Properties

Label 3724.2.a.m.1.3
Level $3724$
Weight $2$
Character 3724.1
Self dual yes
Analytic conductor $29.736$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,2,Mod(1,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3724.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7362897127\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 18x^{5} + 84x^{3} - 4x^{2} - 44x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 532)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.678078\) of defining polynomial
Character \(\chi\) \(=\) 3724.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.678078 q^{3} +0.873900 q^{5} -2.54021 q^{9} -1.23451 q^{11} +1.27278 q^{13} -0.592573 q^{15} +0.716798 q^{17} -1.00000 q^{19} +0.537193 q^{23} -4.23630 q^{25} +3.75670 q^{27} +6.82520 q^{29} -2.68697 q^{31} +0.837092 q^{33} -0.287650 q^{37} -0.863046 q^{39} -11.3686 q^{41} +10.5302 q^{43} -2.21989 q^{45} +9.95523 q^{47} -0.486045 q^{51} +9.81923 q^{53} -1.07883 q^{55} +0.678078 q^{57} -5.80977 q^{59} -3.59903 q^{61} +1.11229 q^{65} +7.43360 q^{67} -0.364259 q^{69} -7.77009 q^{71} +9.09066 q^{73} +2.87254 q^{75} +12.9038 q^{79} +5.07329 q^{81} +2.56549 q^{83} +0.626410 q^{85} -4.62802 q^{87} -4.29123 q^{89} +1.82198 q^{93} -0.873900 q^{95} -11.0676 q^{97} +3.13590 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 2 q^{5} + 15 q^{9} + 14 q^{11} + 12 q^{15} - 10 q^{17} - 7 q^{19} + 7 q^{23} + 21 q^{25} + 2 q^{29} - 4 q^{31} + 24 q^{33} - 12 q^{37} + 18 q^{39} - 4 q^{41} - 6 q^{45} + 16 q^{47} + 2 q^{51} - 6 q^{53}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.678078 −0.391489 −0.195744 0.980655i \(-0.562712\pi\)
−0.195744 + 0.980655i \(0.562712\pi\)
\(4\) 0 0
\(5\) 0.873900 0.390820 0.195410 0.980722i \(-0.437396\pi\)
0.195410 + 0.980722i \(0.437396\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.54021 −0.846737
\(10\) 0 0
\(11\) −1.23451 −0.372217 −0.186109 0.982529i \(-0.559588\pi\)
−0.186109 + 0.982529i \(0.559588\pi\)
\(12\) 0 0
\(13\) 1.27278 0.353006 0.176503 0.984300i \(-0.443521\pi\)
0.176503 + 0.984300i \(0.443521\pi\)
\(14\) 0 0
\(15\) −0.592573 −0.153002
\(16\) 0 0
\(17\) 0.716798 0.173849 0.0869245 0.996215i \(-0.472296\pi\)
0.0869245 + 0.996215i \(0.472296\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.537193 0.112013 0.0560063 0.998430i \(-0.482163\pi\)
0.0560063 + 0.998430i \(0.482163\pi\)
\(24\) 0 0
\(25\) −4.23630 −0.847260
\(26\) 0 0
\(27\) 3.75670 0.722977
\(28\) 0 0
\(29\) 6.82520 1.26741 0.633704 0.773575i \(-0.281534\pi\)
0.633704 + 0.773575i \(0.281534\pi\)
\(30\) 0 0
\(31\) −2.68697 −0.482595 −0.241297 0.970451i \(-0.577573\pi\)
−0.241297 + 0.970451i \(0.577573\pi\)
\(32\) 0 0
\(33\) 0.837092 0.145719
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.287650 −0.0472894 −0.0236447 0.999720i \(-0.507527\pi\)
−0.0236447 + 0.999720i \(0.507527\pi\)
\(38\) 0 0
\(39\) −0.863046 −0.138198
\(40\) 0 0
\(41\) −11.3686 −1.77548 −0.887741 0.460342i \(-0.847727\pi\)
