Properties

Label 360.6.k.b.181.17
Level $360$
Weight $6$
Character 360.181
Analytic conductor $57.738$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [360,6,Mod(181,360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("360.181");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 360.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.7381751327\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} - 17 x^{18} + 78 x^{17} + 253 x^{16} - 884 x^{15} + 2396 x^{14} + 19376 x^{13} + \cdots + 1099511627776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{42}\cdot 3^{8}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.17
Root \(-3.90102 - 0.884346i\) of defining polynomial
Character \(\chi\) \(=\) 360.181
Dual form 360.6.k.b.181.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.78536 - 3.01667i) q^{2} +(13.7994 - 28.8717i) q^{4} +25.0000i q^{5} -56.4938 q^{7} +(-21.0614 - 179.790i) q^{8} +(75.4168 + 119.634i) q^{10} -261.019i q^{11} -720.631i q^{13} +(-270.343 + 170.423i) q^{14} +(-643.154 - 796.825i) q^{16} +1876.44 q^{17} +1992.33i q^{19} +(721.793 + 344.985i) q^{20} +(-787.408 - 1249.07i) q^{22} -2570.29 q^{23} -625.000 q^{25} +(-2173.91 - 3448.48i) q^{26} +(-779.581 + 1631.07i) q^{28} +1700.16i q^{29} -7734.68 q^{31} +(-5481.48 - 1872.91i) q^{32} +(8979.46 - 5660.61i) q^{34} -1412.35i q^{35} -12228.1i q^{37} +(6010.20 + 9534.02i) q^{38} +(4494.75 - 526.535i) q^{40} -14979.3 q^{41} -18113.9i q^{43} +(-7536.06 - 3601.90i) q^{44} +(-12299.8 + 7753.73i) q^{46} -2141.03 q^{47} -13615.4 q^{49} +(-2990.85 + 1885.42i) q^{50} +(-20805.9 - 9944.27i) q^{52} +1605.71i q^{53} +6525.47 q^{55} +(1189.84 + 10157.0i) q^{56} +(5128.81 + 8135.87i) q^{58} +2680.90i q^{59} -44521.9i q^{61} +(-37013.2 + 23333.0i) q^{62} +(-31880.8 + 7573.26i) q^{64} +18015.8 q^{65} +12486.0i q^{67} +(25893.8 - 54176.2i) q^{68} +(-4260.58 - 6758.59i) q^{70} -8189.38 q^{71} -41082.7 q^{73} +(-36888.2 - 58516.0i) q^{74} +(57522.0 + 27492.9i) q^{76} +14746.0i q^{77} +46325.9 q^{79} +(19920.6 - 16078.8i) q^{80} +(-71681.6 + 45187.8i) q^{82} +61655.4i q^{83} +46911.1i q^{85} +(-54643.7 - 86681.7i) q^{86} +(-46928.5 + 5497.42i) q^{88} -53205.4 q^{89} +40711.2i q^{91} +(-35468.5 + 74208.8i) q^{92} +(-10245.6 + 6458.79i) q^{94} -49808.2 q^{95} -39211.8 q^{97} +(-65154.8 + 41073.3i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} - 32 q^{4} - 196 q^{7} - 248 q^{8} - 50 q^{10} - 2708 q^{14} + 3080 q^{16} + 1900 q^{20} + 13836 q^{22} + 4676 q^{23} - 12500 q^{25} + 8084 q^{26} + 2108 q^{28} + 7160 q^{31} - 6792 q^{32}+ \cdots - 216942 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.78536 3.01667i 0.845941 0.533277i
\(3\) 0 0
\(4\) 13.7994 28.8717i 0.431231 0.902242i
\(5\) 25.0000i 0.447214i
\(6\) 0 0
\(7\) −56.4938 −0.435769 −0.217884 0.975975i \(-0.569916\pi\)
−0.217884 + 0.975975i \(0.569916\pi\)
\(8\) −21.0614 179.790i −0.116349 0.993208i
\(9\) 0 0
\(10\) 75.4168 + 119.634i 0.238489 + 0.378316i
\(11\) 261.019i 0.650414i −0.945643 0.325207i \(-0.894566\pi\)
0.945643 0.325207i \(-0.105434\pi\)
\(12\) 0 0
\(13\) 720.631i 1.18265i −0.806435 0.591323i \(-0.798606\pi\)
0.806435 0.591323i \(-0.201394\pi\)
\(14\) −270.343 + 170.423i −0.368634 + 0.232385i
\(15\) 0 0
\(16\) −643.154 796.825i −0.628080 0.778149i
\(17\) 1876.44 1.57476 0.787378 0.616471i \(-0.211438\pi\)
0.787378 + 0.616471i \(0.211438\pi\)
\(18\) 0 0
\(19\) 1992.33i 1.26613i 0.774100 + 0.633063i \(0.218203\pi\)
−0.774100 + 0.633063i \(0.781797\pi\)
\(20\) 721.793 + 344.985i 0.403495 + 0.192852i
\(21\) 0 0
\(22\) −787.408 1249.07i −0.346851 0.550212i
\(23\) −2570.29 −1.01313 −0.506563 0.862203i \(-0.669084\pi\)
−0.506563 + 0.862203i \(0.669084\pi\)
\(24\) 0 0
\(25\) −625.000 −0.200000
\(26\) −2173.91 3448.48i −0.630678 1.00045i
\(27\) 0 0
\(28\) −779.581 + 1631.07i −0.187917 + 0.393169i
\(29\) 1700.16i 0.375400i 0.982226 + 0.187700i \(0.0601032\pi\)
−0.982226 + 0.187700i \(0.939897\pi\)
\(30\) 0 0
\(31\) −7734.68 −1.44557 −0.722783 0.691075i \(-0.757137\pi\)
−0.722783 + 0.691075i \(0.757137\pi\)
\(32\) −5481.48 1872.91i −0.946287 0.323327i
\(33\) 0 0
\(34\) 8979.46 5660.61i 1.33215 0.839781i
\(35\) 1412.35i 0.194882i
\(36\) 0 0
\(37\) 12228.1i 1.46844i −0.678913 0.734218i \(-0.737549\pi\)
0.678913 0.734218i \(-0.262451\pi\)
\(38\) 6010.20 + 9534.02i 0.675196 + 1.07107i
\(39\) 0 0
\(40\) 4494.75 526.535i 0.444176 0.0520328i
\(41\) −14979.3 −1.39166 −0.695830 0.718206i \(-0.744963\pi\)
−0.695830 + 0.718206i \(0.744963\pi\)
\(42\) 0 0
\(43\) 18113.9i 1.49397i −0.664842 0.746984i \(-0.731501\pi\)
0.664842 0.746984i \(-0.268499\pi\)
\(44\) −7536.06 3601.90i −0.586831 0.280479i
\(45\) 0 0
\(46\) −12299.8 + 7753.73i −0.857044 + 0.540277i
\(47\) −2141.03 −0.141377 −0.0706885 0.997498i \(-0.522520\pi\)
−0.0706885 + 0.997498i \(0.522520\pi\)
\(48\) 0 0
\(49\) −13615.4 −0.810106
\(50\) −2990.85 + 1885.42i −0.169188 + 0.106655i
\(51\) 0 0
\(52\) −20805.9 9944.27i −1.06703 0.509993i
\(53\) 1605.71i 0.0785192i 0.999229 + 0.0392596i \(0.0124999\pi\)
−0.999229 + 0.0392596i \(0.987500\pi\)
\(54\) 0 0
\(55\) 6525.47 0.290874
\(56\) 1189.84 + 10157.0i 0.0507012 + 0.432809i
\(57\) 0 0
\(58\) 5128.81 + 8135.87i 0.200192 + 0.317566i
\(59\) 2680.90i 0.100265i 0.998743 + 0.0501327i \(0.0159644\pi\)
−0.998743 + 0.0501327i \(0.984036\pi\)
\(60\) 0 0
\(61\) 44521.9i 1.53197i −0.642860 0.765984i \(-0.722252\pi\)
0.642860 0.765984i \(-0.277748\pi\)
\(62\) −37013.2 + 23333.0i −1.22286 + 0.770887i
\(63\) 0 0
\(64\) −31880.8 + 7573.26i −0.972926 + 0.231117i
\(65\) 18015.8 0.528895
\(66\) 0 0
\(67\) 12486.0i 0.339809i 0.985461 + 0.169905i \(0.0543460\pi\)
−0.985461 + 0.169905i \(0.945654\pi\)
\(68\) 25893.8 54176.2i 0.679083 1.42081i
\(69\) 0 0
\(70\) −4260.58 6758.59i −0.103926 0.164858i
