Properties

Label 3724.2.a.l.1.1
Level $3724$
Weight $2$
Character 3724.1
Self dual yes
Analytic conductor $29.736$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,2,Mod(1,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3724.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7362897127\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.11350832.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 9x^{3} + 8x^{2} + 23x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.90555\) of defining polynomial
Character \(\chi\) \(=\) 3724.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.90555 q^{3} -1.53668 q^{5} +0.631128 q^{9} -3.44223 q^{11} +4.55935 q^{13} +2.92822 q^{15} +4.36297 q^{17} +1.00000 q^{19} +3.48009 q^{23} -2.63861 q^{25} +4.51401 q^{27} -10.4590 q^{29} -10.1175 q^{31} +6.55935 q^{33} -12.0796 q^{37} -8.68808 q^{39} -2.46490 q^{41} +9.46368 q^{43} -0.969842 q^{45} +5.53668 q^{47} -8.31386 q^{51} -4.53546 q^{53} +5.28961 q^{55} -1.90555 q^{57} +6.16659 q^{59} -6.65538 q^{61} -7.00627 q^{65} +3.57454 q^{67} -6.63149 q^{69} +4.38170 q^{71} -8.24707 q^{73} +5.02802 q^{75} -14.0032 q^{79} -10.4951 q^{81} +1.91145 q^{83} -6.70449 q^{85} +19.9302 q^{87} +13.0734 q^{89} +19.2794 q^{93} -1.53668 q^{95} +14.2119 q^{97} -2.17249 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{3} + 7 q^{9} + 2 q^{11} + 4 q^{13} - 8 q^{15} + 4 q^{17} + 5 q^{19} + 7 q^{25} + 26 q^{27} - 8 q^{29} + 14 q^{33} - 8 q^{37} - 6 q^{39} + 18 q^{41} + 4 q^{43} - 40 q^{45} + 20 q^{47} + 10 q^{51}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.90555 −1.10017 −0.550085 0.835108i \(-0.685405\pi\)
−0.550085 + 0.835108i \(0.685405\pi\)
\(4\) 0 0
\(5\) −1.53668 −0.687224 −0.343612 0.939112i \(-0.611651\pi\)
−0.343612 + 0.939112i \(0.611651\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.631128 0.210376
\(10\) 0 0
\(11\) −3.44223 −1.03787 −0.518936 0.854813i \(-0.673672\pi\)
−0.518936 + 0.854813i \(0.673672\pi\)
\(12\) 0 0
\(13\) 4.55935 1.26454 0.632268 0.774749i \(-0.282124\pi\)
0.632268 + 0.774749i \(0.282124\pi\)
\(14\) 0 0
\(15\) 2.92822 0.756064
\(16\) 0 0
\(17\) 4.36297 1.05818 0.529088 0.848567i \(-0.322534\pi\)
0.529088 + 0.848567i \(0.322534\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.48009 0.725649 0.362824 0.931858i \(-0.381812\pi\)
0.362824 + 0.931858i \(0.381812\pi\)
\(24\) 0 0
\(25\) −2.63861 −0.527723
\(26\) 0 0
\(27\) 4.51401 0.868721
\(28\) 0 0
\(29\) −10.4590 −1.94219 −0.971094 0.238698i \(-0.923279\pi\)
−0.971094 + 0.238698i \(0.923279\pi\)
\(30\) 0 0
\(31\) −10.1175 −1.81715 −0.908577 0.417718i \(-0.862830\pi\)
−0.908577 + 0.417718i \(0.862830\pi\)
\(32\) 0 0
\(33\) 6.55935 1.14184
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −12.0796 −1.98588 −0.992939 0.118625i \(-0.962151\pi\)
−0.992939 + 0.118625i \(0.962151\pi\)
\(38\) 0 0
\(39\) −8.68808 −1.39121
\(40\) 0 0
\(41\) −2.46490 −0.384953 −0.192477 0.981302i \(-0.561652\pi\)
−0.192477 + 0.981302i \(0.561652\pi\)
\(42\) 0 0
\(43\) 9.46368 1.44320 0.721599 0.692311i \(-0.243407\pi\)
0.721599 + 0.692311i \(0.243407\pi\)
\(44\) 0 0
\(45\) −0.969842 −0.144576
\(46\) 0 0
\(47\) 5.53668 0.807608 0.403804 0.914846i \(-0.367688\pi\)
0.403804 + 0.914846i \(0.367688\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −8.31386 −1.16417
\(52\) 0 0
\(53\) −4.53546 −0.622993 −0.311497 0.950247i \(-0.600830\pi\)
−0.311497 + 0.950247i \(0.600830\pi\)
\(54\) 0 0
\(55\) 5.28961 0.713251
\(56\) 0 0
\(57\) −1.90555 −0.252397
\(58\) 0 0
\(59\) 6.16659 0.802821 0.401411 0.915898i \(-0.368520\pi\)
0.401411 + 0.915898i \(0.368520\pi\)
\(60\) 0 0
\(61\) −6.65538 −0.852135 −0.426067 0.904691i \(-0.640101\pi\)
−0.426067 + 0.904691i \(0.640101\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.00627 −0.869020
\(66\) 0 0
\(67\) 3.57454 0.436699 0.218350 0.975871i \(-0.429933\pi\)
0.218350 + 0.975871i \(0.429933\pi\)
\(68\) 0 0
\(69\) −6.63149 −0.798338
\(70\) 0 0
\(71\) 4.38170 0.520012 0.260006 0.965607i \(-0.416275\pi\)
0.260006 + 0.965607i \(0.416275\pi\)
\(72\) 0 0
