Properties

Label 3724.1.dj.a.2165.1
Level $3724$
Weight $1$
Character 3724.2165
Analytic conductor $1.859$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,1,Mod(37,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([0, 32, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.37");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3724.dj (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.85851810705\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} - \cdots)\)

Embedding invariants

Embedding label 2165.1
Root \(0.826239 + 0.563320i\) of defining polynomial
Character \(\chi\) \(=\) 3724.2165
Dual form 3724.1.dj.a.1481.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.603718 + 1.53825i) q^{5} +(0.623490 - 0.781831i) q^{7} +(0.955573 + 0.294755i) q^{9} +(-0.425270 + 0.131178i) q^{11} +(0.123490 + 0.0841939i) q^{17} +(-0.500000 + 0.866025i) q^{19} +(1.57906 - 1.07659i) q^{23} +(-1.26868 + 1.17716i) q^{25} +(1.57906 + 0.487076i) q^{35} +(0.0931869 + 0.116853i) q^{43} +(0.123490 + 1.64786i) q^{45} +(-0.914101 - 0.848162i) q^{47} +(-0.222521 - 0.974928i) q^{49} +(-0.458528 - 0.574976i) q^{55} +(-0.0332580 + 0.443797i) q^{61} +(0.826239 - 0.563320i) q^{63} +(-1.46610 + 1.36035i) q^{73} +(-0.162592 + 0.414278i) q^{77} +(0.826239 + 0.563320i) q^{81} +(-0.367711 - 1.61105i) q^{83} +(-0.0549581 + 0.240787i) q^{85} +(-1.63402 - 0.246289i) q^{95} -0.445042 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{5} - 2 q^{7} + q^{9} - 5 q^{11} - 8 q^{17} - 6 q^{19} - q^{23} - q^{35} + 2 q^{43} - 8 q^{45} + 2 q^{47} - 2 q^{49} - 3 q^{55} + 2 q^{61} + q^{63} + 2 q^{73} + 2 q^{77} + q^{81} + 2 q^{83}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3724\mathbb{Z}\right)^\times\).

\(n\) \(1863\) \(3041\) \(3137\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(4\) 0 0
\(5\) 0.603718 + 1.53825i 0.603718 + 1.53825i 0.826239 + 0.563320i \(0.190476\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(6\) 0 0
\(7\) 0.623490 0.781831i 0.623490 0.781831i
\(8\) 0 0
\(9\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(10\) 0 0
\(11\) −0.425270 + 0.131178i −0.425270 + 0.131178i −0.500000 0.866025i \(-0.666667\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(12\) 0 0
\(13\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i 0.623490 0.781831i \(-0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.57906 1.07659i 1.57906 1.07659i 0.623490 0.781831i \(-0.285714\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(24\) 0 0
\(25\) −1.26868 + 1.17716i −1.26868 + 1.17716i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.57906 + 0.487076i 1.57906 + 0.487076i
\(36\) 0 0
\(37\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(42\) 0 0
\(43\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i 0.826239 0.563320i \(-0.190476\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(44\) 0 0
\(45\) 0.123490 + 1.64786i 0.123490 + 1.64786i
\(46\) 0 0
\(47\) −0.914101 0.848162i −0.914101 0.848162i 0.0747301 0.997204i \(-0.476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(48\) 0 0
\(49\) −0.222521 0.974928i −0.222521 0.974928i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(54\) 0 0
\(55\) −0.458528 0.574976i −0.458528 0.574976i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(60\) 0 0
\(61\) −0.0332580 + 0.443797i −0.0332580 + 0.443797i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(62\) 0 0
\(63\) 0.826239 0.563320i 0.826239 0.563320i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(72\) 0 0
\(73\) −1.46610 + 1.36035i −1.46610 + 1.36035i −0.733052 + 0.680173i \(0.761905\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.162592 + 0.414278i −0.162592 + 0.414278i
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 0 0
\(81\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(82\) 0 0
\(83\) −0.367711 1.61105i −0.367711 1.61105i −0.733052 0.680173i \(-0.761905\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(84\) 0 0
\(85\) −0.0549581 + 0.240787i −0.0549581 + 0.240787i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.63402 0.246289i −1.63402 0.246289i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) −0.445042 −0.445042
\(100\) 0 0
\(101\) −0.722521 0.108903i −0.722521 0.108903i −0.222521 0.974928i \(-0.571429\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(108\) 0 0
\(109\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(114\) 0 0