\(71\) −8189.38 −0.192799 −0.0963996 0.995343i \(-0.530733\pi\)
−0.0963996 + 0.995343i \(0.530733\pi\)
\(72\) 0 0
\(73\) −41082.7 −0.902302 −0.451151 0.892448i \(-0.648986\pi\)
−0.451151 + 0.892448i \(0.648986\pi\)
\(74\) −36888.2 58516.0i −0.783084 1.24221i
\(75\) 0 0
\(76\) 57522.0 + 27492.9i 1.14235 + 0.545993i
\(77\) 14746.0i 0.283430i
\(78\) 0 0
\(79\) 46325.9 0.835134 0.417567 0.908646i \(-0.362883\pi\)
0.417567 + 0.908646i \(0.362883\pi\)
\(80\) 19920.6 16078.8i 0.347999 0.280886i
\(81\) 0 0
\(82\) −71681.6 + 45187.8i −1.17726 + 0.742141i
\(83\) 61655.4i 0.982372i 0.871055 + 0.491186i \(0.163436\pi\)
−0.871055 + 0.491186i \(0.836564\pi\)
\(84\) 0 0
\(85\) 46911.1i 0.704252i
\(86\) −54643.7 86681.7i −0.796699 1.26381i
\(87\) 0 0
\(88\) −46928.5 + 5497.42i −0.645997 + 0.0756750i
\(89\) −53205.4 −0.712001 −0.356000 0.934486i \(-0.615860\pi\)
−0.356000 + 0.934486i \(0.615860\pi\)
\(90\) 0 0
\(91\) 40711.2i 0.515360i
\(92\) −35468.5 + 74208.8i −0.436891 + 0.914084i
\(93\) 0 0
\(94\) −10245.6 + 6458.79i −0.119597 + 0.0753931i
\(95\) −49808.2 −0.566229
\(96\) 0 0
\(97\) −39211.8 −0.423143 −0.211571 0.977363i \(-0.567858\pi\)
−0.211571 + 0.977363i \(0.567858\pi\)
\(98\) −65154.8 + 41073.3i −0.685301 + 0.432011i
\(99\) 0 0
\(100\) −8624.62 + 18044.8i −0.0862462 + 0.180448i
\(101\) 41893.0i 0.408637i −0.978904 0.204319i \(-0.934502\pi\)
0.978904 0.204319i \(-0.0654979\pi\)
\(102\) 0 0
\(103\) −118358. −1.09927 −0.549635 0.835405i \(-0.685233\pi\)
−0.549635 + 0.835405i \(0.685233\pi\)
\(104\) −129562. + 15177.5i −1.17461 + 0.137600i
\(105\) 0 0
\(106\) 4843.88 + 7683.88i 0.0418725 + 0.0664226i
\(107\) 147978.i 1.24951i −0.780822 0.624754i \(-0.785199\pi\)
0.780822 0.624754i \(-0.214801\pi\)
\(108\) 0 0
\(109\) 126538.i 1.02013i −0.860135 0.510066i \(-0.829621\pi\)
0.860135 0.510066i \(-0.170379\pi\)
\(110\) 31226.7 19685.2i 0.246062 0.155116i
\(111\) 0 0
\(112\) 36334.2 + 45015.7i 0.273697 + 0.339093i
\(113\) 221898. 1.63478 0.817388 0.576088i \(-0.195421\pi\)
0.817388 + 0.576088i \(0.195421\pi\)
\(114\) 0 0
\(115\) 64257.4i 0.453084i
\(116\) 49086.5 + 23461.1i 0.338701 + 0.161884i
\(117\) 0 0
\(118\) 8087.40 + 12829.1i 0.0534692 + 0.0848185i
\(119\) −106007. −0.686229
\(120\) 0 0
\(121\) 92920.2 0.576961
\(122\) −134308. 213054.i −0.816963 1.29595i
\(123\) 0 0
\(124\) −106734. + 223313.i −0.623373 + 1.30425i
\(125\) 15625.0i 0.0894427i
\(126\) 0 0
\(127\) 237825. 1.30842 0.654212 0.756312i \(-0.273001\pi\)
0.654212 + 0.756312i \(0.273001\pi\)
\(128\) −129715. + 132415.i −0.699788 + 0.714351i
\(129\) 0 0
\(130\) 86212.0 54347.7i 0.447414 0.282048i
\(131\) 151213.i 0.769856i 0.922947 + 0.384928i \(0.125774\pi\)
−0.922947 + 0.384928i \(0.874226\pi\)
\(132\) 0 0
\(133\) 112554.i 0.551738i
\(134\) 37666.1 + 59749.9i 0.181213 + 0.287458i
\(135\) 0 0
\(136\) −39520.5 337366.i −0.183221 1.56406i
\(137\) −163216. −0.742954 −0.371477 0.928442i \(-0.621148\pi\)
−0.371477 + 0.928442i \(0.621148\pi\)
\(138\) 0 0
\(139\) 7490.33i 0.0328824i 0.999865 + 0.0164412i \(0.00523364\pi\)
−0.999865 + 0.0164412i \(0.994766\pi\)
\(140\) −40776.9 19489.5i −0.175830 0.0840390i
\(141\) 0 0
\(142\) −39189.2 + 24704.7i −0.163097 + 0.102815i
\(143\) −188098. −0.769209
\(144\) 0 0
\(145\) −42503.9 −0.167884
\(146\) −196596. + 123933.i −0.763294 + 0.481177i
\(147\) 0 0
\(148\) −353047. 168741.i −1.32488 0.633236i
\(149\) 35543.3i 0.131157i 0.997847 + 0.0655786i \(0.0208893\pi\)
−0.997847 + 0.0655786i \(0.979111\pi\)
\(150\) 0 0
\(151\) 549802. 1.96229 0.981147 0.193263i \(-0.0619070\pi\)
0.981147 + 0.193263i \(0.0619070\pi\)
\(152\) 358201. 41961.3i 1.25753 0.147312i
\(153\) 0 0
\(154\) 44483.7 + 70564.7i 0.151147 + 0.239765i
\(155\) 193367.i 0.646477i
\(156\) 0 0
\(157\) 252420.i 0.817287i 0.912694 + 0.408643i \(0.133998\pi\)
−0.912694 + 0.408643i \(0.866002\pi\)
\(158\) 221686. 139750.i 0.706474 0.445358i
\(159\) 0 0
\(160\) 46822.8 137037.i 0.144596 0.423192i
\(161\) 145206. 0.441488
\(162\) 0 0
\(163\) 383218.i 1.12974i 0.825182 + 0.564868i \(0.191073\pi\)
−0.825182 + 0.564868i \(0.808927\pi\)
\(164\) −206706. + 432480.i −0.600127 + 1.25561i
\(165\) 0 0
\(166\) 185994. + 295043.i 0.523876 + 0.831028i
\(167\) −108418. −0.300821 −0.150411 0.988624i \(-0.548060\pi\)
−0.150411 + 0.988624i \(0.548060\pi\)
\(168\) 0 0
\(169\) −148016. −0.398650
\(170\) 141515. + 224487.i 0.375561 + 0.595755i
\(171\) 0 0
\(172\) −522980. 249961.i −1.34792 0.644245i
\(173\) 305932.i 0.777157i 0.921416 + 0.388579i \(0.127034\pi\)
−0.921416 + 0.388579i \(0.872966\pi\)
\(174\) 0 0
\(175\) 35308.6 0.0871537
\(176\) −207986. + 167875.i −0.506119 + 0.408512i
\(177\) 0 0
\(178\) −254607. + 160503.i −0.602311 + 0.379694i
\(179\) 209868.i 0.489568i −0.969578 0.244784i \(-0.921283\pi\)
0.969578 0.244784i \(-0.0787170\pi\)
\(180\) 0 0
\(181\) 212990.i 0.483239i −0.970371 0.241620i \(-0.922321\pi\)
0.970371 0.241620i \(-0.0776786\pi\)
\(182\) 122812. + 194818.i 0.274830 + 0.435964i
\(183\) 0 0
\(184\) 54134.0 + 462113.i 0.117876 + 1.00624i
\(185\) 305703. 0.656705
\(186\) 0 0
\(187\) 489787.i 1.02424i
\(188\) −29545.0 + 61815.3i −0.0609662 + 0.127556i
\(189\) 0 0
\(190\) −238350. + 150255.i −0.478996 + 0.301957i
\(191\) 177246. 0.351555 0.175777 0.984430i \(-0.443756\pi\)
0.175777 + 0.984430i \(0.443756\pi\)
\(192\) 0 0
\(193\) 758117. 1.46502 0.732509 0.680758i \(-0.238349\pi\)
0.732509 + 0.680758i \(0.238349\pi\)
\(194\) −187643. + 118289.i −0.357954 + 0.225652i
\(195\) 0 0
\(196\) −187885. + 393101.i −0.349343 + 0.730911i
\(197\) 353509.i 0.648985i −0.945888 0.324492i \(-0.894807\pi\)
0.945888 0.324492i \(-0.105193\pi\)
\(198\) 0 0
\(199\) 233027. 0.417132 0.208566 0.978008i \(-0.433120\pi\)
0.208566 + 0.978008i \(0.433120\pi\)
\(200\) 13163.4 + 112369.i 0.0232698 + 0.198642i