\(73\) −8.24707 −0.965247 −0.482623 0.875828i \(-0.660316\pi\)
−0.482623 + 0.875828i \(0.660316\pi\)
\(74\) 0 0
\(75\) 5.02802 0.580585
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.0032 −1.57548 −0.787740 0.616008i \(-0.788749\pi\)
−0.787740 + 0.616008i \(0.788749\pi\)
\(80\) 0 0
\(81\) −10.4951 −1.16612
\(82\) 0 0
\(83\) 1.91145 0.209809 0.104905 0.994482i \(-0.466546\pi\)
0.104905 + 0.994482i \(0.466546\pi\)
\(84\) 0 0
\(85\) −6.70449 −0.727204
\(86\) 0 0
\(87\) 19.9302 2.13674
\(88\) 0 0
\(89\) 13.0734 1.38577 0.692887 0.721046i \(-0.256339\pi\)
0.692887 + 0.721046i \(0.256339\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 19.2794 1.99918
\(94\) 0 0
\(95\) −1.53668 −0.157660
\(96\) 0 0
\(97\) 14.2119 1.44300 0.721501 0.692413i \(-0.243452\pi\)
0.721501 + 0.692413i \(0.243452\pi\)
\(98\) 0 0
\(99\) −2.17249 −0.218343
\(100\) 0 0
\(101\) −9.42350 −0.937673 −0.468837 0.883285i \(-0.655327\pi\)
−0.468837 + 0.883285i \(0.655327\pi\)
\(102\) 0 0
\(103\) 11.6781 1.15067 0.575336 0.817917i \(-0.304871\pi\)
0.575336 + 0.817917i \(0.304871\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.3139 0.997079 0.498539 0.866867i \(-0.333870\pi\)
0.498539 + 0.866867i \(0.333870\pi\)
\(108\) 0 0
\(109\) 16.2717 1.55855 0.779273 0.626685i \(-0.215589\pi\)
0.779273 + 0.626685i \(0.215589\pi\)
\(110\) 0 0
\(111\) 23.0184 2.18481
\(112\) 0 0
\(113\) 12.9164 1.21507 0.607537 0.794291i \(-0.292158\pi\)
0.607537 + 0.794291i \(0.292158\pi\)
\(114\) 0 0
\(115\) −5.34778 −0.498683
\(116\) 0 0
\(117\) 2.87754 0.266028
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.848961 0.0771783
\(122\) 0 0
\(123\) 4.69700 0.423514
\(124\) 0 0
\(125\) 11.7381 1.04989
\(126\) 0 0
\(127\) 0.158525 0.0140668 0.00703341 0.999975i \(-0.497761\pi\)
0.00703341 + 0.999975i \(0.497761\pi\)
\(128\) 0 0
\(129\) −18.0335 −1.58776
\(130\) 0 0
\(131\) 3.63703 0.317769 0.158884 0.987297i \(-0.449210\pi\)
0.158884 + 0.987297i \(0.449210\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −6.93659 −0.597006
\(136\) 0 0
\(137\) 17.8143 1.52198 0.760988 0.648766i \(-0.224715\pi\)
0.760988 + 0.648766i \(0.224715\pi\)
\(138\) 0 0
\(139\) −1.52488 −0.129338 −0.0646691 0.997907i \(-0.520599\pi\)
−0.0646691 + 0.997907i \(0.520599\pi\)
\(140\) 0 0
\(141\) −10.5504 −0.888507
\(142\) 0 0
\(143\) −15.6943 −1.31243
\(144\) 0 0
\(145\) 16.0721 1.33472
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.08977 0.253124 0.126562 0.991959i \(-0.459606\pi\)
0.126562 + 0.991959i \(0.459606\pi\)
\(150\) 0 0
\(151\) −9.61988 −0.782855 −0.391427 0.920209i \(-0.628019\pi\)
−0.391427 + 0.920209i \(0.628019\pi\)
\(152\) 0 0
\(153\) 2.75359 0.222615
\(154\) 0 0
\(155\) 15.5473 1.24879
\(156\) 0 0
\(157\) −14.3326 −1.14387 −0.571933 0.820300i \(-0.693806\pi\)
−0.571933 + 0.820300i \(0.693806\pi\)
\(158\) 0 0
\(159\) 8.64255 0.685399
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.18458 −0.171109 −0.0855547 0.996333i \(-0.527266\pi\)
−0.0855547 + 0.996333i \(0.527266\pi\)
\(164\) 0 0
\(165\) −10.0796 −0.784698
\(166\) 0 0
\(167\) 18.8646 1.45979 0.729893 0.683561i \(-0.239570\pi\)
0.729893 + 0.683561i \(0.239570\pi\)
\(168\) 0 0
\(169\) 7.78769 0.599053
\(170\) 0 0
\(171\) 0.631128 0.0482636
\(172\) 0 0
\(173\) −7.84464 −0.596417 −0.298209 0.954501i \(-0.596389\pi\)
−0.298209 + 0.954501i \(0.596389\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.7508 −0.883241
\(178\) 0 0
\(179\) −1.73306 −0.129535 −0.0647676 0.997900i \(-0.520631\pi\)
−0.0647676 + 0.997900i \(0.520631\pi\)
\(180\) 0 0
\(181\) −21.8864 −1.62680 −0.813402 0.581702i \(-0.802387\pi\)
−0.813402 + 0.581702i \(0.802387\pi\)
\(182\) 0 0
\(183\) 12.6822 0.937494
\(184\) 0 0
\(185\) 18.5625 1.36474
\(186\) 0 0
\(187\) −15.0184 −1.09825
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.9653 1.44464 0.722320 0.691559i \(-0.243076\pi\)
0.722320 + 0.691559i \(0.243076\pi\)
\(192\) 0 0
\(193\) 8.54181 0.614853 0.307427 0.951572i \(-0.400532\pi\)
0.307427 + 0.951572i \(0.400532\pi\)
\(194\) 0 0
\(195\) 13.3508 0.956071
\(196\) 0 0
\(197\) −1.77325 −0.126339 −0.0631693 0.998003i \(-0.520121\pi\)