\(115\) 2.60937 + 1.77904i 2.60937 + 1.77904i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.142820 0.0440542i 0.142820 0.0440542i
\(120\) 0 0
\(121\) −0.662592 + 0.451748i −0.662592 + 0.451748i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.08786 0.523887i −1.08786 0.523887i
\(126\) 0 0
\(127\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.44973 0.218511i 1.44973 0.218511i 0.623490 0.781831i \(-0.285714\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(132\) 0 0
\(133\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.730682 1.86175i 0.730682 1.86175i 0.365341 0.930874i \(-0.380952\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(138\) 0 0
\(139\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.44973 + 1.34515i 1.44973 + 1.34515i 0.826239 + 0.563320i \(0.190476\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(150\) 0 0
\(151\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(152\) 0 0
\(153\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.365341 + 0.930874i −0.365341 + 0.930874i 0.623490 + 0.781831i \(0.285714\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.142820 1.90580i 0.142820 1.90580i
\(162\) 0 0
\(163\) −0.722521 + 0.108903i −0.722521 + 0.108903i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(168\) 0 0
\(169\) −0.900969 0.433884i −0.900969 0.433884i
\(170\) 0 0
\(171\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(172\) 0 0
\(173\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(174\) 0 0
\(175\) 0.129334 + 1.72584i 0.129334 + 1.72584i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(180\) 0 0
\(181\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.0635609 0.0196059i −0.0635609 0.0196059i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.365341 0.930874i −0.365341 0.930874i −0.988831 0.149042i \(-0.952381\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(192\) 0 0
\(193\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.149460 0.149460 0.0747301 0.997204i \(-0.476190\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(198\) 0 0
\(199\) −0.147791 0.0222759i −0.147791 0.0222759i 0.0747301 0.997204i \(-0.476190\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.82624 0.563320i 1.82624 0.563320i
\(208\) 0 0
\(209\) 0.0990311 0.433884i 0.0990311 0.433884i
\(210\) 0 0
\(211\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.123490 + 0.213891i −0.123490 + 0.213891i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(224\) 0 0
\(225\) −1.55929 + 0.750915i −1.55929 + 0.750915i
\(226\) 0 0
\(227\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(228\) 0 0
\(229\) 1.95557 0.294755i 1.95557 0.294755i 0.955573 0.294755i \(-0.0952381\pi\)
1.00000 \(0\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.0546039 0.728639i 0.0546039 0.728639i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(234\) 0 0
\(235\) 0.752824 1.91816i 0.752824 1.91816i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.03030 + 1.29196i 1.03030 + 1.29196i 0.955573 + 0.294755i \(0.0952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(240\) 0 0
\(241\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.36534 0.930874i 1.36534 0.930874i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.914101 1.14625i −0.914101 1.14625i −0.988831 0.149042i \(-0.952381\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(252\) 0 0
\(253\) −0.530303 + 0.664979i −0.530303 + 0.664979i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.733052 + 1.26968i 0.733052 + 1.26968i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(270\) 0 0
\(271\) −1.63402 + 1.11406i −1.63402 + 1.11406i −0.733052 + 0.680173i \(0.761905\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.385113 0.667035i 0.385113 0.667035i
\(276\) 0 0
\(277\) −1.48883 1.01507i −1.48883 1.01507i −0.988831 0.149042i \(-0.952381\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(282\) 0 0
\(283\) 1.82624 0.563320i 1.82624 0.563320i 0.826239 0.563320i \(-0.190476\pi\)
1.00000 \(0\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.357180 0.910080i −0.357180 0.910080i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.149460 0.149460
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.702749 + 0.216769i −0.702749 + 0.216769i
\(306\) 0 0
\(307\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.63402 1.11406i −1.63402 1.11406i −0.900969 0.433884i \(-0.857143\pi\)
