Properties

Label 3724.1.bk.a.3203.1
Level $3724$
Weight $1$
Character 3724.3203
Analytic conductor $1.859$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,1,Mod(1451,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.1451");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3724.bk (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.85851810705\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.283024.1

Embedding invariants

Embedding label 3203.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3724.3203
Dual form 3724.1.bk.a.1451.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(0.866025 - 0.500000i) q^{3} -1.00000 q^{4} +(-0.500000 - 0.866025i) q^{6} +1.00000i q^{8} +(-0.866025 - 0.500000i) q^{11} +(-0.866025 + 0.500000i) q^{12} +(-0.500000 - 0.866025i) q^{13} +1.00000 q^{16} +(-0.500000 - 0.866025i) q^{17} -1.00000i q^{19} +(-0.500000 + 0.866025i) q^{22} +(0.866025 + 0.500000i) q^{23} +(0.500000 + 0.866025i) q^{24} -1.00000 q^{25} +(-0.866025 + 0.500000i) q^{26} +1.00000i q^{27} +(-0.500000 - 0.866025i) q^{29} +(-0.866025 - 0.500000i) q^{31} -1.00000i q^{32} -1.00000 q^{33} +(-0.866025 + 0.500000i) q^{34} +(-0.500000 - 0.866025i) q^{37} -1.00000 q^{38} +(-0.866025 - 0.500000i) q^{39} +(0.500000 - 0.866025i) q^{41} +(0.866025 + 0.500000i) q^{43} +(0.866025 + 0.500000i) q^{44} +(0.500000 - 0.866025i) q^{46} +(0.866025 + 0.500000i) q^{47} +(0.866025 - 0.500000i) q^{48} +1.00000i q^{50} +(-0.866025 - 0.500000i) q^{51} +(0.500000 + 0.866025i) q^{52} +1.00000 q^{54} +(-0.500000 - 0.866025i) q^{57} +(-0.866025 + 0.500000i) q^{58} +(-0.866025 + 0.500000i) q^{59} +(0.500000 - 0.866025i) q^{61} +(-0.500000 + 0.866025i) q^{62} -1.00000 q^{64} +1.00000i q^{66} +(0.500000 + 0.866025i) q^{68} +1.00000 q^{69} +(-0.866025 - 0.500000i) q^{71} +(-0.500000 - 0.866025i) q^{73} +(-0.866025 + 0.500000i) q^{74} +(-0.866025 + 0.500000i) q^{75} +1.00000i q^{76} +(-0.500000 + 0.866025i) q^{78} +(0.500000 + 0.866025i) q^{81} +(-0.866025 - 0.500000i) q^{82} +(0.500000 - 0.866025i) q^{86} +(-0.866025 - 0.500000i) q^{87} +(0.500000 - 0.866025i) q^{88} +(-0.500000 + 0.866025i) q^{89} +(-0.866025 - 0.500000i) q^{92} -1.00000 q^{93} +(0.500000 - 0.866025i) q^{94} +(-0.500000 - 0.866025i) q^{96} +(-0.500000 + 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 2 q^{6} - 2 q^{13} + 4 q^{16} - 2 q^{17} - 2 q^{22} + 2 q^{24} - 4 q^{25} - 2 q^{29} - 4 q^{33} - 2 q^{37} - 4 q^{38} + 2 q^{41} + 2 q^{46} + 2 q^{52} + 4 q^{54} - 2 q^{57} + 2 q^{61} - 2 q^{62}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3724\mathbb{Z}\right)^\times\).