\(201\) 0 0
\(202\) −126377. 200473.i −0.217917 0.345683i
\(203\) 96048.4i 0.163587i
\(204\) 0 0
\(205\) 374484.i 0.622369i
\(206\) −566385. + 357047.i −0.929917 + 0.586215i
\(207\) 0 0
\(208\) −574217. + 463476.i −0.920274 + 0.742795i
\(209\) 520035. 0.823507
\(210\) 0 0
\(211\) 401222.i 0.620410i 0.950670 + 0.310205i \(0.100398\pi\)
−0.950670 + 0.310205i \(0.899602\pi\)
\(212\) 46359.5 + 22157.8i 0.0708433 + 0.0338599i
\(213\) 0 0
\(214\) −446402. 708130.i −0.666334 1.05701i
\(215\) 452848. 0.668123
\(216\) 0 0
\(217\) 436961. 0.629932
\(218\) −381725. 605533.i −0.544013 0.862971i
\(219\) 0 0
\(220\) 90047.5 188402.i 0.125434 0.262439i
\(221\) 1.35222e6i 1.86238i
\(222\) 0 0
\(223\) −475659. −0.640521 −0.320260 0.947330i \(-0.603770\pi\)
−0.320260 + 0.947330i \(0.603770\pi\)
\(224\) 309670. + 105808.i 0.412362 + 0.140896i
\(225\) 0 0
\(226\) 1.06186e6 669395.i 1.38292 0.871789i
\(227\) 28559.0i 0.0367856i −0.999831 0.0183928i \(-0.994145\pi\)
0.999831 0.0183928i \(-0.00585494\pi\)
\(228\) 0 0
\(229\) 969736.i 1.22198i −0.791638 0.610991i \(-0.790771\pi\)
0.791638 0.610991i \(-0.209229\pi\)
\(230\) −193843. 307495.i −0.241619 0.383282i
\(231\) 0 0
\(232\) 305671. 35807.7i 0.372850 0.0436774i
\(233\) 16005.7 0.0193146 0.00965728 0.999953i \(-0.496926\pi\)
0.00965728 + 0.999953i \(0.496926\pi\)
\(234\) 0 0
\(235\) 53525.8i 0.0632257i
\(236\) 77402.3 + 36994.8i 0.0904636 + 0.0432375i
\(237\) 0 0
\(238\) −507284. + 319790.i −0.580509 + 0.365950i
\(239\) −1.26598e6 −1.43361 −0.716807 0.697272i \(-0.754397\pi\)
−0.716807 + 0.697272i \(0.754397\pi\)
\(240\) 0 0
\(241\) 414590. 0.459807 0.229904 0.973213i \(-0.426159\pi\)
0.229904 + 0.973213i \(0.426159\pi\)
\(242\) 444657. 280310.i 0.488075 0.307680i
\(243\) 0 0
\(244\) −1.28543e6 614376.i −1.38220 0.660632i
\(245\) 340386.i 0.362290i
\(246\) 0 0
\(247\) 1.43573e6 1.49738
\(248\) 162903. + 1.39062e6i 0.168190 + 1.43575i
\(249\) 0 0
\(250\) −47135.5 74771.3i −0.0476978 0.0756632i
\(251\) 184150.i 0.184496i 0.995736 + 0.0922479i \(0.0294052\pi\)
−0.995736 + 0.0922479i \(0.970595\pi\)
\(252\) 0 0
\(253\) 670895.i 0.658951i
\(254\) 1.13808e6 717440.i 1.10685 0.697752i
\(255\) 0 0
\(256\) −221283. + 1.02496e6i −0.211032 + 0.977479i
\(257\) 846268. 0.799236 0.399618 0.916682i \(-0.369143\pi\)
0.399618 + 0.916682i \(0.369143\pi\)
\(258\) 0 0
\(259\) 690813.i 0.639899i
\(260\) 248607. 520147.i 0.228076 0.477191i
\(261\) 0 0
\(262\) 456159. + 723607.i 0.410547 + 0.651253i
\(263\) 1.53385e6 1.36740 0.683698 0.729765i \(-0.260371\pi\)
0.683698 + 0.729765i \(0.260371\pi\)
\(264\) 0 0
\(265\) −40142.6 −0.0351149
\(266\) −339539. 538613.i −0.294229 0.466738i
\(267\) 0 0
\(268\) 360492. + 172299.i 0.306590 + 0.146536i
\(269\) 646714.i 0.544918i 0.962167 + 0.272459i \(0.0878370\pi\)
−0.962167 + 0.272459i \(0.912163\pi\)
\(270\) 0 0
\(271\) −1.58318e6 −1.30950 −0.654752 0.755844i \(-0.727227\pi\)
−0.654752 + 0.755844i \(0.727227\pi\)
\(272\) −1.20684e6 1.49520e6i −0.989072 1.22539i
\(273\) 0 0
\(274\) −781049. + 492369.i −0.628495 + 0.396200i
\(275\) 163137.i 0.130083i
\(276\) 0 0
\(277\) 1.62475e6i 1.27229i −0.771568 0.636147i \(-0.780527\pi\)
0.771568 0.636147i \(-0.219473\pi\)
\(278\) 22595.9 + 35844.0i 0.0175355 + 0.0278166i
\(279\) 0 0
\(280\) −253926. + 29746.0i −0.193558 + 0.0226743i
\(281\) 1.48375e6 1.12097 0.560487 0.828163i \(-0.310614\pi\)
0.560487 + 0.828163i \(0.310614\pi\)
\(282\) 0 0
\(283\) 1.18244e6i 0.877634i −0.898577 0.438817i \(-0.855398\pi\)
0.898577 0.438817i \(-0.144602\pi\)
\(284\) −113008. + 236442.i −0.0831410 + 0.173951i
\(285\) 0 0
\(286\) −900118. + 567430.i −0.650705 + 0.410202i
\(287\) 846241. 0.606442
\(288\) 0 0
\(289\) 2.10118e6 1.47985
\(290\) −203397. + 128220.i −0.142020 + 0.0895286i
\(291\) 0 0
\(292\) −566916. + 1.18613e6i −0.389101 + 0.814094i
\(293\) 887981.i 0.604275i −0.953264 0.302137i \(-0.902300\pi\)
0.953264 0.302137i \(-0.0977002\pi\)
\(294\) 0 0
\(295\) −67022.6 −0.0448400
\(296\) −2.19849e6 + 257541.i −1.45846 + 0.170851i
\(297\) 0 0
\(298\) 107223. + 170088.i 0.0699432 + 0.110951i
\(299\) 1.85223e6i 1.19817i
\(300\) 0 0
\(301\) 1.02332e6i 0.651024i
\(302\) 2.63100e6 1.65857e6i 1.65998 1.04645i
\(303\) 0 0
\(304\) 1.58754e6 1.28137e6i 0.985235 0.795228i
\(305\) 1.11305e6 0.685117
\(306\) 0 0
\(307\) 1.47690e6i 0.894346i −0.894447 0.447173i \(-0.852431\pi\)
0.894447 0.447173i \(-0.147569\pi\)
\(308\) 425741. + 203485.i 0.255722 + 0.122224i
\(309\) 0 0
\(310\) −583324. 925331.i −0.344751 0.546881i
\(311\) −364521. −0.213708 −0.106854 0.994275i \(-0.534078\pi\)
−0.106854 + 0.994275i \(0.534078\pi\)
\(312\) 0 0
\(313\) 324246. 0.187074 0.0935371 0.995616i \(-0.470183\pi\)
0.0935371 + 0.995616i \(0.470183\pi\)
\(314\) 761468. + 1.20792e6i 0.435840 + 0.691376i
\(315\) 0 0
\(316\) 639269. 1.33751e6i 0.360136 0.753493i
\(317\) 1.55670e6i 0.870074i −0.900413 0.435037i \(-0.856735\pi\)
0.900413 0.435037i \(-0.143265\pi\)
\(318\) 0 0
\(319\) 443773. 0.244165
\(320\) −189331. 797021.i −0.103359 0.435106i
\(321\) 0 0
\(322\) 694862. 438038.i 0.373473 0.235436i
\(323\) 3.73849e6i 1.99384i
\(324\) 0 0
\(325\) 450394.i 0.236529i
\(326\) 1.15604e6 + 1.83384e6i 0.602462 + 0.955689i
\(327\) 0 0
\(328\) 315486. + 2.69314e6i 0.161918 + 1.38221i
\(329\) 120955. 0.0616077
\(330\) 0 0
\(331\) 558769.i 0.280325i 0.990128 + 0.140163i \(0.0447626\pi\)
−0.990128 + 0.140163i \(0.955237\pi\)
\(332\) 1.78010e6 + 850807.i 0.886336 + 0.423629i
\(333\) 0 0
\(334\) −518818. + 327060.i −0.254477 + 0.160421i
\(335\) −312149. −0.151967
\(336\) 0 0
\(337\) 2.18320e6 1.04717 0.523587 0.851972i \(-0.324593\pi\)
0.523587 + 0.851972i \(0.324593\pi\)
\(338\) −708310. + 446516.i −0.337234 + 0.212591i
\(339\) 0 0