−0.733052 0.680173i \(-0.761905\pi\)
\(312\) 0 0
\(313\) 0.988831 1.71271i 0.988831 1.71271i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(314\) 0 0
\(315\) 1.36534 + 0.930874i 1.36534 + 0.930874i
\(316\) 0 0
\(317\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.134659 + 0.0648483i −0.134659 + 0.0648483i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.23305 + 0.185853i −1.23305 + 0.185853i
\(330\) 0 0
\(331\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.900969 0.433884i −0.900969 0.433884i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.147791 1.97213i −0.147791 1.97213i −0.222521 0.974928i \(-0.571429\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(348\) 0 0
\(349\) −0.914101 1.14625i −0.914101 1.14625i −0.988831 0.149042i \(-0.952381\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.455573 1.16078i 0.455573 1.16078i −0.500000 0.866025i \(-0.666667\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.78181 0.268565i 1.78181 0.268565i 0.826239 0.563320i \(-0.190476\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(360\) 0 0
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.97766 1.43397i −2.97766 1.43397i
\(366\) 0 0
\(367\) 0.326239 0.302705i 0.326239 0.302705i −0.500000 0.866025i \(-0.666667\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(384\) 0 0
\(385\) −0.735422 −0.735422
\(386\) 0 0
\(387\) 0.0546039 + 0.139129i 0.0546039 + 0.139129i
\(388\) 0 0
\(389\) −1.88980 0.284841i −1.88980 0.284841i −0.900969 0.433884i \(-0.857143\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(390\) 0 0
\(391\) 0.285640 0.285640
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.698220 + 1.77904i 0.698220 + 1.77904i 0.623490 + 0.781831i \(0.285714\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.367711 + 1.61105i −0.367711 + 1.61105i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.25620 1.53825i 2.25620 1.53825i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.900969 + 0.433884i 0.900969 + 0.433884i 0.826239 0.563320i \(-0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(420\) 0 0
\(421\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(422\) 0 0
\(423\) −0.623490 1.07992i −0.623490 1.07992i
\(424\) 0 0
\(425\) −0.255779 + 0.0385525i −0.255779 + 0.0385525i
\(426\) 0 0
\(427\) 0.326239 + 0.302705i 0.326239 + 0.302705i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(432\) 0 0
\(433\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.142820 + 1.90580i 0.142820 + 1.90580i
\(438\) 0 0
\(439\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(440\) 0 0
\(441\) 0.0747301 0.997204i 0.0747301 0.997204i
\(442\) 0 0
\(443\) −0.535628 0.496990i −0.535628 0.496990i 0.365341 0.930874i \(-0.380952\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.23305 + 0.185853i −1.23305 + 0.185853i −0.733052 0.680173i \(-0.761905\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(462\) 0 0
\(463\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.367711 + 0.250701i −0.367711 + 0.250701i −0.733052 0.680173i \(-0.761905\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.0549581 0.0374698i −0.0549581 0.0374698i
\(474\) 0 0
\(475\) −0.385113 1.68729i −0.385113 1.68729i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.955573 + 0.294755i −0.955573 + 0.294755i −0.733052 0.680173i \(-0.761905\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.97766 −1.97766 −0.988831 0.149042i \(-0.952381\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.268680 0.684585i −0.268680 0.684585i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.40097 0.432142i −1.40097 0.432142i −0.500000 0.866025i \(-0.666667\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.162592 + 0.712362i −0.162592 + 0.712362i 0.826239 + 0.563320i \(0.190476\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(504\) 0 0
\(505\) −0.268680 1.17716i −0.268680 1.17716i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 0.149460 + 1.99441i 0.149460 + 1.99441i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.500000 + 0.240787i 0.500000 + 0.240787i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.969059 2.46912i 0.969059 2.46912i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.222521 + 0.385418i 0.222521 + 0.385418i
\(540\) 0 0