\(n\) \(1863\) \(3041\) \(3137\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i
\(3\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) −1.00000 −1.00000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) −0.500000 0.866025i −0.500000 0.866025i
\(7\) 0 0
\(8\) 1.00000i 1.00000i
\(9\) 0 0
\(10\) 0 0
\(11\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(13\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 1.00000i 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(23\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(24\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(25\) −1.00000 −1.00000
\(26\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(27\) 1.00000i 1.00000i
\(28\) 0 0
\(29\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 1.00000i 1.00000i
\(33\) −1.00000 −1.00000
\(34\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(38\) −1.00000 −1.00000
\(39\) −0.866025 0.500000i −0.866025 0.500000i
\(40\) 0 0
\(41\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(42\) 0 0
\(43\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(44\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(45\) 0 0
\(46\) 0.500000 0.866025i 0.500000 0.866025i
\(47\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(48\) 0.866025 0.500000i 0.866025 0.500000i
\(49\) 0 0
\(50\) 1.00000i 1.00000i
\(51\) −0.866025 0.500000i −0.866025 0.500000i
\(52\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 1.00000 1.00000
\(55\) 0 0
\(56\) 0 0
\(57\) −0.500000 0.866025i −0.500000 0.866025i
\(58\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(59\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(62\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 1.00000i 1.00000i
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(69\) 1.00000 1.00000
\(70\) 0 0
\(71\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) 0 0
\(73\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(74\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(75\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(76\) 1.00000i 1.00000i
\(77\) 0 0
\(78\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(82\) −0.866025 0.500000i −0.866025 0.500000i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.500000 0.866025i 0.500000 0.866025i
\(87\) −0.866025 0.500000i −0.866025 0.500000i
\(88\) 0.500000 0.866025i 0.500000 0.866025i
\(89\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.866025 0.500000i −0.866025 0.500000i
\(93\) −1.00000 −1.00000
\(94\) 0.500000 0.866025i 0.500000 0.866025i
\(95\) 0 0
\(96\) −0.500000 0.866025i −0.500000 0.866025i
\(97\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(103\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(104\) 0.866025 0.500000i 0.866025 0.500000i
\(105\) 0 0
\(106\) 0 0
\(107\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 1.00000i 1.00000i
\(109\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) −0.866025 0.500000i −0.866025 0.500000i
\(112\) 0 0
\(113\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(114\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(115\) 0 0
\(116\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(117\) 0 0
\(118\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) −0.866025 0.500000i −0.866025 0.500000i
\(123\) 1.00000i 1.00000i
\(124\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(125\) 0 0
\(126\) 0 0
\(127\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(128\) 1.00000i 1.00000i
\(129\) 1.00000 1.00000
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 1.00000 1.00000
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.866025 0.500000i 0.866025 0.500000i
\(137\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(138\) 1.00000i 1.00000i
\(139\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(140\) 0 0
\(141\) 1.00000 1.00000
\(142\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(143\) 1.00000i 1.00000i
\(144\) 0 0
\(145\) 0 0
\(146\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(147\) 0 0
\(148\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(151\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(152\) 1.00000 1.00000
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(157\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.866025 0.500000i 0.866025 0.500000i
\(163\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(164\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(165\) 0 0
\(166\) 0 0
\(167\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) −0.866025 0.500000i −0.866025 0.500000i
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(175\) 0 0
\(176\) −0.866025 0.500000i −0.866025 0.500000i
\(177\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(178\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(179\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 1.00000i 1.00000i
\(184\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(185\) 0 0
\(186\) 1.00000i 1.00000i
\(187\) 1.00000i 1.00000i
\(188\) −0.866025 0.500000i −0.866025 0.500000i
\(189\) 0 0
\(190\) 0 0
\(191\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(192\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(193\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 1.00000i 1.00000i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(205\) 0 0
