925\) 2.53517e6 0.0974210
\(926\) 2.36522e7 0.906450
\(927\) 0 0
\(928\) 2.69107e6 0.102578
\(929\) −3.96164e7 −1.50604 −0.753018 0.657999i \(-0.771403\pi\)
−0.753018 + 0.657999i \(0.771403\pi\)
\(930\) 0 0
\(931\) −2.16275e6 −0.0817772
\(932\) −2.46642e7 −0.930096
\(933\) 0 0
\(934\) 1.49523e7 0.560843
\(935\) 1.10128e7 0.411971
\(936\) 0 0
\(937\) −1.42780e7 −0.531272 −0.265636 0.964073i \(-0.585582\pi\)
−0.265636 + 0.964073i \(0.585582\pi\)
\(938\) 2.05953e7 0.764296
\(939\) 0 0
\(940\) 4.12128e6 0.152129
\(941\) 2.33088e6 0.0858116 0.0429058 0.999079i \(-0.486338\pi\)
0.0429058 + 0.999079i \(0.486338\pi\)
\(942\) 0 0
\(943\) 7.58333e6 0.277703
\(944\) −7.81517e6 −0.285436
\(945\) 0 0
\(946\) −1.37386e7 −0.499130
\(947\) 2.93987e7 1.06526 0.532628 0.846350i \(-0.321205\pi\)
0.532628 + 0.846350i \(0.321205\pi\)
\(948\) 0 0
\(949\) −107732. −0.00388311
\(950\) −301796. −0.0108494
\(951\) 0 0
\(952\) 4.11341e6 0.147099
\(953\) 2.26835e7 0.809055 0.404528 0.914526i \(-0.367436\pi\)
0.404528 + 0.914526i \(0.367436\pi\)
\(954\) 0 0
\(955\) 2.86860e7 1.01780
\(956\) 5.02896e6 0.177965
\(957\) 0 0
\(958\) 1.51677e7 0.533958
\(959\) −2.14213e7 −0.752141
\(960\) 0 0
\(961\) −2.30217e7 −0.804136
\(962\) 2.23192e6 0.0777573
\(963\) 0 0
\(964\) 393056. 0.0136227
\(965\) −1.32333e7 −0.457458
\(966\) 0 0
\(967\) −2.50637e7 −0.861944 −0.430972 0.902365i \(-0.641829\pi\)
−0.430972 + 0.902365i \(0.641829\pi\)
\(968\) −3.33766e6 −0.114486
\(969\) 0 0
\(970\) 2.28334e7 0.779185
\(971\) −2.93328e7 −0.998402 −0.499201 0.866486i \(-0.666373\pi\)
−0.499201 + 0.866486i \(0.666373\pi\)
\(972\) 0 0
\(973\) 3.28544e7 1.11253
\(974\) 1.11424e7 0.376340
\(975\) 0 0
\(976\) 2.85133e6 0.0958126
\(977\) −4.53306e7 −1.51934 −0.759670 0.650309i \(-0.774639\pi\)
−0.759670 + 0.650309i \(0.774639\pi\)
\(978\) 0 0
\(979\) 2.31343e7 0.771436
\(980\) −5.17622e6 −0.172166
\(981\) 0 0
\(982\) −6.82092e6 −0.225717
\(983\) 2.13167e7 0.703615 0.351808 0.936072i \(-0.385567\pi\)
0.351808 + 0.936072i \(0.385567\pi\)
\(984\) 0 0
\(985\) −1.18749e7 −0.389978
\(986\) 6.49642e6 0.212805
\(987\) 0 0
\(988\) −265696. −0.00865950
\(989\) −4.18402e6 −0.136020
\(990\) 0 0
\(991\) −3.14104e7 −1.01599 −0.507996 0.861360i \(-0.669613\pi\)
−0.507996 + 0.861360i \(0.669613\pi\)
\(992\) −2.42483e6 −0.0782352
\(993\) 0 0
\(994\) −3.14995e6 −0.101120
\(995\) −5.49830e7 −1.76064
\(996\) 0 0
\(997\) 9.54091e6 0.303985 0.151992 0.988382i \(-0.451431\pi\)
0.151992 + 0.988382i \(0.451431\pi\)
\(998\) 1.44010e7 0.457686
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 342.6.a.f.1.1 1
3.2 odd 2 114.6.a.a.1.1 1
12.11 even 2 912.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
114.6.a.a.1.1 1 3.2 odd 2
342.6.a.f.1.1 1 1.1 even 1 trivial
912.6.a.c.1.1 1 12.11 even 2