−0.887741 + 0.460342i \(0.847727\pi\)
\(42\) 0 0
\(43\) 10.5302 1.60584 0.802919 0.596088i \(-0.203279\pi\)
0.802919 + 0.596088i \(0.203279\pi\)
\(44\) 0 0
\(45\) −2.21989 −0.330922
\(46\) 0 0
\(47\) 9.95523 1.45212 0.726060 0.687632i \(-0.241350\pi\)
0.726060 + 0.687632i \(0.241350\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.486045 −0.0680600
\(52\) 0 0
\(53\) 9.81923 1.34878 0.674388 0.738377i \(-0.264408\pi\)
0.674388 + 0.738377i \(0.264408\pi\)
\(54\) 0 0
\(55\) −1.07883 −0.145470
\(56\) 0 0
\(57\) 0.678078 0.0898137
\(58\) 0 0
\(59\) −5.80977 −0.756367 −0.378184 0.925731i \(-0.623451\pi\)
−0.378184 + 0.925731i \(0.623451\pi\)
\(60\) 0 0
\(61\) −3.59903 −0.460809 −0.230405 0.973095i \(-0.574005\pi\)
−0.230405 + 0.973095i \(0.574005\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.11229 0.137962
\(66\) 0 0
\(67\) 7.43360 0.908158 0.454079 0.890961i \(-0.349968\pi\)
0.454079 + 0.890961i \(0.349968\pi\)
\(68\) 0 0
\(69\) −0.364259 −0.0438517
\(70\) 0 0
\(71\) −7.77009 −0.922140 −0.461070 0.887364i \(-0.652534\pi\)
−0.461070 + 0.887364i \(0.652534\pi\)
\(72\) 0 0
\(73\) 9.09066 1.06398 0.531991 0.846750i \(-0.321444\pi\)
0.531991 + 0.846750i \(0.321444\pi\)
\(74\) 0 0
\(75\) 2.87254 0.331693
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.9038 1.45179 0.725895 0.687806i \(-0.241426\pi\)
0.725895 + 0.687806i \(0.241426\pi\)
\(80\) 0 0
\(81\) 5.07329 0.563699
\(82\) 0 0
\(83\) 2.56549 0.281599 0.140800 0.990038i \(-0.455033\pi\)
0.140800 + 0.990038i \(0.455033\pi\)
\(84\) 0 0
\(85\) 0.626410 0.0679437
\(86\) 0 0
\(87\) −4.62802 −0.496176
\(88\) 0 0
\(89\) −4.29123 −0.454870 −0.227435 0.973793i \(-0.573034\pi\)
−0.227435 + 0.973793i \(0.573034\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.82198 0.188930
\(94\) 0 0
\(95\) −0.873900 −0.0896603
\(96\) 0 0
\(97\) −11.0676 −1.12375 −0.561875 0.827222i \(-0.689920\pi\)
−0.561875 + 0.827222i \(0.689920\pi\)
\(98\) 0 0
\(99\) 3.13590 0.315170
\(100\) 0 0
\(101\) 0.307018 0.0305494 0.0152747 0.999883i \(-0.495138\pi\)
0.0152747 + 0.999883i \(0.495138\pi\)
\(102\) 0 0
\(103\) 13.1010 1.29088 0.645438 0.763812i \(-0.276675\pi\)
0.645438 + 0.763812i \(0.276675\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.56223 0.731069 0.365534 0.930798i \(-0.380886\pi\)
0.365534 + 0.930798i \(0.380886\pi\)
\(108\) 0 0
\(109\) 10.7986 1.03432 0.517161 0.855888i \(-0.326989\pi\)
0.517161 + 0.855888i \(0.326989\pi\)
\(110\) 0 0
\(111\) 0.195049 0.0185133
\(112\) 0 0
\(113\) 0.184353 0.0173424 0.00867122 0.999962i \(-0.497240\pi\)
0.00867122 + 0.999962i \(0.497240\pi\)
\(114\) 0 0
\(115\) 0.469454 0.0437768
\(116\) 0 0
\(117\) −3.23313 −0.298903
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.47600 −0.861454
\(122\) 0 0
\(123\) 7.70883 0.695082
\(124\) 0 0
\(125\) −8.07161 −0.721946
\(126\) 0 0
\(127\) 7.02826 0.623658 0.311829 0.950138i \(-0.399058\pi\)
0.311829 + 0.950138i \(0.399058\pi\)