\(206\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(207\) 0 0
\(208\) −0.500000 0.866025i −0.500000 0.866025i
\(209\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(210\) 0 0
\(211\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) −1.00000 −1.00000
\(214\) −0.500000 0.866025i −0.500000 0.866025i
\(215\) 0 0
\(216\) −1.00000 −1.00000
\(217\) 0 0
\(218\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(219\) −0.866025 0.500000i −0.866025 0.500000i
\(220\) 0 0
\(221\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(222\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(223\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.00000i 2.00000i
\(227\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(228\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(229\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.866025 0.500000i 0.866025 0.500000i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.866025 0.500000i 0.866025 0.500000i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(245\) 0 0
\(246\) −1.00000 −1.00000
\(247\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(248\) 0.500000 0.866025i 0.500000 0.866025i
\(249\) 0 0
\(250\) 0 0
\(251\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 0 0
\(253\) −0.500000 0.866025i −0.500000 0.866025i
\(254\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(258\) 1.00000i 1.00000i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 1.00000i 1.00000i
\(265\) 0 0
\(266\) 0 0
\(267\) 1.00000i 1.00000i
\(268\) 0 0
\(269\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −0.500000 0.866025i −0.500000 0.866025i
\(273\) 0 0
\(274\) 2.00000i 2.00000i
\(275\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(276\) −1.00000 −1.00000
\(277\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(278\) −0.500000 0.866025i −0.500000 0.866025i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(282\) 1.00000i 1.00000i
\(283\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(284\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(285\) 0 0
\(286\) 1.00000 1.00000
\(287\) 0 0
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 1.00000i 1.00000i
\(292\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(293\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.866025 0.500000i 0.866025 0.500000i
\(297\) 0.500000 0.866025i 0.500000 0.866025i
\(298\) 0 0
\(299\) 1.00000i 1.00000i
\(300\) 0.866025 0.500000i 0.866025 0.500000i
\(301\) 0 0
\(302\) 0.500000 0.866025i 0.500000 0.866025i
\(303\) 0 0
\(304\) 1.00000i 1.00000i
\(305\) 0 0
\(306\) 0 0
\(307\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(308\) 0 0
\(309\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(310\) 0 0
\(311\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(312\) 0.500000 0.866025i 0.500000 0.866025i
\(313\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(314\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(315\) 0 0
\(316\) 0 0
\(317\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 1.00000i 1.00000i
\(320\) 0 0
\(321\) 0.500000 0.866025i 0.500000 0.866025i
\(322\) 0 0
\(323\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(324\) −0.500000 0.866025i −0.500000 0.866025i
\(325\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(326\) −0.500000 0.866025i −0.500000 0.866025i
\(327\) −0.866025 0.500000i −0.866025 0.500000i
\(328\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(329\) 0 0
\(330\) 0 0
\(331\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(335\) 0 0
\(336\) 0 0
\(337\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 1.73205 1.00000i 1.73205 1.00000i
\(340\) 0 0
\(341\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(342\) 0 0
\(343\) 0 0
\(344\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(348\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(349\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0.866025 0.500000i 0.866025 0.500000i
\(352\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(353\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(354\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(355\) 0 0
\(356\) 0.500000 0.866025i 0.500000 0.866025i
\(357\) 0 0
\(358\) 0.500000 0.866025i 0.500000 0.866025i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −1.00000 −1.00000
\(362\) 0.866025 0.500000i 0.866025 0.500000i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) −1.00000 −1.00000
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.00000 1.00000
\(373\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(374\) 1.00000 1.00000
\(375\) 0 0
\(376\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(377\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(382\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(385\) 0 0
\(386\) 0.866025 0.500000i 0.866025 0.500000i
\(387\) 0 0
\(388\) 0.500000 0.866025i 0.500000 0.866025i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 1.00000i 1.00000i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 1.00000i 1.00000i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.00000i 1.00000i
\(408\) 0.500000 0.866025i 0.500000 0.866025i
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 1.73205 1.00000i 1.73205 1.00000i