\(541\) −1.21135 1.12397i −1.21135 1.12397i −0.988831 0.149042i \(-0.952381\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(548\) 0 0
\(549\) −0.162592 + 0.414278i −0.162592 + 0.414278i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.733052 + 1.26968i 0.733052 + 1.26968i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.955573 0.294755i 0.955573 0.294755i
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) −0.826239 0.563320i −0.826239 0.563320i 0.0747301 0.997204i \(-0.476190\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.736007 + 3.22466i −0.736007 + 3.22466i
\(576\) 0 0
\(577\) 1.19158 0.367554i 1.19158 0.367554i 0.365341 0.930874i \(-0.380952\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.48883 0.716983i −1.48883 0.716983i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.97766 −1.97766 −0.988831 0.149042i \(-0.952381\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.603718 + 1.53825i 0.603718 + 1.53825i 0.826239 + 0.563320i \(0.190476\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(594\) 0 0
\(595\) 0.153989 + 0.193096i 0.153989 + 0.193096i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(600\) 0 0
\(601\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.09492 0.746503i −1.09492 0.746503i
\(606\) 0 0
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.07473 0.997204i 1.07473 0.997204i 0.0747301 0.997204i \(-0.476190\pi\)
1.00000 \(0\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.48883 + 0.716983i −1.48883 + 0.716983i −0.988831 0.149042i \(-0.952381\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0 0
\(619\) −0.365341 0.632789i −0.365341 0.632789i 0.623490 0.781831i \(-0.285714\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.0197720 0.263838i 0.0197720 0.263838i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.23305 1.54620i −1.23305 1.54620i −0.733052 0.680173i \(-0.761905\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(642\) 0 0
\(643\) −0.623490 0.781831i −0.623490 0.781831i 0.365341 0.930874i \(-0.380952\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.698220 1.77904i 0.698220 1.77904i 0.0747301 0.997204i \(-0.476190\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.95557 0.294755i 1.95557 0.294755i 0.955573 0.294755i \(-0.0952381\pi\)
1.00000 \(0\)
\(654\) 0 0
\(655\) 1.21135 + 2.09812i 1.21135 + 2.09812i
\(656\) 0 0
\(657\) −1.80194 + 0.867767i −1.80194 + 0.867767i
\(658\) 0 0
\(659\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(660\) 0 0
\(661\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.21135 + 1.12397i −1.21135 + 1.12397i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.0440730 0.193096i −0.0440730 0.193096i
\(672\) 0 0
\(673\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(684\) 0 0
\(685\) 3.30496 3.30496
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.603718 + 1.53825i 0.603718 + 1.53825i 0.826239 + 0.563320i \(0.190476\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(692\) 0 0
\(693\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(694\) 0 0
\(695\) −2.84537 0.877681i −2.84537 0.877681i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −0.162592 0.712362i −0.162592 0.712362i −0.988831 0.149042i \(-0.952381\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.535628 + 0.496990i −0.535628 + 0.496990i
\(708\) 0 0
\(709\) −1.63402 + 1.11406i −1.63402 + 1.11406i −0.733052 + 0.680173i \(0.761905\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.988831 0.149042i 0.988831 0.149042i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −0.914101 + 1.14625i −0.914101 + 1.14625i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(728\) 0 0
\(729\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(730\) 0 0
\(731\) 0.00166935 + 0.0222759i 0.00166935 + 0.0222759i
\(732\) 0 0
\(733\) 1.32091 + 1.22563i 1.32091 + 1.22563i 0.955573 + 0.294755i \(0.0952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −0.109562 1.46200i −0.109562 1.46200i −0.733052 0.680173i \(-0.761905\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(744\) 0 0
\(745\) −1.19395 + 3.04213i −1.19395 + 3.04213i
\(746\) 0 0
\(747\) 0.123490 1.64786i 0.123490 1.64786i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.57906 1.07659i 1.57906 1.07659i 0.623490 0.781831i \(-0.285714\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.123490 + 0.213891i −0.123490 + 0.213891i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.222521 + 0.974928i 0.222521 + 0.974928i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.65248 −1.65248