−0.0631693 + 0.998003i \(0.520121\pi\)
\(198\) 0 0
\(199\) 18.0737 1.28121 0.640606 0.767870i \(-0.278683\pi\)
0.640606 + 0.767870i \(0.278683\pi\)
\(200\) 0 0
\(201\) −6.81147 −0.480444
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.78777 0.264549
\(206\) 0 0
\(207\) 2.19638 0.152659
\(208\) 0 0
\(209\) −3.44223 −0.238104
\(210\) 0 0
\(211\) −8.57144 −0.590082 −0.295041 0.955485i \(-0.595333\pi\)
−0.295041 + 0.955485i \(0.595333\pi\)
\(212\) 0 0
\(213\) −8.34956 −0.572103
\(214\) 0 0
\(215\) −14.5427 −0.991801
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 15.7152 1.06194
\(220\) 0 0
\(221\) 19.8923 1.33810
\(222\) 0 0
\(223\) 0.133048 0.00890958 0.00445479 0.999990i \(-0.498582\pi\)
0.00445479 + 0.999990i \(0.498582\pi\)
\(224\) 0 0
\(225\) −1.66530 −0.111020
\(226\) 0 0
\(227\) −16.0753 −1.06696 −0.533478 0.845814i \(-0.679115\pi\)
−0.533478 + 0.845814i \(0.679115\pi\)
\(228\) 0 0
\(229\) 13.9578 0.922359 0.461179 0.887307i \(-0.347426\pi\)
0.461179 + 0.887307i \(0.347426\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.6765 −0.764951 −0.382476 0.923966i \(-0.624928\pi\)
−0.382476 + 0.923966i \(0.624928\pi\)
\(234\) 0 0
\(235\) −8.50811 −0.555008
\(236\) 0 0
\(237\) 26.6838 1.73330
\(238\) 0 0
\(239\) −2.01641 −0.130431 −0.0652153 0.997871i \(-0.520773\pi\)
−0.0652153 + 0.997871i \(0.520773\pi\)
\(240\) 0 0
\(241\) −4.70737 −0.303229 −0.151614 0.988440i \(-0.548447\pi\)
−0.151614 + 0.988440i \(0.548447\pi\)
\(242\) 0 0
\(243\) 6.45686 0.414208
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.55935 0.290105
\(248\) 0 0
\(249\) −3.64238 −0.230826
\(250\) 0 0
\(251\) 17.1764 1.08417 0.542083 0.840325i \(-0.317636\pi\)
0.542083 + 0.840325i \(0.317636\pi\)
\(252\) 0 0
\(253\) −11.9793 −0.753131
\(254\) 0 0
\(255\) 12.7758 0.800049
\(256\) 0 0
\(257\) 27.2257 1.69829 0.849146 0.528159i \(-0.177117\pi\)
0.849146 + 0.528159i \(0.177117\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.60097 −0.408590
\(262\) 0 0
\(263\) 27.8193 1.71541 0.857706 0.514140i \(-0.171889\pi\)
0.857706 + 0.514140i \(0.171889\pi\)
\(264\) 0 0
\(265\) 6.96955 0.428136
\(266\) 0 0
\(267\) −24.9120 −1.52459
\(268\) 0 0
\(269\) 1.78301 0.108712 0.0543560 0.998522i \(-0.482689\pi\)
0.0543560 + 0.998522i \(0.482689\pi\)
\(270\) 0 0
\(271\) 6.33260 0.384678 0.192339 0.981329i \(-0.438393\pi\)
0.192339 + 0.981329i \(0.438393\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.08272 0.547709
\(276\) 0 0
\(277\) 25.5347 1.53423 0.767115 0.641509i \(-0.221691\pi\)
0.767115 + 0.641509i \(0.221691\pi\)
\(278\) 0 0
\(279\) −6.38543 −0.382286
\(280\) 0 0
\(281\) −16.8384 −1.00449 −0.502247 0.864724i \(-0.667493\pi\)
−0.502247 + 0.864724i \(0.667493\pi\)
\(282\) 0 0
\(283\) −6.43352 −0.382433 −0.191217 0.981548i \(-0.561243\pi\)
−0.191217 + 0.981548i \(0.561243\pi\)
\(284\) 0 0
\(285\) 2.92822 0.173453
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.03550 0.119735
\(290\) 0 0
\(291\) −27.0816 −1.58755
\(292\) 0 0
\(293\) 17.9505 1.04868 0.524339 0.851509i \(-0.324312\pi\)
0.524339 + 0.851509i \(0.324312\pi\)
\(294\) 0 0
\(295\) −9.47607 −0.551718
\(296\) 0 0
\(297\) −15.5383 −0.901622
\(298\) 0 0
\(299\) 15.8670 0.917610
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 17.9570 1.03160
\(304\) 0 0
\(305\) 10.2272 0.585608
\(306\) 0 0
\(307\) −15.2618 −0.871040 −0.435520 0.900179i \(-0.643435\pi\)
−0.435520 + 0.900179i \(0.643435\pi\)
\(308\) 0 0
\(309\) −22.2531 −1.26594
\(310\) 0 0
\(311\) 25.7509 1.46020 0.730101 0.683339i \(-0.239473\pi\)
0.730101 + 0.683339i \(0.239473\pi\)
\(312\) 0 0
\(313\) 9.80174 0.554027 0.277014 0.960866i \(-0.410655\pi\)
0.277014 + 0.960866i \(0.410655\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.68060 0.487551 0.243775 0.969832i \(-0.421614\pi\)
0.243775 + 0.969832i \(0.421614\pi\)
\(318\) 0 0
\(319\) 36.0023 2.01574
\(320\) 0 0
\(321\) −19.6536 −1.09696
\(322\) 0 0
\(323\) 4.36297 0.242762
\(324\) 0 0
\(325\) −12.0304 −0.667325
\(326\) 0 0
\(327\) −31.0065 −1.71467