\(412\) 0.866025 0.500000i 0.866025 0.500000i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(417\) 0.500000 0.866025i 0.500000 0.866025i
\(418\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(422\) 0.500000 0.866025i 0.500000 0.866025i
\(423\) 0 0
\(424\) 0 0
\(425\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(426\) 1.00000i 1.00000i
\(427\) 0 0
\(428\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(429\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 1.00000i 1.00000i
\(433\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(437\) 0.500000 0.866025i 0.500000 0.866025i
\(438\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(443\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(444\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(445\) 0 0
\(446\) 0.500000 0.866025i 0.500000 0.866025i
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(452\) −2.00000 −2.00000
\(453\) 1.00000 1.00000
\(454\) 0.500000 0.866025i 0.500000 0.866025i
\(455\) 0 0
\(456\) 0.866025 0.500000i 0.866025 0.500000i
\(457\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(458\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(459\) 0.866025 0.500000i 0.866025 0.500000i
\(460\) 0 0
\(461\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(462\) 0 0
\(463\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(464\) −0.500000 0.866025i −0.500000 0.866025i
\(465\) 0 0
\(466\) 0 0
\(467\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −0.866025 0.500000i −0.866025 0.500000i
\(472\) −0.500000 0.866025i −0.500000 0.866025i
\(473\) −0.500000 0.866025i −0.500000 0.866025i
\(474\) 0 0
\(475\) 1.00000i 1.00000i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(488\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(489\) 0.500000 0.866025i 0.500000 0.866025i
\(490\) 0 0
\(491\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(492\) 1.00000i 1.00000i
\(493\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(494\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(495\) 0 0
\(496\) −0.866025 0.500000i −0.866025 0.500000i
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(502\) −0.500000 0.866025i −0.500000 0.866025i
\(503\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(507\) 0 0
\(508\) 0.866025 0.500000i 0.866025 0.500000i
\(509\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 1.00000 1.00000
\(514\) −0.866025 0.500000i −0.866025 0.500000i
\(515\) 0 0
\(516\) −1.00000 −1.00000
\(517\) −0.500000 0.866025i −0.500000 0.866025i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.500000 0.866025i −0.500000 0.866025i
\(527\) 1.00000i 1.00000i
\(528\) −1.00000 −1.00000
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.00000 −1.00000
\(534\) 1.00000 1.00000
\(535\) 0 0
\(536\) 0 0
\(537\) 1.00000 1.00000
\(538\) 0.866025 0.500000i 0.866025 0.500000i
\(539\) 0 0
\(540\) 0 0
\(541\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(542\) 0 0
\(543\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(544\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(548\) −2.00000 −2.00000
\(549\) 0 0
\(550\) 0.500000 0.866025i 0.500000 0.866025i
\(551\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(552\) 1.00000i 1.00000i
\(553\) 0 0
\(554\) −0.866025 0.500000i −0.866025 0.500000i
\(555\) 0 0
\(556\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(557\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 1.00000i 1.00000i
\(560\) 0 0
\(561\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(562\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(563\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) −1.00000 −1.00000
\(565\) 0 0
\(566\) −0.500000 0.866025i −0.500000 0.866025i
\(567\) 0 0
\(568\) 0.500000 0.866025i 0.500000 0.866025i
\(569\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(572\) 1.00000i 1.00000i
\(573\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(574\) 0 0
\(575\) −0.866025 0.500000i −0.866025 0.500000i
\(576\) 0 0
\(577\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.00000 1.00000
\(583\) 0 0
\(584\) 0.866025 0.500000i 0.866025 0.500000i
\(585\) 0 0
\(586\) 2.00000i 2.00000i
\(587\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.500000 0.866025i −0.500000 0.866025i
\(593\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(594\) −0.866025 0.500000i −0.866025 0.500000i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −1.00000 −1.00000
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −0.500000 0.866025i −0.500000 0.866025i
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −0.866025 0.500000i −0.866025 0.500000i
\(605\) 0 0
\(606\) 0 0
\(607\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) −1.00000 −1.00000
\(609\) 0 0
\(610\) 0 0
\(611\) 1.00000i 1.00000i
\(612\) 0 0
\(613\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(619\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(622\) 0.500000 0.866025i 0.500000 0.866025i
\(623\) 0 0
\(624\) −0.866025 0.500000i −0.866025 0.500000i
\(625\) 1.00000 1.00000
\(626\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(627\) 1.00000i 1.00000i
\(628\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(629\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(630\) 0 0
\(631\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 1.00000 1.00000