\(128\) 0 0
\(129\) −7.14029 −0.628668
\(130\) 0 0
\(131\) 7.80197 0.681661 0.340831 0.940125i \(-0.389292\pi\)
0.340831 + 0.940125i \(0.389292\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.28298 0.282554
\(136\) 0 0
\(137\) 9.41554 0.804424 0.402212 0.915547i \(-0.368241\pi\)
0.402212 + 0.915547i \(0.368241\pi\)
\(138\) 0 0
\(139\) −4.83030 −0.409701 −0.204850 0.978793i \(-0.565671\pi\)
−0.204850 + 0.978793i \(0.565671\pi\)
\(140\) 0 0
\(141\) −6.75043 −0.568488
\(142\) 0 0
\(143\) −1.57126 −0.131395
\(144\) 0 0
\(145\) 5.96455 0.495329
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.37121 0.767720 0.383860 0.923391i \(-0.374595\pi\)
0.383860 + 0.923391i \(0.374595\pi\)
\(150\) 0 0
\(151\) 12.7329 1.03619 0.518096 0.855323i \(-0.326641\pi\)
0.518096 + 0.855323i \(0.326641\pi\)
\(152\) 0 0
\(153\) −1.82082 −0.147204
\(154\) 0 0
\(155\) −2.34815 −0.188608
\(156\) 0 0
\(157\) 6.34875 0.506685 0.253343 0.967377i \(-0.418470\pi\)
0.253343 + 0.967377i \(0.418470\pi\)
\(158\) 0 0
\(159\) −6.65821 −0.528030
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −15.1170 −1.18406 −0.592028 0.805917i \(-0.701673\pi\)
−0.592028 + 0.805917i \(0.701673\pi\)
\(164\) 0 0
\(165\) 0.731535 0.0569499
\(166\) 0 0
\(167\) −9.47298 −0.733041 −0.366521 0.930410i \(-0.619451\pi\)
−0.366521 + 0.930410i \(0.619451\pi\)
\(168\) 0 0
\(169\) −11.3800 −0.875387
\(170\) 0 0
\(171\) 2.54021 0.194255
\(172\) 0 0
\(173\) 20.1842 1.53458 0.767290 0.641300i \(-0.221605\pi\)
0.767290 + 0.641300i \(0.221605\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.93948 0.296109
\(178\) 0 0
\(179\) 1.21682 0.0909497 0.0454748 0.998965i \(-0.485520\pi\)
0.0454748 + 0.998965i \(0.485520\pi\)
\(180\) 0 0
\(181\) −0.720713 −0.0535702 −0.0267851 0.999641i \(-0.508527\pi\)
−0.0267851 + 0.999641i \(0.508527\pi\)
\(182\) 0 0
\(183\) 2.44043 0.180402
\(184\) 0 0
\(185\) −0.251377 −0.0184816
\(186\) 0 0
\(187\) −0.884891 −0.0647096
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.7974 1.43249 0.716246 0.697848i \(-0.245859\pi\)
0.716246 + 0.697848i \(0.245859\pi\)
\(192\) 0 0
\(193\) −4.27583 −0.307781 −0.153891 0.988088i \(-0.549180\pi\)
−0.153891 + 0.988088i \(0.549180\pi\)
\(194\) 0 0
\(195\) −0.754217 −0.0540106
\(196\) 0 0
\(197\) 14.7614 1.05171 0.525853 0.850576i \(-0.323746\pi\)
0.525853 + 0.850576i \(0.323746\pi\)
\(198\) 0 0
\(199\) −17.9069 −1.26939 −0.634694 0.772763i \(-0.718874\pi\)
−0.634694 + 0.772763i \(0.718874\pi\)
\(200\) 0 0
\(201\) −5.04056 −0.355534
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −9.93506 −0.693895
\(206\) 0 0
\(207\) −1.36458 −0.0948451
\(208\) 0 0
\(209\) 1.23451 0.0853925
\(210\) 0 0
\(211\) −1.30309 −0.0897082 −0.0448541 0.998994i \(-0.514282\pi\)
−0.0448541 + 0.998994i \(0.514282\pi\)
\(212\) 0 0
\(213\) 5.26873 0.361008
\(214\) 0 0
\(215\) 9.20234 0.627594
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.16418 −0.416537
\(220\) 0 0
\(221\) 0.912328 0.0613698