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 33.0757 1.81800 0.909002 0.416793i \(-0.136846\pi\)
0.909002 + 0.416793i \(0.136846\pi\)
\(332\) 0 0
\(333\) −7.62379 −0.417781
\(334\) 0 0
\(335\) −5.49292 −0.300110
\(336\) 0 0
\(337\) 8.88214 0.483841 0.241920 0.970296i \(-0.422223\pi\)
0.241920 + 0.970296i \(0.422223\pi\)
\(338\) 0 0
\(339\) −24.6129 −1.33679
\(340\) 0 0
\(341\) 34.8267 1.88597
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 10.1905 0.548637
\(346\) 0 0
\(347\) −18.3407 −0.984578 −0.492289 0.870432i \(-0.663840\pi\)
−0.492289 + 0.870432i \(0.663840\pi\)
\(348\) 0 0
\(349\) 4.02219 0.215303 0.107652 0.994189i \(-0.465667\pi\)
0.107652 + 0.994189i \(0.465667\pi\)
\(350\) 0 0
\(351\) 20.5810 1.09853
\(352\) 0 0
\(353\) −1.93518 −0.102999 −0.0514996 0.998673i \(-0.516400\pi\)
−0.0514996 + 0.998673i \(0.516400\pi\)
\(354\) 0 0
\(355\) −6.73328 −0.357365
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −33.1409 −1.74911 −0.874554 0.484927i \(-0.838846\pi\)
−0.874554 + 0.484927i \(0.838846\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −1.61774 −0.0849093
\(364\) 0 0
\(365\) 12.6731 0.663341
\(366\) 0 0
\(367\) 36.9403 1.92827 0.964135 0.265412i \(-0.0855079\pi\)
0.964135 + 0.265412i \(0.0855079\pi\)
\(368\) 0 0
\(369\) −1.55567 −0.0809850
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −23.2192 −1.20225 −0.601123 0.799157i \(-0.705280\pi\)
−0.601123 + 0.799157i \(0.705280\pi\)
\(374\) 0 0
\(375\) −22.3676 −1.15506
\(376\) 0 0
\(377\) −47.6863 −2.45597
\(378\) 0 0
\(379\) −13.7204 −0.704770 −0.352385 0.935855i \(-0.614629\pi\)
−0.352385 + 0.935855i \(0.614629\pi\)
\(380\) 0 0
\(381\) −0.302078 −0.0154759
\(382\) 0 0
\(383\) 22.1816 1.13342 0.566712 0.823916i \(-0.308215\pi\)
0.566712 + 0.823916i \(0.308215\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.97280 0.303614
\(388\) 0 0
\(389\) 9.55541 0.484479 0.242239 0.970217i \(-0.422118\pi\)
0.242239 + 0.970217i \(0.422118\pi\)
\(390\) 0 0
\(391\) 15.1835 0.767864
\(392\) 0 0
\(393\) −6.93055 −0.349600
\(394\) 0 0
\(395\) 21.5184 1.08271
\(396\) 0 0
\(397\) 3.20378 0.160793 0.0803966 0.996763i \(-0.474381\pi\)
0.0803966 + 0.996763i \(0.474381\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.7768 0.837792 0.418896 0.908034i \(-0.362417\pi\)
0.418896 + 0.908034i \(0.362417\pi\)
\(402\) 0 0
\(403\) −46.1292 −2.29786
\(404\) 0 0
\(405\) 16.1276 0.801385
\(406\) 0 0
\(407\) 41.5809 2.06109
\(408\) 0 0
\(409\) −17.8424 −0.882248 −0.441124 0.897446i \(-0.645420\pi\)
−0.441124 + 0.897446i \(0.645420\pi\)
\(410\) 0 0
\(411\) −33.9460 −1.67443
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.93729 −0.144186
\(416\) 0 0
\(417\) 2.90573 0.142294
\(418\) 0 0
\(419\) 25.6187 1.25156 0.625778 0.780001i \(-0.284781\pi\)
0.625778 + 0.780001i \(0.284781\pi\)
\(420\) 0 0
\(421\) 4.04364 0.197075 0.0985376 0.995133i \(-0.468584\pi\)
0.0985376 + 0.995133i \(0.468584\pi\)
\(422\) 0 0
\(423\) 3.49435 0.169901
\(424\) 0 0
\(425\) −11.5122 −0.558423
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 29.9064 1.44389
\(430\) 0 0
\(431\) 10.1561 0.489201 0.244601 0.969624i \(-0.421343\pi\)
0.244601 + 0.969624i \(0.421343\pi\)
\(432\) 0 0
\(433\) 26.6646 1.28142 0.640710 0.767783i \(-0.278640\pi\)
0.640710 + 0.767783i \(0.278640\pi\)
\(434\) 0 0
\(435\) −30.6263 −1.46842
\(436\) 0 0
\(437\) 3.48009 0.166475
\(438\) 0 0
\(439\) −17.4358 −0.832163 −0.416082 0.909327i \(-0.636597\pi\)
−0.416082 + 0.909327i \(0.636597\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.72406 0.414493 0.207246 0.978289i \(-0.433550\pi\)
0.207246 + 0.978289i \(0.433550\pi\)
\(444\) 0 0
\(445\) −20.0896 −0.952337
\(446\) 0 0
\(447\) −5.88771 −0.278479
\(448\) 0 0
\(449\) −19.4956 −0.920056 −0.460028 0.887904i \(-0.652161\pi\)
−0.460028 + 0.887904i \(0.652161\pi\)
\(450\) 0 0
\(451\) 8.48477 0.399532
\(452\) 0 0
\(453\) 18.3312 0.861274
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.37583 0.251471 0.125735 0.992064i \(-0.459871\pi\)
0.125735 + 0.992064i \(0.459871\pi\)
\(458\) 0 0
\(459\) 19.6945 0.919260
\(460\) 0 0