\(634\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.00000 1.00000
\(639\) 0 0
\(640\) 0 0
\(641\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(642\) −0.866025 0.500000i −0.866025 0.500000i
\(643\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(647\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(649\) 1.00000 1.00000
\(650\) 0.866025 0.500000i 0.866025 0.500000i
\(651\) 0 0
\(652\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(653\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(655\) 0 0
\(656\) 0.500000 0.866025i 0.500000 0.866025i
\(657\) 0 0
\(658\) 0 0
\(659\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(663\) 1.00000i 1.00000i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.00000i 1.00000i
\(668\) 0.866025 0.500000i 0.866025 0.500000i
\(669\) 1.00000 1.00000
\(670\) 0 0
\(671\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(675\) 1.00000i 1.00000i
\(676\) 0 0
\(677\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(678\) −1.00000 1.73205i −1.00000 1.73205i
\(679\) 0 0
\(680\) 0 0
\(681\) 1.00000 1.00000
\(682\) 0.866025 0.500000i 0.866025 0.500000i
\(683\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −0.866025 0.500000i −0.866025 0.500000i
\(688\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(695\) 0 0
\(696\) 0.500000 0.866025i 0.500000 0.866025i
\(697\) −1.00000 −1.00000
\(698\) 2.00000i 2.00000i
\(699\) 0 0
\(700\) 0 0
\(701\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(702\) −0.500000 0.866025i −0.500000 0.866025i
\(703\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(704\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(705\) 0 0
\(706\) −0.866025 0.500000i −0.866025 0.500000i
\(707\) 0 0
\(708\) 0.500000 0.866025i 0.500000 0.866025i
\(709\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.866025 0.500000i −0.866025 0.500000i
\(713\) −0.500000 0.866025i −0.500000 0.866025i
\(714\) 0 0
\(715\) 0 0
\(716\) −0.866025 0.500000i −0.866025 0.500000i
\(717\) 0 0
\(718\) 0 0
\(719\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) −0.500000 0.866025i −0.500000 0.866025i
\(725\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(726\) 0 0
\(727\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 1.00000i 1.00000i
\(732\) 1.00000i 1.00000i
\(733\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.500000 0.866025i 0.500000 0.866025i
\(737\) 0 0
\(738\) 0 0
\(739\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(740\) 0 0
\(741\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(742\) 0 0
\(743\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 1.00000i 1.00000i
\(745\) 0 0
\(746\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(747\) 0 0
\(748\) 1.00000i 1.00000i
\(749\) 0 0
\(750\) 0 0
\(751\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(752\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(753\) 0.500000 0.866025i 0.500000 0.866025i
\(754\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) −0.866025 0.500000i −0.866025 0.500000i
\(760\) 0 0
\(761\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(763\) 0 0
\(764\) 0.866025 0.500000i 0.866025 0.500000i
\(765\) 0 0
\(766\) 0 0
\(767\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(768\) 0.866025 0.500000i 0.866025 0.500000i
\(769\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) 0 0
\(771\) 1.00000i 1.00000i
\(772\) −0.500000 0.866025i −0.500000 0.866025i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(776\) −0.866025 0.500000i −0.866025 0.500000i
\(777\) 0 0
\(778\) 0 0
\(779\) −0.866025 0.500000i −0.866025 0.500000i
\(780\) 0 0
\(781\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(782\) −1.00000 −1.00000
\(783\) 0.866025 0.500000i 0.866025 0.500000i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0.500000 0.866025i 0.500000 0.866025i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.00000 −1.00000
\(794\) 2.00000i 2.00000i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 1.00000i 1.00000i
\(800\) 1.00000i 1.00000i
\(801\) 0 0
\(802\) 0 0
\(803\) 1.00000i 1.00000i
\(804\) 0 0
\(805\) 0 0
\(806\) 1.00000 1.00000
\(807\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(808\) 0 0
\(809\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(810\) 0 0
\(811\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.00000 1.00000
\(815\) 0 0
\(816\) −0.866025 0.500000i −0.866025 0.500000i
\(817\) 0.500000 0.866025i 0.500000 0.866025i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(822\) −1.00000 1.73205i −1.00000 1.73205i
\(823\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(824\) −0.500000 0.866025i −0.500000 0.866025i
\(825\) 1.00000 1.00000
\(826\) 0 0
\(827\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 1.00000i 1.00000i
\(832\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(833\) 0 0
\(834\) −0.866025 0.500000i −0.866025 0.500000i
\(835\) 0 0
\(836\) 0.500000 0.866025i 0.500000 0.866025i
\(837\) 0.500000 0.866025i 0.500000 0.866025i
\(838\) 0 0
\(839\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −0.866025 0.500000i −0.866025 0.500000i
\(843\) −0.866025 0.500000i −0.866025 0.500000i
\(844\) −0.866025 0.500000i −0.866025 0.500000i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0.500000 0.866025i 0.500000 0.866025i