\(222\) 0 0
\(223\) 14.5276 0.972841 0.486421 0.873725i \(-0.338302\pi\)
0.486421 + 0.873725i \(0.338302\pi\)
\(224\) 0 0
\(225\) 10.7611 0.717406
\(226\) 0 0
\(227\) −0.363913 −0.0241538 −0.0120769 0.999927i \(-0.503844\pi\)
−0.0120769 + 0.999927i \(0.503844\pi\)
\(228\) 0 0
\(229\) 25.8508 1.70827 0.854134 0.520053i \(-0.174088\pi\)
0.854134 + 0.520053i \(0.174088\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.7470 −0.704058 −0.352029 0.935989i \(-0.614508\pi\)
−0.352029 + 0.935989i \(0.614508\pi\)
\(234\) 0 0
\(235\) 8.69988 0.567517
\(236\) 0 0
\(237\) −8.74978 −0.568359
\(238\) 0 0
\(239\) 13.4092 0.867370 0.433685 0.901064i \(-0.357213\pi\)
0.433685 + 0.901064i \(0.357213\pi\)
\(240\) 0 0
\(241\) −2.11044 −0.135946 −0.0679728 0.997687i \(-0.521653\pi\)
−0.0679728 + 0.997687i \(0.521653\pi\)
\(242\) 0 0
\(243\) −14.7102 −0.943659
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.27278 −0.0809852
\(248\) 0 0
\(249\) −1.73961 −0.110243
\(250\) 0 0
\(251\) 20.0022 1.26253 0.631263 0.775569i \(-0.282537\pi\)
0.631263 + 0.775569i \(0.282537\pi\)
\(252\) 0 0
\(253\) −0.663168 −0.0416930
\(254\) 0 0
\(255\) −0.424755 −0.0265992
\(256\) 0 0
\(257\) 5.52879 0.344877 0.172438 0.985020i \(-0.444835\pi\)
0.172438 + 0.985020i \(0.444835\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −17.3374 −1.07316
\(262\) 0 0
\(263\) 11.4509 0.706091 0.353046 0.935606i \(-0.385146\pi\)
0.353046 + 0.935606i \(0.385146\pi\)
\(264\) 0 0
\(265\) 8.58103 0.527129
\(266\) 0 0
\(267\) 2.90979 0.178077
\(268\) 0 0
\(269\) −24.9762 −1.52282 −0.761412 0.648269i \(-0.775493\pi\)
−0.761412 + 0.648269i \(0.775493\pi\)
\(270\) 0 0
\(271\) −3.55748 −0.216101 −0.108051 0.994145i \(-0.534461\pi\)
−0.108051 + 0.994145i \(0.534461\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.22973 0.315365
\(276\) 0 0
\(277\) −2.16246 −0.129930 −0.0649649 0.997888i \(-0.520694\pi\)
−0.0649649 + 0.997888i \(0.520694\pi\)
\(278\) 0 0
\(279\) 6.82548 0.408631
\(280\) 0 0
\(281\) 25.2588 1.50681 0.753406 0.657556i \(-0.228410\pi\)
0.753406 + 0.657556i \(0.228410\pi\)
\(282\) 0 0
\(283\) −2.36163 −0.140384 −0.0701922 0.997533i \(-0.522361\pi\)
−0.0701922 + 0.997533i \(0.522361\pi\)
\(284\) 0 0
\(285\) 0.592573 0.0351010
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.4862 −0.969777
\(290\) 0 0
\(291\) 7.50473 0.439935
\(292\) 0 0
\(293\) −30.9231 −1.80655 −0.903274 0.429064i \(-0.858844\pi\)
−0.903274 + 0.429064i \(0.858844\pi\)
\(294\) 0 0
\(295\) −5.07716 −0.295604
\(296\) 0 0
\(297\) −4.63766 −0.269104
\(298\) 0 0
\(299\) 0.683730 0.0395411
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −0.208182 −0.0119598
\(304\) 0 0
\(305\) −3.14520 −0.180093
\(306\) 0 0
\(307\) 12.0542 0.687970 0.343985 0.938975i \(-0.388223\pi\)
0.343985 + 0.938975i \(0.388223\pi\)
\(308\) 0 0
\(309\) −8.88348 −0.505364
\(310\) 0 0
\(311\) 12.3741 0.701668 0.350834 0.936438i \(-0.385898\pi\)
0.350834 + 0.936438i \(0.385898\pi\)