\(461\) −30.7537 −1.43234 −0.716172 0.697924i \(-0.754108\pi\)
−0.716172 + 0.697924i \(0.754108\pi\)
\(462\) 0 0
\(463\) −8.15132 −0.378824 −0.189412 0.981898i \(-0.560658\pi\)
−0.189412 + 0.981898i \(0.560658\pi\)
\(464\) 0 0
\(465\) −29.6263 −1.37388
\(466\) 0 0
\(467\) 10.5999 0.490506 0.245253 0.969459i \(-0.421129\pi\)
0.245253 + 0.969459i \(0.421129\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 27.3115 1.25845
\(472\) 0 0
\(473\) −32.5762 −1.49785
\(474\) 0 0
\(475\) −2.63861 −0.121068
\(476\) 0 0
\(477\) −2.86246 −0.131063
\(478\) 0 0
\(479\) 0.0148228 0.000677271 0 0.000338635 1.00000i \(-0.499892\pi\)
0.000338635 1.00000i \(0.499892\pi\)
\(480\) 0 0
\(481\) −55.0753 −2.51122
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −21.8392 −0.991667
\(486\) 0 0
\(487\) 20.3849 0.923727 0.461863 0.886951i \(-0.347181\pi\)
0.461863 + 0.886951i \(0.347181\pi\)
\(488\) 0 0
\(489\) 4.16283 0.188250
\(490\) 0 0
\(491\) 33.6589 1.51901 0.759503 0.650504i \(-0.225442\pi\)
0.759503 + 0.650504i \(0.225442\pi\)
\(492\) 0 0
\(493\) −45.6323 −2.05518
\(494\) 0 0
\(495\) 3.33842 0.150051
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −26.9373 −1.20588 −0.602939 0.797787i \(-0.706004\pi\)
−0.602939 + 0.797787i \(0.706004\pi\)
\(500\) 0 0
\(501\) −35.9475 −1.60601
\(502\) 0 0
\(503\) −12.8135 −0.571324 −0.285662 0.958330i \(-0.592213\pi\)
−0.285662 + 0.958330i \(0.592213\pi\)
\(504\) 0 0
\(505\) 14.4809 0.644392
\(506\) 0 0
\(507\) −14.8398 −0.659061
\(508\) 0 0
\(509\) −35.6986 −1.58231 −0.791157 0.611613i \(-0.790521\pi\)
−0.791157 + 0.611613i \(0.790521\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.51401 0.199298
\(514\) 0 0
\(515\) −17.9454 −0.790770
\(516\) 0 0
\(517\) −19.0585 −0.838194
\(518\) 0 0
\(519\) 14.9484 0.656161
\(520\) 0 0
\(521\) 45.2674 1.98320 0.991601 0.129331i \(-0.0412829\pi\)
0.991601 + 0.129331i \(0.0412829\pi\)
\(522\) 0 0
\(523\) 14.4868 0.633464 0.316732 0.948515i \(-0.397414\pi\)
0.316732 + 0.948515i \(0.397414\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −44.1423 −1.92287
\(528\) 0 0
\(529\) −10.8890 −0.473434
\(530\) 0 0
\(531\) 3.89191 0.168894
\(532\) 0 0
\(533\) −11.2384 −0.486788
\(534\) 0 0
\(535\) −15.8491 −0.685217
\(536\) 0 0
\(537\) 3.30244 0.142511
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −22.7173 −0.976693 −0.488347 0.872650i \(-0.662400\pi\)
−0.488347 + 0.872650i \(0.662400\pi\)
\(542\) 0 0
\(543\) 41.7057 1.78976
\(544\) 0 0
\(545\) −25.0044 −1.07107
\(546\) 0 0
\(547\) −5.61126 −0.239920 −0.119960 0.992779i \(-0.538277\pi\)
−0.119960 + 0.992779i \(0.538277\pi\)
\(548\) 0 0
\(549\) −4.20040 −0.179269
\(550\) 0 0
\(551\) −10.4590 −0.445568
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −35.3718 −1.50145
\(556\) 0 0
\(557\) 0.0214507 0.000908895 0 0.000454447 1.00000i \(-0.499855\pi\)
0.000454447 1.00000i \(0.499855\pi\)
\(558\) 0 0
\(559\) 43.1483 1.82498
\(560\) 0 0
\(561\) 28.6183 1.20826
\(562\) 0 0
\(563\) 43.7451 1.84364 0.921819 0.387621i \(-0.126703\pi\)
0.921819 + 0.387621i \(0.126703\pi\)
\(564\) 0 0
\(565\) −19.8484 −0.835029
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −32.6285 −1.36786 −0.683928 0.729549i \(-0.739730\pi\)
−0.683928 + 0.729549i \(0.739730\pi\)
\(570\) 0 0
\(571\) 21.1686 0.885880 0.442940 0.896551i \(-0.353935\pi\)
0.442940 + 0.896551i \(0.353935\pi\)
\(572\) 0 0
\(573\) −38.0449 −1.58935
\(574\) 0 0
\(575\) −9.18261 −0.382941
\(576\) 0 0
\(577\) 27.6078 1.14933 0.574665 0.818389i \(-0.305133\pi\)
0.574665 + 0.818389i \(0.305133\pi\)
\(578\) 0 0
\(579\) −16.2769 −0.676443
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 15.6121 0.646587
\(584\) 0 0
\(585\) −4.42185 −0.182821
\(586\) 0 0
\(587\) −46.9697 −1.93865 −0.969323 0.245790i \(-0.920953\pi\)
−0.969323 + 0.245790i \(0.920953\pi\)
\(588\) 0 0
\(589\) −10.1175 −0.416884
\(590\) 0 0
\(591\) 3.37901 0.138994
\(592\) 0 0
\(593\) 31.6249 1.29868 0.649340 0.760498i \(-0.275045\pi\)
0.649340 + 0.760498i \(0.275045\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −34.4404 −1.40955
\(598\) 0 0