\(850\) 0.866025 0.500000i 0.866025 0.500000i
\(851\) 1.00000i 1.00000i
\(852\) 1.00000 1.00000
\(853\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(857\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0.866025 0.500000i 0.866025 0.500000i
\(859\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(864\) 1.00000 1.00000
\(865\) 0 0
\(866\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.866025 0.500000i 0.866025 0.500000i
\(873\) 0 0
\(874\) −0.866025 0.500000i −0.866025 0.500000i
\(875\) 0 0
\(876\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 1.73205 1.00000i 1.73205 1.00000i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(884\) 0.500000 0.866025i 0.500000 0.866025i
\(885\) 0 0
\(886\) 0.500000 0.866025i 0.500000 0.866025i
\(887\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0.500000 0.866025i 0.500000 0.866025i
\(889\) 0 0
\(890\) 0 0
\(891\) 1.00000i 1.00000i
\(892\) −0.866025 0.500000i −0.866025 0.500000i
\(893\) 0.500000 0.866025i 0.500000 0.866025i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −0.500000 0.866025i −0.500000 0.866025i
\(898\) 0 0
\(899\) 1.00000i 1.00000i
\(900\) 0 0
\(901\) 0 0
\(902\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(903\) 0 0
\(904\) 2.00000i 2.00000i
\(905\) 0 0
\(906\) 1.00000i 1.00000i
\(907\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(908\) −0.866025 0.500000i −0.866025 0.500000i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −0.500000 0.866025i −0.500000 0.866025i
\(913\) 0 0
\(914\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(915\) 0 0
\(916\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(917\) 0 0
\(918\) −0.500000 0.866025i −0.500000 0.866025i
\(919\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(920\) 0 0
\(921\) −1.00000 −1.00000
\(922\) −0.866025 0.500000i −0.866025 0.500000i
\(923\) 1.00000i 1.00000i
\(924\) 0 0
\(925\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(926\) −2.00000 −2.00000
\(927\) 0 0
\(928\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(929\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.00000 1.00000
\(934\) −0.500000 0.866025i −0.500000 0.866025i
\(935\) 0 0
\(936\) 0 0
\(937\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 1.00000i 1.00000i
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(943\) 0.866025 0.500000i 0.866025 0.500000i
\(944\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(945\) 0 0
\(946\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(950\) 1.00000 1.00000
\(951\) 1.00000i 1.00000i
\(952\) 0 0
\(953\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(958\) 2.00000 2.00000
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(975\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(976\) 0.500000 0.866025i 0.500000 0.866025i
\(977\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(978\) −0.866025 0.500000i −0.866025 0.500000i
\(979\) 0.866025 0.500000i 0.866025 0.500000i
\(980\) 0 0
\(981\) 0 0
\(982\) 0.500000 0.866025i 0.500000 0.866025i
\(983\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(984\) 1.00000 1.00000
\(985\) 0 0
\(986\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(987\) 0 0
\(988\) 0.866025 0.500000i 0.866025 0.500000i
\(989\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(990\) 0 0
\(991\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(992\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(993\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0.866025 0.500000i 0.866025 0.500000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.1.bk.a.3203.1 4
4.3 odd 2 inner 3724.1.bk.a.3203.2 4
7.2 even 3 3724.1.n.a.2823.1 4
7.3 odd 6 3724.1.bb.b.3431.2 4
7.4 even 3 3724.1.bb.a.3431.2 4
7.5 odd 6 532.1.n.a.163.1 4
7.6 odd 2 532.1.bk.a.11.1 yes 4
19.7 even 3 3724.1.n.a.1831.2 4
28.3 even 6 3724.1.bb.b.3431.1 4
28.11 odd 6 3724.1.bb.a.3431.1 4
28.19 even 6 532.1.n.a.163.2 yes 4
28.23 odd 6 3724.1.n.a.2823.2 4
28.27 even 2 532.1.bk.a.11.2 yes 4
76.7 odd 6 3724.1.n.a.1831.1 4
133.26 odd 6 532.1.bk.a.387.1 yes 4
133.45 odd 6 3724.1.bb.b.2059.1 4
133.83 odd 6 532.1.n.a.235.2 yes 4
133.102 even 3 3724.1.bb.a.2059.1 4
133.121 even 3 inner 3724.1.bk.a.1451.1 4
532.83 even 6 532.1.n.a.235.1 yes 4
532.159 even 6 532.1.bk.a.387.2 yes 4
532.235 odd 6 3724.1.bb.a.2059.2 4
532.311 even 6 3724.1.bb.b.2059.2 4
532.387 odd 6 inner 3724.1.bk.a.1451.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.1.n.a.163.1 4 7.5 odd 6
532.1.n.a.163.2 yes 4 28.19 even 6
532.1.n.a.235.1 yes 4 532.83 even 6
532.1.n.a.235.2 yes 4 133.83 odd 6
532.1.bk.a.11.1 yes 4 7.6 odd 2
532.1.bk.a.11.2 yes 4 28.27 even 2
532.1.bk.a.387.1 yes 4 133.26 odd 6
532.1.bk.a.387.2 yes 4 532.159 even 6
3724.1.n.a.1831.1 4 76.7 odd 6
3724.1.n.a.1831.2 4 19.7 even 3
3724.1.n.a.2823.1 4 7.2 even 3
3724.1.n.a.2823.2 4 28.23 odd 6
3724.1.bb.a.2059.1 4 133.102 even 3
3724.1.bb.a.2059.2 4 532.235 odd 6
3724.1.bb.a.3431.1 4 28.11 odd 6
3724.1.bb.a.3431.2 4 7.4 even 3
3724.1.bb.b.2059.1 4 133.45 odd 6
3724.1.bb.b.2059.2 4 532.311 even 6
3724.1.bb.b.3431.1 4 28.3 even 6
3724.1.bb.b.3431.2 4 7.3 odd 6
3724.1.bk.a.1451.1 4 133.121 even 3 inner
3724.1.bk.a.1451.2 4 532.387 odd 6 inner
3724.1.bk.a.3203.1 4 1.1 even 1 trivial
3724.1.bk.a.3203.2 4 4.3 odd 2 inner