\(340\) 1.35440e6 + 647344.i 0.635405 + 0.303695i
\(341\) 2.01890e6i 0.940216i
\(342\) 0 0
\(343\) 1.71868e6 0.788787
\(344\) −3.25670e6 + 381505.i −1.48382 + 0.173822i
\(345\) 0 0
\(346\) 922895. + 1.46399e6i 0.414440 + 0.657429i
\(347\) 2.53924e6i 1.13209i 0.824375 + 0.566043i \(0.191527\pi\)
−0.824375 + 0.566043i \(0.808473\pi\)
\(348\) 0 0
\(349\) 2.58452e6i 1.13584i −0.823085 0.567918i \(-0.807749\pi\)
0.823085 0.567918i \(-0.192251\pi\)
\(350\) 168965. 106515.i 0.0737269 0.0464771i
\(351\) 0 0
\(352\) −488865. + 1.43077e6i −0.210297 + 0.615479i
\(353\) −284338. −0.121450 −0.0607250 0.998155i \(-0.519341\pi\)
−0.0607250 + 0.998155i \(0.519341\pi\)
\(354\) 0 0
\(355\) 204734.i 0.0862224i
\(356\) −734202. + 1.53613e6i −0.307037 + 0.642397i
\(357\) 0 0
\(358\) −633102. 1.00429e6i −0.261075 0.414145i
\(359\) 1.97109e6 0.807179 0.403590 0.914940i \(-0.367762\pi\)
0.403590 + 0.914940i \(0.367762\pi\)
\(360\) 0 0
\(361\) −1.49328e6 −0.603077
\(362\) −642520. 1.01923e6i −0.257701 0.408792i
\(363\) 0 0
\(364\) 1.17540e6 + 561790.i 0.464979 + 0.222239i
\(365\) 1.02707e6i 0.403522i
\(366\) 0 0
\(367\) 1.04179e6 0.403754 0.201877 0.979411i \(-0.435296\pi\)
0.201877 + 0.979411i \(0.435296\pi\)
\(368\) 1.65309e6 + 2.04807e6i 0.636324 + 0.788363i
\(369\) 0 0
\(370\) 1.46290e6 922205.i 0.555533 0.350206i
\(371\) 90712.4i 0.0342162i
\(372\) 0 0
\(373\) 1.58767e6i 0.590866i 0.955363 + 0.295433i \(0.0954639\pi\)
−0.955363 + 0.295433i \(0.904536\pi\)
\(374\) −1.47753e6 2.34381e6i −0.546205 0.866449i
\(375\) 0 0
\(376\) 45093.2 + 384936.i 0.0164491 + 0.140417i
\(377\) 1.22519e6 0.443965
\(378\) 0 0
\(379\) 995922.i 0.356145i −0.984017 0.178073i \(-0.943014\pi\)
0.984017 0.178073i \(-0.0569862\pi\)
\(380\) −687323. + 1.43805e6i −0.244176 + 0.510875i
\(381\) 0 0
\(382\) 848186. 534692.i 0.297394 0.187476i
\(383\) −1.53418e6 −0.534415 −0.267208 0.963639i \(-0.586101\pi\)
−0.267208 + 0.963639i \(0.586101\pi\)
\(384\) 0 0
\(385\) −368649. −0.126754
\(386\) 3.62786e6 2.28699e6i 1.23932 0.781260i
\(387\) 0 0
\(388\) −541099. + 1.13211e6i −0.182472 + 0.381777i
\(389\) 4.70941e6i 1.57795i −0.614428 0.788973i \(-0.710613\pi\)
0.614428 0.788973i \(-0.289387\pi\)
\(390\) 0 0
\(391\) −4.82301e6 −1.59542
\(392\) 286760. + 2.44792e6i 0.0942549 + 0.804604i
\(393\) 0 0
\(394\) −1.06642e6 1.69167e6i −0.346089 0.549002i
\(395\) 1.15815e6i 0.373483i
\(396\) 0 0
\(397\) 485420.i 0.154576i −0.997009 0.0772879i \(-0.975374\pi\)
0.997009 0.0772879i \(-0.0246261\pi\)
\(398\) 1.11512e6 702966.i 0.352869 0.222447i
\(399\) 0 0
\(400\) 401971. + 498015.i 0.125616 + 0.155630i
\(401\) −1.73402e6 −0.538508 −0.269254 0.963069i \(-0.586777\pi\)
−0.269254 + 0.963069i \(0.586777\pi\)
\(402\) 0 0
\(403\) 5.57385e6i 1.70959i
\(404\) −1.20952e6 578098.i −0.368690 0.176217i
\(405\) 0 0
\(406\) −289746. 459626.i −0.0872374 0.138385i
\(407\) −3.19177e6 −0.955092
\(408\) 0 0
\(409\) −853587. −0.252313 −0.126156 0.992010i \(-0.540264\pi\)
−0.126156 + 0.992010i \(0.540264\pi\)
\(410\) −1.12969e6 1.79204e6i −0.331895 0.526488i
\(411\) 0 0
\(412\) −1.63327e6 + 3.41720e6i −0.474039 + 0.991807i
\(413\) 151454.i 0.0436925i
\(414\) 0 0
\(415\) −1.54138e6 −0.439330
\(416\) −1.34968e6 + 3.95012e6i −0.382382 + 1.11912i
\(417\) 0 0
\(418\) 2.48856e6 1.56878e6i 0.696638 0.439157i
\(419\) 3.86903e6i 1.07663i −0.842743 0.538316i \(-0.819061\pi\)
0.842743 0.538316i \(-0.180939\pi\)
\(420\) 0 0
\(421\) 1.15014e6i 0.316260i −0.987418 0.158130i \(-0.949454\pi\)
0.987418 0.158130i \(-0.0505464\pi\)
\(422\) 1.21036e6 + 1.91999e6i 0.330851 + 0.524830i
\(423\) 0 0
\(424\) 288690. 33818.4i 0.0779860 0.00913563i
\(425\) −1.17278e6 −0.314951
\(426\) 0 0
\(427\) 2.51522e6i 0.667583i
\(428\) −4.27239e6 2.04201e6i −1.12736 0.538826i
\(429\) 0 0
\(430\) 2.16704e6 1.36609e6i 0.565192 0.356295i
\(431\) 3.09078e6 0.801448 0.400724 0.916199i \(-0.368759\pi\)
0.400724 + 0.916199i \(0.368759\pi\)
\(432\) 0 0
\(433\) 2.47892e6 0.635394 0.317697 0.948192i \(-0.397090\pi\)
0.317697 + 0.948192i \(0.397090\pi\)
\(434\) 2.09102e6 1.31817e6i 0.532885 0.335928i
\(435\) 0 0
\(436\) −3.65338e6 1.74615e6i −0.920405 0.439913i
\(437\) 5.12087e6i 1.28275i
\(438\) 0 0
\(439\) 997159. 0.246947 0.123473 0.992348i \(-0.460597\pi\)
0.123473 + 0.992348i \(0.460597\pi\)
\(440\) −137436. 1.17321e6i −0.0338429 0.288899i
\(441\) 0 0
\(442\) −4.07921e6 6.47088e6i −0.993163 1.57546i
\(443\) 2.10966e6i 0.510744i 0.966843 + 0.255372i \(0.0821980\pi\)
−0.966843 + 0.255372i \(0.917802\pi\)
\(444\) 0 0
\(445\) 1.33013e6i 0.318416i
\(446\) −2.27620e6 + 1.43491e6i −0.541843 + 0.341575i
\(447\) 0 0
\(448\) 1.80107e6 427842.i 0.423971 0.100714i
\(449\) −6.24963e6 −1.46298 −0.731490 0.681852i \(-0.761175\pi\)
−0.731490 + 0.681852i \(0.761175\pi\)
\(450\) 0 0
\(451\) 3.90989e6i 0.905156i
\(452\) 3.06206e6 6.40659e6i 0.704966 1.47496i
\(453\) 0 0
\(454\) −86153.0 136665.i −0.0196169 0.0311184i
\(455\) −1.01778e6 −0.230476
\(456\) 0 0
\(457\) 1.87669e6 0.420340 0.210170 0.977665i \(-0.432598\pi\)
0.210170 + 0.977665i \(0.432598\pi\)
\(458\) −2.92537e6 4.64054e6i −0.651655 1.03372i
\(459\) 0 0
\(460\) −1.85522e6 886713.i −0.408791 0.195384i
\(461\) 8.54777e6i 1.87327i −0.350307 0.936635i \(-0.613923\pi\)
0.350307 0.936635i \(-0.386077\pi\)
\(462\) 0 0
\(463\) −7.55869e6 −1.63868 −0.819340 0.573308i \(-0.805660\pi\)
−0.819340 + 0.573308i \(0.805660\pi\)
\(464\) 1.35473e6 1.09346e6i 0.292117 0.235781i
\(465\) 0 0
\(466\) 76593.1 48283.9i 0.0163390 0.0103000i
\(467\) 3.29127e6i 0.698346i 0.937058 + 0.349173i \(0.113538\pi\)
−0.937058 + 0.349173i \(0.886462\pi\)
\(468\) 0 0
\(469\) 705380.i 0.148078i
\(470\) −161470. 256141.i −0.0337168 0.0534852i
\(471\) 0 0
\(472\) 481999. 56463.6i 0.0995844 0.0116658i
\(473\) −4.72807e6 −0.971698
\(474\) 0 0