\(599\) −17.8860 −0.730801 −0.365400 0.930850i \(-0.619068\pi\)
−0.365400 + 0.930850i \(0.619068\pi\)
\(600\) 0 0
\(601\) 5.24108 0.213788 0.106894 0.994270i \(-0.465909\pi\)
0.106894 + 0.994270i \(0.465909\pi\)
\(602\) 0 0
\(603\) 2.25599 0.0918711
\(604\) 0 0
\(605\) −1.30458 −0.0530388
\(606\) 0 0
\(607\) −25.5164 −1.03568 −0.517839 0.855478i \(-0.673263\pi\)
−0.517839 + 0.855478i \(0.673263\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 25.2437 1.02125
\(612\) 0 0
\(613\) 31.1511 1.25818 0.629090 0.777332i \(-0.283428\pi\)
0.629090 + 0.777332i \(0.283428\pi\)
\(614\) 0 0
\(615\) −7.21779 −0.291049
\(616\) 0 0
\(617\) −12.4899 −0.502826 −0.251413 0.967880i \(-0.580895\pi\)
−0.251413 + 0.967880i \(0.580895\pi\)
\(618\) 0 0
\(619\) 41.8093 1.68046 0.840228 0.542233i \(-0.182421\pi\)
0.840228 + 0.542233i \(0.182421\pi\)
\(620\) 0 0
\(621\) 15.7092 0.630387
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.84464 −0.193786
\(626\) 0 0
\(627\) 6.55935 0.261955
\(628\) 0 0
\(629\) −52.7030 −2.10141
\(630\) 0 0
\(631\) 12.8830 0.512865 0.256433 0.966562i \(-0.417453\pi\)
0.256433 + 0.966562i \(0.417453\pi\)
\(632\) 0 0
\(633\) 16.3333 0.649191
\(634\) 0 0
\(635\) −0.243602 −0.00966706
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.76542 0.109398
\(640\) 0 0
\(641\) −31.7456 −1.25388 −0.626938 0.779069i \(-0.715692\pi\)
−0.626938 + 0.779069i \(0.715692\pi\)
\(642\) 0 0
\(643\) 15.4173 0.607999 0.304000 0.952672i \(-0.401678\pi\)
0.304000 + 0.952672i \(0.401678\pi\)
\(644\) 0 0
\(645\) 27.7118 1.09115
\(646\) 0 0
\(647\) −32.2815 −1.26912 −0.634558 0.772875i \(-0.718818\pi\)
−0.634558 + 0.772875i \(0.718818\pi\)
\(648\) 0 0
\(649\) −21.2268 −0.833226
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −26.9947 −1.05639 −0.528193 0.849125i \(-0.677130\pi\)
−0.528193 + 0.849125i \(0.677130\pi\)
\(654\) 0 0
\(655\) −5.58895 −0.218378
\(656\) 0 0
\(657\) −5.20496 −0.203065
\(658\) 0 0
\(659\) −5.32734 −0.207524 −0.103762 0.994602i \(-0.533088\pi\)
−0.103762 + 0.994602i \(0.533088\pi\)
\(660\) 0 0
\(661\) 30.0867 1.17024 0.585119 0.810948i \(-0.301048\pi\)
0.585119 + 0.810948i \(0.301048\pi\)
\(662\) 0 0
\(663\) −37.9058 −1.47214
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −36.3983 −1.40935
\(668\) 0 0
\(669\) −0.253531 −0.00980206
\(670\) 0 0
\(671\) 22.9094 0.884407
\(672\) 0 0
\(673\) −26.3147 −1.01436 −0.507179 0.861841i \(-0.669312\pi\)
−0.507179 + 0.861841i \(0.669312\pi\)
\(674\) 0 0
\(675\) −11.9107 −0.458444
\(676\) 0 0
\(677\) −10.6619 −0.409769 −0.204884 0.978786i \(-0.565682\pi\)
−0.204884 + 0.978786i \(0.565682\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 30.6323 1.17383
\(682\) 0 0
\(683\) −12.3678 −0.473242 −0.236621 0.971602i \(-0.576040\pi\)
−0.236621 + 0.971602i \(0.576040\pi\)
\(684\) 0 0
\(685\) −27.3748 −1.04594
\(686\) 0 0
\(687\) −26.5974 −1.01475
\(688\) 0 0
\(689\) −20.6788 −0.787798
\(690\) 0 0
\(691\) −13.0548 −0.496628 −0.248314 0.968680i \(-0.579876\pi\)
−0.248314 + 0.968680i \(0.579876\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.34325 0.0888844
\(696\) 0 0
\(697\) −10.7543 −0.407348
\(698\) 0 0
\(699\) 22.2501 0.841577
\(700\) 0 0
\(701\) 19.2140 0.725704 0.362852 0.931847i \(-0.381803\pi\)
0.362852 + 0.931847i \(0.381803\pi\)
\(702\) 0 0
\(703\) −12.0796 −0.455592
\(704\) 0 0
\(705\) 16.2126 0.610603
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 17.8783 0.671433 0.335717 0.941963i \(-0.391022\pi\)
0.335717 + 0.941963i \(0.391022\pi\)
\(710\) 0 0
\(711\) −8.83779 −0.331443
\(712\) 0 0
\(713\) −35.2097 −1.31862
\(714\) 0 0
\(715\) 24.1172 0.901932
\(716\) 0 0
\(717\) 3.84237 0.143496
\(718\) 0 0
\(719\) 24.3412 0.907775 0.453887 0.891059i \(-0.350037\pi\)
0.453887 + 0.891059i \(0.350037\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 8.97014 0.333603
\(724\) 0 0
\(725\) 27.5973 1.02494
\(726\) 0 0
\(727\) −16.9340 −0.628048 −0.314024 0.949415i \(-0.601677\pi\)
−0.314024 + 0.949415i \(0.601677\pi\)
\(728\) 0 0
\(729\) 19.1813 0.710419
\(730\) 0 0
\(731\) 41.2898 1.52716
\(732\) 0 0