\(312\) 0 0
\(313\) −21.4371 −1.21170 −0.605849 0.795580i \(-0.707166\pi\)
−0.605849 + 0.795580i \(0.707166\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.60452 −0.258615 −0.129308 0.991605i \(-0.541275\pi\)
−0.129308 + 0.991605i \(0.541275\pi\)
\(318\) 0 0
\(319\) −8.42575 −0.471752
\(320\) 0 0
\(321\) −5.12779 −0.286205
\(322\) 0 0
\(323\) −0.716798 −0.0398837
\(324\) 0 0
\(325\) −5.39189 −0.299088
\(326\) 0 0
\(327\) −7.32233 −0.404926
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 29.8050 1.63823 0.819115 0.573629i \(-0.194465\pi\)
0.819115 + 0.573629i \(0.194465\pi\)
\(332\) 0 0
\(333\) 0.730691 0.0400416
\(334\) 0 0
\(335\) 6.49622 0.354927
\(336\) 0 0
\(337\) 13.8155 0.752577 0.376289 0.926502i \(-0.377200\pi\)
0.376289 + 0.926502i \(0.377200\pi\)
\(338\) 0 0
\(339\) −0.125006 −0.00678937
\(340\) 0 0
\(341\) 3.31708 0.179630
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.318326 −0.0171381
\(346\) 0 0
\(347\) 14.2790 0.766534 0.383267 0.923638i \(-0.374799\pi\)
0.383267 + 0.923638i \(0.374799\pi\)
\(348\) 0 0
\(349\) 21.9955 1.17739 0.588697 0.808354i \(-0.299641\pi\)
0.588697 + 0.808354i \(0.299641\pi\)
\(350\) 0 0
\(351\) 4.78146 0.255215
\(352\) 0 0
\(353\) 21.5086 1.14479 0.572393 0.819980i \(-0.306015\pi\)
0.572393 + 0.819980i \(0.306015\pi\)
\(354\) 0 0
\(355\) −6.79029 −0.360391
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.3005 1.65198 0.825990 0.563685i \(-0.190617\pi\)
0.825990 + 0.563685i \(0.190617\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 6.42547 0.337250
\(364\) 0 0
\(365\) 7.94434 0.415826
\(366\) 0 0
\(367\) 21.9530 1.14594 0.572968 0.819577i \(-0.305792\pi\)
0.572968 + 0.819577i \(0.305792\pi\)
\(368\) 0 0
\(369\) 28.8787 1.50337
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.40136 −0.0725599 −0.0362800 0.999342i \(-0.511551\pi\)
−0.0362800 + 0.999342i \(0.511551\pi\)
\(374\) 0 0
\(375\) 5.47318 0.282634
\(376\) 0 0
\(377\) 8.68700 0.447403
\(378\) 0 0
\(379\) 9.35921 0.480750 0.240375 0.970680i \(-0.422730\pi\)
0.240375 + 0.970680i \(0.422730\pi\)
\(380\) 0 0
\(381\) −4.76571 −0.244155
\(382\) 0 0
\(383\) 17.5977 0.899201 0.449600 0.893230i \(-0.351566\pi\)
0.449600 + 0.893230i \(0.351566\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −26.7489 −1.35972
\(388\) 0 0
\(389\) −25.1622 −1.27577 −0.637887 0.770130i \(-0.720191\pi\)
−0.637887 + 0.770130i \(0.720191\pi\)
\(390\) 0 0
\(391\) 0.385059 0.0194733
\(392\) 0 0
\(393\) −5.29035 −0.266863
\(394\) 0 0
\(395\) 11.2766 0.567389
\(396\) 0 0
\(397\) 15.5172 0.778788 0.389394 0.921071i \(-0.372684\pi\)
0.389394 + 0.921071i \(0.372684\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.44663 0.471742 0.235871 0.971784i \(-0.424206\pi\)
0.235871 + 0.971784i \(0.424206\pi\)
\(402\) 0 0
\(403\) −3.41993 −0.170359
\(404\) 0 0
\(405\) 4.43355 0.220305
\(406\) 0 0
\(407\) 0.355105 0.0176019
\(408\) 0 0
\(409\) −24.5353 −1.21319 −0.606597 0.795010i \(-0.707466\pi\)