\(475\) 1.24521e6i 0.253225i
\(476\) −1.46284e6 + 3.06062e6i −0.295923 + 0.619144i
\(477\) 0 0
\(478\) −6.05817e6 + 3.81905e6i −1.21275 + 0.764513i
\(479\) −4.95610e6 −0.986965 −0.493482 0.869756i \(-0.664276\pi\)
−0.493482 + 0.869756i \(0.664276\pi\)
\(480\) 0 0
\(481\) −8.81196e6 −1.73664
\(482\) 1.98396e6 1.25068e6i 0.388970 0.245205i
\(483\) 0 0
\(484\) 1.28224e6 2.68277e6i 0.248804 0.520559i
\(485\) 980294.i 0.189235i
\(486\) 0 0
\(487\) −7.56942e6 −1.44624 −0.723120 0.690723i \(-0.757293\pi\)
−0.723120 + 0.690723i \(0.757293\pi\)
\(488\) −8.00460e6 + 937695.i −1.52156 + 0.178243i
\(489\) 0 0
\(490\) −1.02683e6 1.62887e6i −0.193201 0.306476i
\(491\) 1.25015e6i 0.234023i 0.993131 + 0.117012i \(0.0373315\pi\)
−0.993131 + 0.117012i \(0.962668\pi\)
\(492\) 0 0
\(493\) 3.19025e6i 0.591163i
\(494\) 6.87051e6 4.33114e6i 1.26669 0.798518i
\(495\) 0 0
\(496\) 4.97458e6 + 6.16318e6i 0.907930 + 1.12487i
\(497\) 462649. 0.0840158
\(498\) 0 0
\(499\) 5.59295e6i 1.00552i −0.864427 0.502758i \(-0.832319\pi\)
0.864427 0.502758i \(-0.167681\pi\)
\(500\) −451121. 215616.i −0.0806989 0.0385705i
\(501\) 0 0
\(502\) 555519. + 881223.i 0.0983874 + 0.156073i
\(503\) −9.76813e6 −1.72144 −0.860719 0.509080i \(-0.829986\pi\)
−0.860719 + 0.509080i \(0.829986\pi\)
\(504\) 0 0
\(505\) 1.04733e6 0.182748
\(506\) 2.02387e6 + 3.21048e6i 0.351404 + 0.557434i
\(507\) 0 0
\(508\) 3.28184e6 6.86642e6i 0.564233 1.18051i
\(509\) 9.05091e6i 1.54845i 0.632909 + 0.774226i \(0.281861\pi\)
−0.632909 + 0.774226i \(0.718139\pi\)
\(510\) 0 0
\(511\) 2.32092e6 0.393195
\(512\) 2.03305e6 + 5.57235e6i 0.342747 + 0.939428i
\(513\) 0 0
\(514\) 4.04970e6 2.55291e6i 0.676106 0.426214i
\(515\) 2.95895e6i 0.491608i
\(516\) 0 0
\(517\) 558850.i 0.0919536i
\(518\) 2.08396e6 + 3.30579e6i 0.341243 + 0.541316i
\(519\) 0 0
\(520\) −379438. 3.23905e6i −0.0615364 0.525303i
\(521\) 7.68287e6 1.24002 0.620011 0.784593i \(-0.287128\pi\)
0.620011 + 0.784593i \(0.287128\pi\)
\(522\) 0 0
\(523\) 8.45353e6i 1.35140i 0.737177 + 0.675700i \(0.236159\pi\)
−0.737177 + 0.675700i \(0.763841\pi\)
\(524\) 4.36577e6 + 2.08664e6i 0.694596 + 0.331986i
\(525\) 0 0
\(526\) 7.34004e6 4.62713e6i 1.15674 0.729201i
\(527\) −1.45137e7 −2.27641
\(528\) 0 0
\(529\) 170070. 0.0264234
\(530\) −192097. + 121097.i −0.0297051 + 0.0187260i
\(531\) 0 0
\(532\) −3.24964e6 1.55318e6i −0.497801 0.237927i
\(533\) 1.07946e7i 1.64584i
\(534\) 0 0
\(535\) 3.69946e6 0.558797
\(536\) 2.24485e6 262972.i 0.337501 0.0395365i
\(537\) 0 0
\(538\) 1.95092e6 + 3.09476e6i 0.290592 + 0.460969i
\(539\) 3.55389e6i 0.526904i
\(540\) 0 0
\(541\) 4.67406e6i 0.686596i 0.939227 + 0.343298i \(0.111544\pi\)
−0.939227 + 0.343298i \(0.888456\pi\)
\(542\) −7.57609e6 + 4.77593e6i −1.10776 + 0.698329i
\(543\) 0 0
\(544\) −1.02857e7 3.51441e6i −1.49017 0.509162i
\(545\) 3.16346e6 0.456217
\(546\) 0 0
\(547\) 1.86478e6i 0.266477i 0.991084 + 0.133238i \(0.0425376\pi\)
−0.991084 + 0.133238i \(0.957462\pi\)
\(548\) −2.25228e6 + 4.71233e6i −0.320385 + 0.670324i
\(549\) 0 0
\(550\) 492130. + 780668.i 0.0693702 + 0.110042i
\(551\) −3.38727e6 −0.475304
\(552\) 0 0
\(553\) −2.61713e6 −0.363925
\(554\) −4.90134e6 7.77503e6i −0.678486 1.07629i
\(555\) 0 0
\(556\) 216259. + 103362.i 0.0296679 + 0.0141799i
\(557\) 9.40472e6i 1.28442i −0.766528 0.642211i \(-0.778017\pi\)
0.766528 0.642211i \(-0.221983\pi\)
\(558\) 0 0
\(559\) −1.30535e7 −1.76683
\(560\) −1.12539e6 + 908355.i −0.151647 + 0.122401i
\(561\) 0 0
\(562\) 7.10029e6 4.47599e6i 0.948277 0.597790i
\(563\) 849619.i 0.112967i −0.998404 0.0564837i \(-0.982011\pi\)
0.998404 0.0564837i \(-0.0179889\pi\)
\(564\) 0 0
\(565\) 5.54746e6i 0.731094i
\(566\) −3.56703e6 5.65841e6i −0.468022 0.742426i
\(567\) 0 0
\(568\) 172480. + 1.47237e6i 0.0224320 + 0.191490i
\(569\) 5.41948e6 0.701741 0.350870 0.936424i \(-0.385886\pi\)
0.350870 + 0.936424i \(0.385886\pi\)
\(570\) 0 0
\(571\) 331372.i 0.0425329i −0.999774 0.0212664i \(-0.993230\pi\)
0.999774 0.0212664i \(-0.00676983\pi\)
\(572\) −2.59564e6 + 5.43072e6i −0.331707 + 0.694013i
\(573\) 0 0
\(574\) 4.04957e6 2.55283e6i 0.513014 0.323402i
\(575\) 1.60643e6 0.202625
\(576\) 0 0
\(577\) −1.51001e7 −1.88817 −0.944086 0.329701i \(-0.893052\pi\)
−0.944086 + 0.329701i \(0.893052\pi\)
\(578\) 1.00549e7 6.33857e6i 1.25187 0.789173i
\(579\) 0 0
\(580\) −586528. + 1.22716e6i −0.0723967 + 0.151472i
\(581\) 3.48315e6i 0.428087i
\(582\) 0 0
\(583\) 419119. 0.0510700
\(584\) 865260. + 7.38626e6i 0.104982 + 0.896174i
\(585\) 0 0
\(586\) −2.67875e6 4.24931e6i −0.322246 0.511181i
\(587\) 1.51509e7i 1.81486i 0.420199 + 0.907432i \(0.361960\pi\)
−0.420199 + 0.907432i \(0.638040\pi\)
\(588\) 0 0
\(589\) 1.54100e7i 1.83027i
\(590\) −320727. + 202185.i −0.0379320 + 0.0239122i
\(591\) 0 0
\(592\) −9.74367e6 + 7.86456e6i −1.14266 + 0.922295i
\(593\) 1.46568e7 1.71160 0.855800 0.517307i \(-0.173066\pi\)
0.855800 + 0.517307i \(0.173066\pi\)
\(594\) 0 0
\(595\) 2.65019e6i 0.306891i
\(596\) 1.02620e6 + 490476.i 0.118336 + 0.0565591i
\(597\) 0 0
\(598\) 5.58758e6 + 8.86361e6i 0.638956 + 1.01358i
\(599\) 5.14552e6 0.585952 0.292976 0.956120i \(-0.405354\pi\)
0.292976 + 0.956120i \(0.405354\pi\)
\(600\) 0 0
\(601\) 9.03954e6 1.02085 0.510423 0.859923i \(-0.329489\pi\)
0.510423 + 0.859923i \(0.329489\pi\)
\(602\) 3.08703e6 + 4.89698e6i 0.347176 + 0.550728i
\(603\) 0 0
\(604\) 7.58694e6 1.58737e7i 0.846202 1.77046i
\(605\) 2.32301e6i 0.258025i
\(606\) 0 0
\(607\) 1.25949e7 1.38747 0.693733 0.720232i \(-0.255965\pi\)
0.693733 + 0.720232i \(0.255965\pi\)
\(608\) 3.73146e6 1.09209e7i 0.409373 1.19812i
\(609\) 0 0
\(610\) 5.32634e6 3.35770e6i 0.579568 0.365357i
\(611\) 1.54290e6i 0.167199i
\(612\) 0 0
\(613\) 8.66424e6i 0.931278i −0.884975 0.465639i \(-0.845825\pi\)