\(733\) −42.0157 −1.55189 −0.775943 0.630804i \(-0.782725\pi\)
−0.775943 + 0.630804i \(0.782725\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.3044 −0.453238
\(738\) 0 0
\(739\) 39.3583 1.44782 0.723909 0.689896i \(-0.242344\pi\)
0.723909 + 0.689896i \(0.242344\pi\)
\(740\) 0 0
\(741\) −8.68808 −0.319165
\(742\) 0 0
\(743\) 24.2438 0.889417 0.444709 0.895675i \(-0.353307\pi\)
0.444709 + 0.895675i \(0.353307\pi\)
\(744\) 0 0
\(745\) −4.74798 −0.173953
\(746\) 0 0
\(747\) 1.20637 0.0441389
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 22.0351 0.804073 0.402037 0.915624i \(-0.368302\pi\)
0.402037 + 0.915624i \(0.368302\pi\)
\(752\) 0 0
\(753\) −32.7306 −1.19277
\(754\) 0 0
\(755\) 14.7827 0.537997
\(756\) 0 0
\(757\) 1.23976 0.0450599 0.0225300 0.999746i \(-0.492828\pi\)
0.0225300 + 0.999746i \(0.492828\pi\)
\(758\) 0 0
\(759\) 22.8271 0.828572
\(760\) 0 0
\(761\) 51.7980 1.87768 0.938839 0.344357i \(-0.111903\pi\)
0.938839 + 0.344357i \(0.111903\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −4.23139 −0.152986
\(766\) 0 0
\(767\) 28.1156 1.01520
\(768\) 0 0
\(769\) 5.97280 0.215385 0.107692 0.994184i \(-0.465654\pi\)
0.107692 + 0.994184i \(0.465654\pi\)
\(770\) 0 0
\(771\) −51.8800 −1.86841
\(772\) 0 0
\(773\) −43.9400 −1.58041 −0.790206 0.612842i \(-0.790026\pi\)
−0.790206 + 0.612842i \(0.790026\pi\)
\(774\) 0 0
\(775\) 26.6961 0.958953
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.46490 −0.0883143
\(780\) 0 0
\(781\) −15.0828 −0.539706
\(782\) 0 0
\(783\) −47.2120 −1.68722
\(784\) 0 0
\(785\) 22.0246 0.786092
\(786\) 0 0
\(787\) −0.492656 −0.0175613 −0.00878064 0.999961i \(-0.502795\pi\)
−0.00878064 + 0.999961i \(0.502795\pi\)
\(788\) 0 0
\(789\) −53.0112 −1.88725
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −30.3442 −1.07756
\(794\) 0 0
\(795\) −13.2808 −0.471023
\(796\) 0 0
\(797\) 13.4164 0.475235 0.237617 0.971359i \(-0.423634\pi\)
0.237617 + 0.971359i \(0.423634\pi\)
\(798\) 0 0
\(799\) 24.1564 0.854591
\(800\) 0 0
\(801\) 8.25097 0.291534
\(802\) 0 0
\(803\) 28.3883 1.00180
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.39761 −0.119602
\(808\) 0 0
\(809\) 0.723054 0.0254212 0.0127106 0.999919i \(-0.495954\pi\)
0.0127106 + 0.999919i \(0.495954\pi\)
\(810\) 0 0
\(811\) −34.2153 −1.20146 −0.600731 0.799452i \(-0.705124\pi\)
−0.600731 + 0.799452i \(0.705124\pi\)
\(812\) 0 0
\(813\) −12.0671 −0.423211
\(814\) 0 0
\(815\) 3.35700 0.117590
\(816\) 0 0
\(817\) 9.46368 0.331092
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.25746 0.0787859 0.0393929 0.999224i \(-0.487458\pi\)
0.0393929 + 0.999224i \(0.487458\pi\)
\(822\) 0 0
\(823\) 52.7144 1.83751 0.918755 0.394829i \(-0.129196\pi\)
0.918755 + 0.394829i \(0.129196\pi\)
\(824\) 0 0
\(825\) −17.3076 −0.602573
\(826\) 0 0
\(827\) −10.1115 −0.351611 −0.175805 0.984425i \(-0.556253\pi\)
−0.175805 + 0.984425i \(0.556253\pi\)
\(828\) 0 0
\(829\) −11.8135 −0.410301 −0.205151 0.978730i \(-0.565768\pi\)
−0.205151 + 0.978730i \(0.565768\pi\)
\(830\) 0 0
\(831\) −48.6577 −1.68792
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −28.9889 −1.00320
\(836\) 0 0
\(837\) −45.6704 −1.57860
\(838\) 0 0
\(839\) −18.5323 −0.639807 −0.319904 0.947450i \(-0.603651\pi\)
−0.319904 + 0.947450i \(0.603651\pi\)
\(840\) 0 0
\(841\) 80.3907 2.77209
\(842\) 0 0
\(843\) 32.0864 1.10511
\(844\) 0 0
\(845\) −11.9672 −0.411684
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 12.2594 0.420742
\(850\) 0 0
\(851\) −42.0382 −1.44105
\(852\) 0 0
\(853\) 26.3117 0.900896 0.450448 0.892803i \(-0.351264\pi\)
0.450448 + 0.892803i \(0.351264\pi\)
\(854\) 0 0
\(855\) −0.969842 −0.0331679
\(856\) 0 0
\(857\) −1.25719 −0.0429450 −0.0214725 0.999769i \(-0.506835\pi\)
−0.0214725 + 0.999769i \(0.506835\pi\)
\(858\) 0 0
\(859\) −0.299060 −0.0102038 −0.00510189 0.999987i \(-0.501624\pi\)
−0.00510189 + 0.999987i \(0.501624\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −49.8670 −1.69749 −0.848746 0.528800i \(-0.822642\pi\)
−0.848746 + 0.528800i \(0.822642\pi\)
\(864\) 0 0
\(865\) 12.0547 0.409872