−0.606597 + 0.795010i \(0.707466\pi\)
\(410\) 0 0
\(411\) −6.38448 −0.314923
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.24199 0.110055
\(416\) 0 0
\(417\) 3.27532 0.160393
\(418\) 0 0
\(419\) −21.5605 −1.05330 −0.526650 0.850082i \(-0.676552\pi\)
−0.526650 + 0.850082i \(0.676552\pi\)
\(420\) 0 0
\(421\) −25.2433 −1.23028 −0.615142 0.788417i \(-0.710901\pi\)
−0.615142 + 0.788417i \(0.710901\pi\)
\(422\) 0 0
\(423\) −25.2884 −1.22956
\(424\) 0 0
\(425\) −3.03657 −0.147295
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.06544 0.0514397
\(430\) 0 0
\(431\) 20.3722 0.981295 0.490647 0.871358i \(-0.336760\pi\)
0.490647 + 0.871358i \(0.336760\pi\)
\(432\) 0 0
\(433\) −21.9359 −1.05417 −0.527087 0.849812i \(-0.676716\pi\)
−0.527087 + 0.849812i \(0.676716\pi\)
\(434\) 0 0
\(435\) −4.04443 −0.193916
\(436\) 0 0
\(437\) −0.537193 −0.0256974
\(438\) 0 0
\(439\) 22.1415 1.05676 0.528378 0.849009i \(-0.322800\pi\)
0.528378 + 0.849009i \(0.322800\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.2976 0.631790 0.315895 0.948794i \(-0.397695\pi\)
0.315895 + 0.948794i \(0.397695\pi\)
\(444\) 0 0
\(445\) −3.75011 −0.177772
\(446\) 0 0
\(447\) −6.35442 −0.300554
\(448\) 0 0
\(449\) −14.3802 −0.678645 −0.339322 0.940670i \(-0.610198\pi\)
−0.339322 + 0.940670i \(0.610198\pi\)
\(450\) 0 0
\(451\) 14.0346 0.660866
\(452\) 0 0
\(453\) −8.63393 −0.405657
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.7020 0.547397 0.273698 0.961816i \(-0.411753\pi\)
0.273698 + 0.961816i \(0.411753\pi\)
\(458\) 0 0
\(459\) 2.69279 0.125689
\(460\) 0 0
\(461\) 18.0500 0.840674 0.420337 0.907368i \(-0.361912\pi\)
0.420337 + 0.907368i \(0.361912\pi\)
\(462\) 0 0
\(463\) −3.20745 −0.149063 −0.0745315 0.997219i \(-0.523746\pi\)
−0.0745315 + 0.997219i \(0.523746\pi\)
\(464\) 0 0
\(465\) 1.59223 0.0738378
\(466\) 0 0
\(467\) −41.8682 −1.93743 −0.968715 0.248175i \(-0.920169\pi\)
−0.968715 + 0.248175i \(0.920169\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4.30495 −0.198362
\(472\) 0 0
\(473\) −12.9996 −0.597721
\(474\) 0 0
\(475\) 4.23630 0.194375
\(476\) 0 0
\(477\) −24.9429 −1.14206
\(478\) 0 0
\(479\) 15.4595 0.706361 0.353181 0.935555i \(-0.385100\pi\)
0.353181 + 0.935555i \(0.385100\pi\)
\(480\) 0 0
\(481\) −0.366116 −0.0166934
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.67202 −0.439184
\(486\) 0 0
\(487\) −1.83061 −0.0829527 −0.0414764 0.999139i \(-0.513206\pi\)
−0.0414764 + 0.999139i \(0.513206\pi\)
\(488\) 0 0
\(489\) 10.2505 0.463545
\(490\) 0 0
\(491\) −8.79309 −0.396826 −0.198413 0.980118i \(-0.563579\pi\)
−0.198413 + 0.980118i \(0.563579\pi\)
\(492\) 0 0
\(493\) 4.89229 0.220338
\(494\) 0 0
\(495\) 2.74047 0.123175
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −14.8452 −0.664562 −0.332281 0.943180i \(-0.607818\pi\)
−0.332281 + 0.943180i \(0.607818\pi\)
\(500\) 0 0
\(501\) 6.42342 0.286977
\(502\) 0 0
\(503\) −40.0927 −1.78765 −0.893823 0.448420i \(-0.851987\pi\)