0.884975 0.465639i \(-0.154175\pi\)
\(614\) −4.45533e6 7.06751e6i −0.476934 0.756564i
\(615\) 0 0
\(616\) 2.65117e6 310570.i 0.281505 0.0329768i
\(617\) −6.86089e6 −0.725551 −0.362775 0.931877i \(-0.618171\pi\)
−0.362775 + 0.931877i \(0.618171\pi\)
\(618\) 0 0
\(619\) 3.44552e6i 0.361434i 0.983535 + 0.180717i \(0.0578417\pi\)
−0.983535 + 0.180717i \(0.942158\pi\)
\(620\) −5.58284e6 2.66835e6i −0.583278 0.278781i
\(621\) 0 0
\(622\) −1.74436e6 + 1.09964e6i −0.180785 + 0.113966i
\(623\) 3.00578e6 0.310268
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 1.55164e6 978144.i 0.158254 0.0997624i
\(627\) 0 0
\(628\) 7.28780e6 + 3.48324e6i 0.737390 + 0.352439i
\(629\) 2.29454e7i 2.31243i
\(630\) 0 0
\(631\) −7.79725e6 −0.779593 −0.389797 0.920901i \(-0.627455\pi\)
−0.389797 + 0.920901i \(0.627455\pi\)
\(632\) −975689. 8.32893e6i −0.0971670 0.829462i
\(633\) 0 0
\(634\) −4.69604e6 7.44936e6i −0.463990 0.736031i
\(635\) 5.94563e6i 0.585145i
\(636\) 0 0
\(637\) 9.81171e6i 0.958068i
\(638\) 2.12361e6 1.33872e6i 0.206549 0.130208i
\(639\) 0 0
\(640\) −3.31037e6 3.24288e6i −0.319467 0.312955i
\(641\) −7.82134e6 −0.751859 −0.375929 0.926648i \(-0.622676\pi\)
−0.375929 + 0.926648i \(0.622676\pi\)
\(642\) 0 0
\(643\) 1.35325e7i 1.29078i 0.763854 + 0.645389i \(0.223305\pi\)
−0.763854 + 0.645389i \(0.776695\pi\)
\(644\) 2.00375e6 4.19234e6i 0.190383 0.398329i
\(645\) 0 0
\(646\) 1.12778e7 + 1.78900e7i 1.06327 + 1.68667i
\(647\) 1.34237e6 0.126070 0.0630352 0.998011i \(-0.479922\pi\)
0.0630352 + 0.998011i \(0.479922\pi\)
\(648\) 0 0
\(649\) 699766. 0.0652140
\(650\) 1.35869e6 + 2.15530e6i 0.126136 + 0.200090i
\(651\) 0 0
\(652\) 1.10642e7 + 5.28817e6i 1.01929 + 0.487177i
\(653\) 5.36490e6i 0.492355i 0.969225 + 0.246178i \(0.0791747\pi\)
−0.969225 + 0.246178i \(0.920825\pi\)
\(654\) 0 0
\(655\) −3.78031e6 −0.344290
\(656\) 9.63402e6 + 1.19359e7i 0.874074 + 1.08292i
\(657\) 0 0
\(658\) 578815. 364882.i 0.0521164 0.0328540i
\(659\) 8.49067e6i 0.761603i −0.924657 0.380801i \(-0.875648\pi\)
0.924657 0.380801i \(-0.124352\pi\)
\(660\) 0 0
\(661\) 9.80254e6i 0.872640i −0.899792 0.436320i \(-0.856282\pi\)
0.899792 0.436320i \(-0.143718\pi\)
\(662\) 1.68562e6 + 2.67391e6i 0.149491 + 0.237139i
\(663\) 0 0
\(664\) 1.10850e7 1.29855e6i 0.975700 0.114298i
\(665\) 2.81386e6 0.246745
\(666\) 0 0
\(667\) 4.36990e6i 0.380327i
\(668\) −1.49610e6 + 3.13020e6i −0.129723 + 0.271413i
\(669\) 0 0
\(670\) −1.49375e6 + 941652.i −0.128555 + 0.0810407i
\(671\) −1.16211e7 −0.996413
\(672\) 0 0
\(673\) 7.99241e6 0.680205 0.340103 0.940388i \(-0.389538\pi\)
0.340103 + 0.940388i \(0.389538\pi\)
\(674\) 1.04474e7 6.58600e6i 0.885848 0.558434i
\(675\) 0 0
\(676\) −2.04253e6 + 4.27348e6i −0.171910 + 0.359679i
\(677\) 8.50891e6i 0.713514i 0.934197 + 0.356757i \(0.116118\pi\)
−0.934197 + 0.356757i \(0.883882\pi\)
\(678\) 0 0
\(679\) 2.21522e6 0.184392
\(680\) 8.43414e6 988013.i 0.699469 0.0819390i
\(681\) 0 0
\(682\) 6.09034e6 + 9.66115e6i 0.501396 + 0.795367i
\(683\) 1.39302e7i 1.14263i 0.820732 + 0.571314i \(0.193566\pi\)
−0.820732 + 0.571314i \(0.806434\pi\)
\(684\) 0 0
\(685\) 4.08040e6i 0.332259i
\(686\) 8.22451e6 5.18469e6i 0.667267 0.420642i
\(687\) 0 0
\(688\) −1.44336e7 + 1.16500e7i −1.16253 + 0.938331i
\(689\) 1.15712e6 0.0928604
\(690\) 0 0
\(691\) 1.79579e6i 0.143074i 0.997438 + 0.0715371i \(0.0227904\pi\)
−0.997438 + 0.0715371i \(0.977210\pi\)
\(692\) 8.83277e6 + 4.22167e6i 0.701184 + 0.335134i
\(693\) 0 0
\(694\) 7.66005e6 + 1.21512e7i 0.603716 + 0.957678i
\(695\) −187258. −0.0147055
\(696\) 0 0
\(697\) −2.81079e7 −2.19152
\(698\) −7.79664e6 1.23678e7i −0.605716 0.960850i
\(699\) 0 0
\(700\) 487238. 1.01942e6i 0.0375834 0.0786337i
\(701\) 1.76628e7i 1.35758i 0.734334 + 0.678789i \(0.237495\pi\)
−0.734334 + 0.678789i \(0.762505\pi\)
\(702\) 0 0
\(703\) 2.43624e7 1.85923
\(704\) 1.97676e6 + 8.32150e6i 0.150322 + 0.632805i
\(705\) 0 0
\(706\) −1.36066e6 + 857753.i −0.102740 + 0.0647665i
\(707\) 2.36670e6i 0.178071i
\(708\) 0 0
\(709\) 1.67397e7i 1.25064i −0.780369 0.625319i \(-0.784969\pi\)
0.780369 0.625319i \(-0.215031\pi\)
\(710\) −617617. 979729.i −0.0459804 0.0729390i
\(711\) 0 0
\(712\) 1.12058e6 + 9.56579e6i 0.0828405 + 0.707165i
\(713\) 1.98804e7 1.46454
\(714\) 0 0
\(715\) 4.70246e6i 0.344001i
\(716\) −6.05924e6 2.89605e6i −0.441709 0.211117i
\(717\) 0 0
\(718\) 9.43238e6 5.94613e6i 0.682826 0.430450i
\(719\) 1.41699e7 1.02222 0.511111 0.859515i \(-0.329234\pi\)
0.511111 + 0.859515i \(0.329234\pi\)
\(720\) 0 0
\(721\) 6.68649e6 0.479027
\(722\) −7.14588e6 + 4.50473e6i −0.510167 + 0.321607i
\(723\) 0 0
\(724\) −6.14938e6 2.93913e6i −0.435999 0.208388i
\(725\) 1.06260e6i 0.0750800i
\(726\) 0 0
\(727\) 3.78412e6 0.265539 0.132770 0.991147i \(-0.457613\pi\)
0.132770 + 0.991147i \(0.457613\pi\)
\(728\) 7.31947e6 857435.i 0.511860 0.0599616i
\(729\) 0 0
\(730\) −3.09833e6 4.91489e6i −0.215189 0.341355i
\(731\) 3.39897e7i 2.35263i
\(732\) 0 0
\(733\) 2.58722e7i 1.77858i 0.457345 + 0.889290i \(0.348801\pi\)
−0.457345 + 0.889290i \(0.651199\pi\)
\(734\) 4.98536e6 3.14275e6i 0.341552 0.215313i
\(735\) 0 0
\(736\) 1.40890e7 + 4.81394e6i 0.958708 + 0.327571i
\(737\) 3.25907e6 0.221017
\(738\) 0 0
\(739\) 5.89215e6i 0.396883i 0.980113 + 0.198441i \(0.0635880\pi\)
−0.980113 + 0.198441i \(0.936412\pi\)
\(740\) 4.21851e6 8.82617e6i 0.283192 0.592506i
\(741\) 0 0
\(742\) −273650. 434092.i −0.0182467 0.0289449i
\(743\) 2.47551e7 1.64510 0.822551 0.568692i \(-0.192550\pi\)
0.822551 + 0.568692i \(0.192550\pi\)
\(744\) 0 0
\(745\) −888583. −0.0586553
\(746\) 4.78949e6 + 7.59759e6i 0.315095 + 0.499838i
\(747\) 0 0
\(748\) −1.41410e7 6.75876e6i −0.924115 0.441685i
\(749\) 8.35986e6i 0.544496i
\(750\) 0 0
\(751\) 1.98371e6 0.128345 0.0641724 0.997939i \(-0.479559\pi\)