\(866\) 0 0
\(867\) −3.87876 −0.131729
\(868\) 0 0
\(869\) 48.2022 1.63515
\(870\) 0 0
\(871\) 16.2976 0.552222
\(872\) 0 0
\(873\) 8.96955 0.303573
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.9976 0.573970 0.286985 0.957935i \(-0.407347\pi\)
0.286985 + 0.957935i \(0.407347\pi\)
\(878\) 0 0
\(879\) −34.2056 −1.15373
\(880\) 0 0
\(881\) 7.64757 0.257653 0.128827 0.991667i \(-0.458879\pi\)
0.128827 + 0.991667i \(0.458879\pi\)
\(882\) 0 0
\(883\) −30.8409 −1.03788 −0.518939 0.854811i \(-0.673673\pi\)
−0.518939 + 0.854811i \(0.673673\pi\)
\(884\) 0 0
\(885\) 18.0571 0.606984
\(886\) 0 0
\(887\) −4.56723 −0.153353 −0.0766763 0.997056i \(-0.524431\pi\)
−0.0766763 + 0.997056i \(0.524431\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 36.1264 1.21028
\(892\) 0 0
\(893\) 5.53668 0.185278
\(894\) 0 0
\(895\) 2.66316 0.0890197
\(896\) 0 0
\(897\) −30.2353 −1.00953
\(898\) 0 0
\(899\) 105.819 3.52925
\(900\) 0 0
\(901\) −19.7881 −0.659236
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 33.6324 1.11798
\(906\) 0 0
\(907\) −21.8675 −0.726099 −0.363049 0.931770i \(-0.618264\pi\)
−0.363049 + 0.931770i \(0.618264\pi\)
\(908\) 0 0
\(909\) −5.94744 −0.197264
\(910\) 0 0
\(911\) 6.89066 0.228298 0.114149 0.993464i \(-0.463586\pi\)
0.114149 + 0.993464i \(0.463586\pi\)
\(912\) 0 0
\(913\) −6.57967 −0.217755
\(914\) 0 0
\(915\) −19.4885 −0.644268
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −38.1546 −1.25861 −0.629303 0.777160i \(-0.716659\pi\)
−0.629303 + 0.777160i \(0.716659\pi\)
\(920\) 0 0
\(921\) 29.0822 0.958293
\(922\) 0 0
\(923\) 19.9777 0.657575
\(924\) 0 0
\(925\) 31.8735 1.04799
\(926\) 0 0
\(927\) 7.37035 0.242074
\(928\) 0 0
\(929\) 1.02943 0.0337746 0.0168873 0.999857i \(-0.494624\pi\)
0.0168873 + 0.999857i \(0.494624\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −49.0697 −1.60647
\(934\) 0 0
\(935\) 23.0784 0.754745
\(936\) 0 0
\(937\) −29.1888 −0.953557 −0.476778 0.879024i \(-0.658196\pi\)
−0.476778 + 0.879024i \(0.658196\pi\)
\(938\) 0 0
\(939\) −18.6777 −0.609525
\(940\) 0 0
\(941\) −37.7089 −1.22928 −0.614638 0.788810i \(-0.710698\pi\)
−0.614638 + 0.788810i \(0.710698\pi\)
\(942\) 0 0
\(943\) −8.57809 −0.279341
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.47117 −0.112798 −0.0563989 0.998408i \(-0.517962\pi\)
−0.0563989 + 0.998408i \(0.517962\pi\)
\(948\) 0 0
\(949\) −37.6013 −1.22059
\(950\) 0 0
\(951\) −16.5413 −0.536389
\(952\) 0 0
\(953\) −35.8781 −1.16220 −0.581102 0.813831i \(-0.697378\pi\)
−0.581102 + 0.813831i \(0.697378\pi\)
\(954\) 0 0
\(955\) −30.6803 −0.992791
\(956\) 0 0
\(957\) −68.6043 −2.21766
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 71.3635 2.30205
\(962\) 0 0
\(963\) 6.50937 0.209762
\(964\) 0 0
\(965\) −13.1260 −0.422542
\(966\) 0 0
\(967\) −12.2707 −0.394598 −0.197299 0.980343i \(-0.563217\pi\)
−0.197299 + 0.980343i \(0.563217\pi\)
\(968\) 0 0
\(969\) −8.31386 −0.267080
\(970\) 0 0
\(971\) −18.9879 −0.609350 −0.304675 0.952456i \(-0.598548\pi\)
−0.304675 + 0.952456i \(0.598548\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 22.9245 0.734171
\(976\) 0 0
\(977\) 51.1351 1.63596 0.817979 0.575248i \(-0.195095\pi\)
0.817979 + 0.575248i \(0.195095\pi\)
\(978\) 0 0
\(979\) −45.0015 −1.43826
\(980\) 0 0
\(981\) 10.2695 0.327881
\(982\) 0 0
\(983\) −5.47174 −0.174522 −0.0872608 0.996186i \(-0.527811\pi\)
−0.0872608 + 0.996186i \(0.527811\pi\)
\(984\) 0 0
\(985\) 2.72491 0.0868229
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.9345 1.04725
\(990\) 0 0
\(991\) −29.7789 −0.945957 −0.472978 0.881074i \(-0.656821\pi\)
−0.472978 + 0.881074i \(0.656821\pi\)
\(992\) 0 0
\(993\) −63.0274 −2.00011
\(994\) 0 0
\(995\) −27.7735 −0.880480
\(996\) 0 0
\(997\) −34.0364 −1.07794 −0.538972 0.842324i \(-0.681187\pi\)
−0.538972 + 0.842324i \(0.681187\pi\)
\(998\) 0 0
\(999\) −54.5275 −1.72517
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.2.a.l.1.1 yes 5
7.6 odd 2 3724.2.a.k.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3724.2.a.k.1.5 5 7.6 odd 2
3724.2.a.l.1.1 yes 5 1.1 even 1 trivial