−0.893823 + 0.448420i \(0.851987\pi\)
\(504\) 0 0
\(505\) 0.268303 0.0119393
\(506\) 0 0
\(507\) 7.71655 0.342704
\(508\) 0 0
\(509\) 5.68128 0.251818 0.125909 0.992042i \(-0.459815\pi\)
0.125909 + 0.992042i \(0.459815\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.75670 −0.165862
\(514\) 0 0
\(515\) 11.4489 0.504501
\(516\) 0 0
\(517\) −12.2898 −0.540504
\(518\) 0 0
\(519\) −13.6865 −0.600771
\(520\) 0 0
\(521\) 10.3731 0.454453 0.227227 0.973842i \(-0.427034\pi\)
0.227227 + 0.973842i \(0.427034\pi\)
\(522\) 0 0
\(523\) −32.0155 −1.39994 −0.699970 0.714172i \(-0.746803\pi\)
−0.699970 + 0.714172i \(0.746803\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.92602 −0.0838987
\(528\) 0 0
\(529\) −22.7114 −0.987453
\(530\) 0 0
\(531\) 14.7580 0.640444
\(532\) 0 0
\(533\) −14.4698 −0.626757
\(534\) 0 0
\(535\) 6.60864 0.285716
\(536\) 0 0
\(537\) −0.825102 −0.0356058
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −7.19493 −0.309334 −0.154667 0.987967i \(-0.549431\pi\)
−0.154667 + 0.987967i \(0.549431\pi\)
\(542\) 0 0
\(543\) 0.488700 0.0209721
\(544\) 0 0
\(545\) 9.43694 0.404234
\(546\) 0 0
\(547\) 2.89772 0.123897 0.0619487 0.998079i \(-0.480268\pi\)
0.0619487 + 0.998079i \(0.480268\pi\)
\(548\) 0 0
\(549\) 9.14230 0.390184
\(550\) 0 0
\(551\) −6.82520 −0.290763
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.170454 0.00723535
\(556\) 0 0
\(557\) −32.8177 −1.39053 −0.695266 0.718753i \(-0.744713\pi\)
−0.695266 + 0.718753i \(0.744713\pi\)
\(558\) 0 0
\(559\) 13.4026 0.566871
\(560\) 0 0
\(561\) 0.600026 0.0253331
\(562\) 0 0
\(563\) 6.39551 0.269539 0.134769 0.990877i \(-0.456971\pi\)
0.134769 + 0.990877i \(0.456971\pi\)
\(564\) 0 0
\(565\) 0.161106 0.00677777
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.46848 −0.0615618 −0.0307809 0.999526i \(-0.509799\pi\)
−0.0307809 + 0.999526i \(0.509799\pi\)
\(570\) 0 0
\(571\) −14.4747 −0.605747 −0.302873 0.953031i \(-0.597946\pi\)
−0.302873 + 0.953031i \(0.597946\pi\)
\(572\) 0 0
\(573\) −13.4242 −0.560805
\(574\) 0 0
\(575\) −2.27571 −0.0949037
\(576\) 0 0
\(577\) 24.3051 1.01184 0.505918 0.862582i \(-0.331154\pi\)
0.505918 + 0.862582i \(0.331154\pi\)
\(578\) 0 0
\(579\) 2.89935 0.120493
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −12.1219 −0.502038
\(584\) 0 0
\(585\) −2.82544 −0.116817
\(586\) 0 0
\(587\) −10.1829 −0.420292 −0.210146 0.977670i \(-0.567394\pi\)
−0.210146 + 0.977670i \(0.567394\pi\)
\(588\) 0 0
\(589\) 2.68697 0.110715
\(590\) 0 0
\(591\) −10.0094 −0.411731
\(592\) 0 0
\(593\) −20.8749 −0.857230 −0.428615 0.903487i \(-0.640998\pi\)
−0.428615 + 0.903487i \(0.640998\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 12.1423 0.496951
\(598\) 0 0
\(599\) −23.7745 −0.971400 −0.485700 0.874126i \(-0.661435\pi\)
−0.485700 + 0.874126i \(0.661435\pi\)
\(600\) 0 0
\(601\) −33.0802 −1.34937 −0.674685 0.738106i \(-0.735721\pi\)
−0.674685 + 0.738106i \(0.735721\pi\)
\(602\) 0 0