0.0641724 + 0.997939i \(0.479559\pi\)
\(752\) 1.37701e6 + 1.70603e6i 0.0887960 + 0.110012i
\(753\) 0 0
\(754\) 5.86296e6 3.69598e6i 0.375568 0.236756i
\(755\) 1.37451e7i 0.877565i
\(756\) 0 0
\(757\) 1.85647e7i 1.17746i 0.808328 + 0.588732i \(0.200373\pi\)
−0.808328 + 0.588732i \(0.799627\pi\)
\(758\) −3.00437e6 4.76585e6i −0.189924 0.301278i
\(759\) 0 0
\(760\) 1.04903e6 + 8.95502e6i 0.0658801 + 0.562383i
\(761\) 5.16348e6 0.323207 0.161603 0.986856i \(-0.448333\pi\)
0.161603 + 0.986856i \(0.448333\pi\)
\(762\) 0 0
\(763\) 7.14864e6i 0.444542i
\(764\) 2.44589e6 5.11739e6i 0.151601 0.317187i
\(765\) 0 0
\(766\) −7.34160e6 + 4.62811e6i −0.452083 + 0.284991i
\(767\) 1.93194e6 0.118578
\(768\) 0 0
\(769\) 3.01408e7 1.83797 0.918985 0.394293i \(-0.129011\pi\)
0.918985 + 0.394293i \(0.129011\pi\)
\(770\) −1.76412e6 + 1.11209e6i −0.107226 + 0.0675949i
\(771\) 0 0
\(772\) 1.04615e7 2.18881e7i 0.631761 1.32180i
\(773\) 1.51718e7i 0.913246i 0.889660 + 0.456623i \(0.150941\pi\)
−0.889660 + 0.456623i \(0.849059\pi\)
\(774\) 0 0
\(775\) 4.83417e6 0.289113
\(776\) 825855. + 7.04988e6i 0.0492322 + 0.420269i
\(777\) 0 0
\(778\) −1.42067e7 2.25362e7i −0.841483 1.33485i
\(779\) 2.98438e7i 1.76202i
\(780\) 0 0
\(781\) 2.13758e6i 0.125399i
\(782\) −2.30799e7 + 1.45494e7i −1.34963 + 0.850804i
\(783\) 0 0
\(784\) 8.75682e6 + 1.08491e7i 0.508811 + 0.630383i
\(785\) −6.31050e6 −0.365502
\(786\) 0 0
\(787\) 1.46106e7i 0.840874i −0.907322 0.420437i \(-0.861877\pi\)
0.907322 0.420437i \(-0.138123\pi\)
\(788\) −1.02064e7 4.87820e6i −0.585541 0.279862i
\(789\) 0 0
\(790\) 3.49375e6 + 5.54216e6i 0.199170 + 0.315945i
\(791\) −1.25359e7 −0.712384
\(792\) 0 0
\(793\) −3.20839e7 −1.81177
\(794\) −1.46435e6 2.32291e6i −0.0824318 0.130762i
\(795\) 0 0
\(796\) 3.21563e6 6.72789e6i 0.179880 0.376354i
\(797\) 4.81785e6i 0.268663i −0.990936 0.134331i \(-0.957111\pi\)
0.990936 0.134331i \(-0.0428887\pi\)
\(798\) 0 0
\(799\) −4.01753e6 −0.222634
\(800\) 3.42593e6 + 1.17057e6i 0.189257 + 0.0646655i
\(801\) 0 0
\(802\) −8.29790e6 + 5.23096e6i −0.455546 + 0.287174i
\(803\) 1.07234e7i 0.586870i
\(804\) 0 0
\(805\) 3.63014e6i 0.197440i
\(806\) 1.68145e7 + 2.66729e7i 0.911686 + 1.44621i
\(807\) 0 0
\(808\) −7.53194e6 + 882326.i −0.405862 + 0.0475445i
\(809\) 267715. 0.0143814 0.00719072 0.999974i \(-0.497711\pi\)
0.00719072 + 0.999974i \(0.497711\pi\)
\(810\) 0 0
\(811\) 1.10232e7i 0.588514i −0.955726 0.294257i \(-0.904928\pi\)
0.955726 0.294257i \(-0.0950722\pi\)
\(812\) −2.77308e6 1.32541e6i −0.147595 0.0705440i
\(813\) 0 0
\(814\) −1.52738e7 + 9.62851e6i −0.807951 + 0.509329i
\(815\) −9.58044e6 −0.505233
\(816\) 0 0
\(817\) 3.60889e7 1.89155
\(818\) −4.08472e6 + 2.57499e6i −0.213442 + 0.134553i
\(819\) 0 0
\(820\) −1.08120e7 5.16765e6i −0.561528 0.268385i
\(821\) 7.52183e6i 0.389462i −0.980857 0.194731i \(-0.937617\pi\)
0.980857 0.194731i \(-0.0623834\pi\)
\(822\) 0 0
\(823\) −2.86933e7 −1.47666 −0.738331 0.674439i \(-0.764386\pi\)
−0.738331 + 0.674439i \(0.764386\pi\)
\(824\) 2.49278e6 + 2.12796e7i 0.127899 + 1.09180i
\(825\) 0 0
\(826\) −456888. 724764.i −0.0233002 0.0369613i
\(827\) 1.90830e7i 0.970248i −0.874445 0.485124i \(-0.838774\pi\)
0.874445 0.485124i \(-0.161226\pi\)
\(828\) 0 0
\(829\) 2.31916e7i 1.17205i −0.810295 0.586023i \(-0.800693\pi\)
0.810295 0.586023i \(-0.199307\pi\)
\(830\) −7.37608e6 + 4.64985e6i −0.371647 + 0.234285i
\(831\) 0 0
\(832\) 5.45752e6 + 2.29743e7i 0.273330 + 1.15063i
\(833\) −2.55486e7 −1.27572
\(834\) 0 0
\(835\) 2.71044e6i 0.134531i
\(836\) 7.17617e6 1.50143e7i 0.355122 0.743002i
\(837\) 0 0
\(838\) −1.16716e7 1.85147e7i −0.574143 0.910766i
\(839\) 887580. 0.0435314 0.0217657 0.999763i \(-0.493071\pi\)
0.0217657 + 0.999763i \(0.493071\pi\)
\(840\) 0 0
\(841\) 1.76206e7 0.859075
\(842\) −3.46958e6 5.50382e6i −0.168654 0.267537i
\(843\) 0 0
\(844\) 1.15840e7 + 5.53663e6i 0.559760 + 0.267540i
\(845\) 3.70040e6i 0.178282i
\(846\) 0 0
\(847\) −5.24942e6 −0.251422
\(848\) 1.27947e6 1.03271e6i 0.0610997 0.0493163i
\(849\) 0 0
\(850\) −5.61216e6 + 3.53788e6i −0.266430 + 0.167956i
\(851\) 3.14299e7i 1.48771i
\(852\) 0 0
\(853\) 1.39449e7i 0.656208i −0.944642 0.328104i \(-0.893590\pi\)
0.944642 0.328104i \(-0.106410\pi\)
\(854\) 7.58758e6 + 1.20362e7i 0.356007 + 0.564736i
\(855\) 0 0
\(856\) −2.66050e7 + 3.11663e6i −1.24102 + 0.145379i
\(857\) 3.58423e7 1.66703 0.833516 0.552495i \(-0.186324\pi\)
0.833516 + 0.552495i \(0.186324\pi\)
\(858\) 0 0
\(859\) 767053.i 0.0354685i 0.999843 + 0.0177342i \(0.00564528\pi\)
−0.999843 + 0.0177342i \(0.994355\pi\)
\(860\) 6.24903e6 1.30745e7i 0.288115 0.602808i
\(861\) 0 0
\(862\) 1.47905e7 9.32387e6i 0.677977 0.427394i
\(863\) 2.90420e7 1.32739 0.663697 0.748002i \(-0.268987\pi\)
0.663697 + 0.748002i \(0.268987\pi\)
\(864\) 0 0
\(865\) −7.64829e6 −0.347555
\(866\) 1.18625e7 7.47809e6i 0.537506 0.338841i
\(867\) 0 0
\(868\) 6.02980e6 1.26158e7i 0.271646 0.568351i
\(869\) 1.20919e7i 0.543183i
\(870\) 0 0
\(871\) 8.99778e6 0.401874
\(872\) −2.27503e7 + 2.66508e6i −1.01320 + 0.118691i
\(873\) 0 0
\(874\) −1.54480e7 2.45052e7i −0.684059 1.08513i
\(875\) 882716.i 0.0389763i
\(876\) 0 0
\(877\) 9.62715e6i 0.422667i −0.977414 0.211334i \(-0.932219\pi\)
0.977414 0.211334i \(-0.0677807\pi\)
\(878\) 4.77177e6 3.00810e6i 0.208902 0.131691i
\(879\) 0 0
\(880\) −4.19688e6 5.19965e6i −0.182692 0.226343i
\(881\) −3.88627e7 −1.68691 −0.843457 0.537196i \(-0.819483\pi\)
−0.843457 + 0.537196i \(0.819483\pi\)
\(882\) 0 0
\(883\) 4.29023e6i 0.185173i 0.995705 + 0.0925867i \(0.0295135\pi\)
−0.995705 + 0.0925867i \(0.970486\pi\)
\(884\) −3.90410e7 1.86599e7i −1.68031 0.803115i
\(885\) 0 0
\(886\) 6.36416e6 + 1.00955e7i 0.272368 + 0.432059i
\(887\) 1.30883e7 0.558564 0.279282 0.960209i \(-0.409904\pi\)