\(786\) 0 0
\(787\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(798\) 0 0
\(799\) −0.0414721 0.181701i −0.0414721 0.181701i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.445042 0.770835i 0.445042 0.770835i
\(804\) 0 0
\(805\) 3.01782 0.930874i 3.01782 0.930874i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.733052 0.680173i 0.733052 0.680173i −0.222521 0.974928i \(-0.571429\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(810\) 0 0
\(811\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.603718 1.04567i −0.603718 1.04567i
\(816\) 0 0
\(817\) −0.147791 + 0.0222759i −0.147791 + 0.0222759i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.0931869 1.24349i 0.0931869 1.24349i −0.733052 0.680173i \(-0.761905\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(822\) 0 0
\(823\) 0.455573 1.16078i 0.455573 1.16078i −0.500000 0.866025i \(-0.666667\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(828\) 0 0
\(829\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.0546039 0.139129i 0.0546039 0.139129i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(840\) 0 0
\(841\) 0.623490 0.781831i 0.623490 0.781831i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.123490 1.64786i 0.123490 1.64786i
\(846\) 0 0
\(847\) −0.0599289 + 0.799695i −0.0599289 + 0.799695i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1.32091 0.636119i 1.32091 0.636119i 0.365341 0.930874i \(-0.380952\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(854\) 0 0
\(855\) −1.48883 0.716983i −1.48883 0.716983i
\(856\) 0 0
\(857\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(858\) 0 0
\(859\) −0.826239 + 0.563320i −0.826239 + 0.563320i −0.900969 0.433884i \(-0.857143\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.08786 + 0.523887i −1.08786 + 0.523887i
\(876\) 0 0
\(877\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.91115 1.91115 0.955573 0.294755i \(-0.0952381\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(882\) 0 0
\(883\) 1.65248 1.65248 0.826239 0.563320i \(-0.190476\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.425270 0.131178i −0.425270 0.131178i
\(892\) 0 0
\(893\) 1.19158 0.367554i 1.19158 0.367554i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(908\) 0 0
\(909\) −0.658322 0.317031i −0.658322 0.317031i
\(910\) 0 0
\(911\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(912\) 0 0
\(913\) 0.367711 + 0.636894i 0.367711 + 0.636894i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.733052 1.26968i 0.733052 1.26968i
\(918\) 0 0
\(919\) 0.0111692 0.149042i 0.0111692 0.149042i −0.988831 0.149042i \(-0.952381\pi\)
1.00000 \(0\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.07473 + 0.997204i 1.07473 + 0.997204i 1.00000 \(0\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(930\) 0 0
\(931\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.00821405 0.109609i −0.00821405 0.109609i
\(936\) 0 0
\(937\) −1.23305 1.54620i −1.23305 1.54620i −0.733052 0.680173i \(-0.761905\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.440071 0.0663300i 0.440071 0.0663300i 0.0747301 0.997204i \(-0.476190\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(954\) 0 0
\(955\) 1.21135 1.12397i 1.21135 1.12397i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.00000 1.73205i −1.00000 1.73205i
\(960\) 0 0
\(961\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(972\) 0 0
\(973\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(984\) 0 0
\(985\) 0.0902318 + 0.229907i 0.0902318 + 0.229907i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.272950 + 0.0841939i 0.272950 + 0.0841939i
\(990\) 0 0
\(991\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.0549581 0.240787i −0.0549581 0.240787i
\(996\) 0 0
\(997\) 0.603718 + 0.411608i 0.603718 + 0.411608i 0.826239 0.563320i \(-0.190476\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.1.dj.a.2165.1 yes 12
19.18 odd 2 CM 3724.1.dj.a.2165.1 yes 12
49.11 even 21 inner 3724.1.dj.a.1481.1 12
931.550 odd 42 inner 3724.1.dj.a.1481.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3724.1.dj.a.1481.1 12 49.11 even 21 inner
3724.1.dj.a.1481.1 12 931.550 odd 42 inner
3724.1.dj.a.2165.1 yes 12 1.1 even 1 trivial
3724.1.dj.a.2165.1 yes 12 19.18 odd 2 CM