0.279282 + 0.960209i \(0.409904\pi\)
\(888\) 0 0
\(889\) −1.34356e7 −0.570170
\(890\) −4.01258e6 6.36518e6i −0.169804 0.269361i
\(891\) 0 0
\(892\) −6.56380e6 + 1.37331e7i −0.276212 + 0.577905i
\(893\) 4.26564e6i 0.179001i
\(894\) 0 0
\(895\) 5.24669e6 0.218941
\(896\) 7.32812e6 7.48062e6i 0.304946 0.311292i
\(897\) 0 0
\(898\) −2.99068e7 + 1.88531e7i −1.23760 + 0.780174i
\(899\) 1.31502e7i 0.542665i
\(900\) 0 0
\(901\) 3.01301e6i 0.123649i
\(902\) 1.17949e7 + 1.87102e7i 0.482699 + 0.765708i
\(903\) 0 0
\(904\) −4.67349e6 3.98951e7i −0.190204 1.62367i
\(905\) 5.32474e6 0.216111
\(906\) 0 0
\(907\) 2.36895e7i 0.956175i −0.878312 0.478087i \(-0.841330\pi\)
0.878312 0.478087i \(-0.158670\pi\)
\(908\) −824547. 394096.i −0.0331895 0.0158631i
\(909\) 0 0
\(910\) −4.87045e6 + 3.07031e6i −0.194969 + 0.122908i
\(911\) −1.27323e7 −0.508289 −0.254144 0.967166i \(-0.581794\pi\)
−0.254144 + 0.967166i \(0.581794\pi\)
\(912\) 0 0
\(913\) 1.60932e7 0.638948
\(914\) 8.98062e6 5.66135e6i 0.355583 0.224158i
\(915\) 0 0
\(916\) −2.79980e7 1.33818e7i −1.10252 0.526957i
\(917\) 8.54258e6i 0.335479i
\(918\) 0 0
\(919\) 3.36064e7 1.31260 0.656302 0.754499i \(-0.272120\pi\)
0.656302 + 0.754499i \(0.272120\pi\)
\(920\) −1.15528e7 + 1.35335e6i −0.450006 + 0.0527158i
\(921\) 0 0
\(922\) −2.57858e7 4.09042e7i −0.998972 1.58467i
\(923\) 5.90152e6i 0.228013i
\(924\) 0 0
\(925\) 7.64257e6i 0.293687i
\(926\) −3.61711e7 + 2.28021e7i −1.38623 + 0.873871i
\(927\) 0 0
\(928\) 3.18425e6 9.31938e6i 0.121377 0.355236i
\(929\) −2.44326e7 −0.928816 −0.464408 0.885621i \(-0.653733\pi\)
−0.464408 + 0.885621i \(0.653733\pi\)
\(930\) 0 0
\(931\) 2.71265e7i 1.02570i
\(932\) 220869. 462112.i 0.00832904 0.0174264i
\(933\) 0 0
\(934\) 9.92867e6 + 1.57499e7i 0.372412 + 0.590760i
\(935\) 1.22447e7 0.458055
\(936\) 0 0
\(937\) −2.46226e7 −0.916188 −0.458094 0.888904i \(-0.651468\pi\)
−0.458094 + 0.888904i \(0.651468\pi\)
\(938\) −2.12790e6 3.37550e6i −0.0789667 0.125265i
\(939\) 0 0
\(940\) −1.54538e6 738624.i −0.0570449 0.0272649i
\(941\) 3.64578e7i 1.34220i −0.741368 0.671098i \(-0.765823\pi\)
0.741368 0.671098i \(-0.234177\pi\)
\(942\) 0 0
\(943\) 3.85013e7 1.40993
\(944\) 2.13621e6 1.72423e6i 0.0780214 0.0629746i
\(945\) 0 0
\(946\) −2.26255e7 + 1.42630e7i −0.821999 + 0.518184i
\(947\) 1.49302e7i 0.540992i −0.962721 0.270496i \(-0.912812\pi\)
0.962721 0.270496i \(-0.0871876\pi\)
\(948\) 0 0
\(949\) 2.96055e7i 1.06710i
\(950\) −3.75638e6 5.95876e6i −0.135039 0.214214i
\(951\) 0 0
\(952\) 2.23267e6 + 1.90591e7i 0.0798420 + 0.681568i
\(953\) −2.82853e7 −1.00885 −0.504426 0.863455i \(-0.668296\pi\)
−0.504426 + 0.863455i \(0.668296\pi\)
\(954\) 0 0
\(955\) 4.43115e6i 0.157220i
\(956\) −1.74698e7 + 3.65510e7i −0.618219 + 1.29347i
\(957\) 0 0
\(958\) −2.37168e7 + 1.49509e7i −0.834914 + 0.526326i
\(959\) 9.22071e6 0.323756
\(960\) 0 0
\(961\) 3.11960e7 1.08966
\(962\) −4.21684e7 + 2.65828e7i −1.46909 + 0.926110i
\(963\) 0 0
\(964\) 5.72109e6 1.19699e7i 0.198283 0.414857i
\(965\) 1.89529e7i 0.655176i
\(966\) 0 0
\(967\) 3.47503e7 1.19507 0.597533 0.801844i \(-0.296148\pi\)
0.597533 + 0.801844i \(0.296148\pi\)
\(968\) −1.95703e6 1.67061e7i −0.0671288 0.573043i
\(969\) 0 0
\(970\) −2.95723e6 4.69106e6i −0.100915 0.160082i
\(971\) 4.65499e7i 1.58442i −0.610247 0.792211i \(-0.708930\pi\)
0.610247 0.792211i \(-0.291070\pi\)
\(972\) 0 0
\(973\) 423158.i 0.0143291i
\(974\) −3.62224e7 + 2.28345e7i −1.22343 + 0.771247i
\(975\) 0 0
\(976\) −3.54762e7 + 2.86344e7i −1.19210 + 0.962198i
\(977\) −4.15712e7 −1.39334 −0.696668 0.717394i \(-0.745335\pi\)
−0.696668 + 0.717394i \(0.745335\pi\)
\(978\) 0 0
\(979\) 1.38876e7i 0.463096i
\(980\) −9.82754e6 4.69712e6i −0.326873 0.156231i
\(981\) 0 0
\(982\) 3.77130e6 + 5.98243e6i 0.124799 + 0.197970i
\(983\) 2.55186e7 0.842313 0.421157 0.906988i \(-0.361624\pi\)
0.421157 + 0.906988i \(0.361624\pi\)
\(984\) 0 0
\(985\) 8.83771e6 0.290235
\(986\) 9.62393e6 + 1.52665e7i 0.315254 + 0.500089i
\(987\) 0 0
\(988\) 1.98123e7 4.14521e7i 0.645716 1.35100i
\(989\) 4.65581e7i 1.51358i
\(990\) 0 0
\(991\) −3.10296e7 −1.00367 −0.501836 0.864963i \(-0.667342\pi\)
−0.501836 + 0.864963i \(0.667342\pi\)
\(992\) 4.23975e7 + 1.44864e7i 1.36792 + 0.467391i
\(993\) 0 0
\(994\) 2.21395e6 1.39566e6i 0.0710724 0.0448037i
\(995\) 5.82567e6i 0.186547i
\(996\) 0 0
\(997\) 1.66036e7i 0.529011i 0.964384 + 0.264505i \(0.0852087\pi\)
−0.964384 + 0.264505i \(0.914791\pi\)
\(998\) −1.68721e7 2.67643e7i −0.536219 0.850607i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.6.k.b.181.17 20
3.2 odd 2 40.6.d.a.21.4 yes 20
8.5 even 2 inner 360.6.k.b.181.18 20
12.11 even 2 160.6.d.a.81.19 20
15.2 even 4 200.6.f.c.149.7 20
15.8 even 4 200.6.f.b.149.14 20
15.14 odd 2 200.6.d.b.101.17 20
24.5 odd 2 40.6.d.a.21.3 20
24.11 even 2 160.6.d.a.81.2 20
60.23 odd 4 800.6.f.c.49.1 20
60.47 odd 4 800.6.f.b.49.20 20
60.59 even 2 800.6.d.c.401.2 20
120.29 odd 2 200.6.d.b.101.18 20
120.53 even 4 200.6.f.c.149.8 20
120.59 even 2 800.6.d.c.401.19 20
120.77 even 4 200.6.f.b.149.13 20
120.83 odd 4 800.6.f.b.49.19 20
120.107 odd 4 800.6.f.c.49.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.d.a.21.3 20 24.5 odd 2
40.6.d.a.21.4 yes 20 3.2 odd 2
160.6.d.a.81.2 20 24.11 even 2
160.6.d.a.81.19 20 12.11 even 2
200.6.d.b.101.17 20 15.14 odd 2
200.6.d.b.101.18 20 120.29 odd 2
200.6.f.b.149.13 20 120.77 even 4
200.6.f.b.149.14 20 15.8 even 4
200.6.f.c.149.7 20 15.2 even 4
200.6.f.c.149.8 20 120.53 even 4
360.6.k.b.181.17 20 1.1 even 1 trivial
360.6.k.b.181.18 20 8.5 even 2 inner
800.6.d.c.401.2 20 60.59 even 2
800.6.d.c.401.19 20 120.59 even 2
800.6.f.b.49.19 20 120.83 odd 4
800.6.f.b.49.20 20 60.47 odd 4
800.6.f.c.49.1 20 60.23 odd 4
800.6.f.c.49.2 20 120.107 odd 4