\(603\) −18.8829 −0.768971
\(604\) 0 0
\(605\) −8.28108 −0.336674
\(606\) 0 0
\(607\) 2.99498 0.121563 0.0607813 0.998151i \(-0.480641\pi\)
0.0607813 + 0.998151i \(0.480641\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.6708 0.512607
\(612\) 0 0
\(613\) 7.88093 0.318308 0.159154 0.987254i \(-0.449123\pi\)
0.159154 + 0.987254i \(0.449123\pi\)
\(614\) 0 0
\(615\) 6.73675 0.271652
\(616\) 0 0
\(617\) 31.7387 1.27775 0.638876 0.769310i \(-0.279400\pi\)
0.638876 + 0.769310i \(0.279400\pi\)
\(618\) 0 0
\(619\) −26.3549 −1.05929 −0.529646 0.848219i \(-0.677675\pi\)
−0.529646 + 0.848219i \(0.677675\pi\)
\(620\) 0 0
\(621\) 2.01807 0.0809825
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14.1277 0.565108
\(626\) 0 0
\(627\) −0.837092 −0.0334302
\(628\) 0 0
\(629\) −0.206187 −0.00822121
\(630\) 0 0
\(631\) −3.56482 −0.141913 −0.0709567 0.997479i \(-0.522605\pi\)
−0.0709567 + 0.997479i \(0.522605\pi\)
\(632\) 0 0
\(633\) 0.883595 0.0351197
\(634\) 0 0
\(635\) 6.14200 0.243738
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 19.7377 0.780810
\(640\) 0 0
\(641\) −15.8322 −0.625335 −0.312667 0.949863i \(-0.601223\pi\)
−0.312667 + 0.949863i \(0.601223\pi\)
\(642\) 0 0
\(643\) 0.767349 0.0302613 0.0151307 0.999886i \(-0.495184\pi\)
0.0151307 + 0.999886i \(0.495184\pi\)
\(644\) 0 0
\(645\) −6.23991 −0.245696
\(646\) 0 0
\(647\) 8.17080 0.321227 0.160614 0.987017i \(-0.448653\pi\)
0.160614 + 0.987017i \(0.448653\pi\)
\(648\) 0 0
\(649\) 7.17219 0.281533
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −46.0200 −1.80090 −0.900451 0.434958i \(-0.856763\pi\)
−0.900451 + 0.434958i \(0.856763\pi\)
\(654\) 0 0
\(655\) 6.81814 0.266407
\(656\) 0 0
\(657\) −23.0922 −0.900912
\(658\) 0 0
\(659\) 30.4306 1.18541 0.592704 0.805420i \(-0.298060\pi\)
0.592704 + 0.805420i \(0.298060\pi\)
\(660\) 0 0
\(661\) −15.0814 −0.586600 −0.293300 0.956020i \(-0.594754\pi\)
−0.293300 + 0.956020i \(0.594754\pi\)
\(662\) 0 0
\(663\) −0.618630 −0.0240256
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.66645 0.141966
\(668\) 0 0
\(669\) −9.85086 −0.380856
\(670\) 0 0
\(671\) 4.44303 0.171521
\(672\) 0 0
\(673\) −42.9968 −1.65741 −0.828703 0.559689i \(-0.810921\pi\)
−0.828703 + 0.559689i \(0.810921\pi\)
\(674\) 0 0
\(675\) −15.9145 −0.612549
\(676\) 0 0
\(677\) −17.5715 −0.675327 −0.337663 0.941267i \(-0.609637\pi\)
−0.337663 + 0.941267i \(0.609637\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.246762 0.00945592
\(682\) 0 0
\(683\) 42.2637 1.61718 0.808588 0.588375i \(-0.200232\pi\)
0.808588 + 0.588375i \(0.200232\pi\)
\(684\) 0 0
\(685\) 8.22825 0.314385
\(686\) 0 0
\(687\) −17.5289 −0.668768
\(688\) 0 0
\(689\) 12.4977 0.476126
\(690\) 0 0
\(691\) −30.5650 −1.16275 −0.581374 0.813637i \(-0.697485\pi\)
−0.581374 + 0.813637i \(0.697485\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.22120 −0.160119
\(696\) 0 0
\(697\) −8.14902 −0.308666
\(698\) 0 0
\(699\) 7.28730 0.275631
\(700\) 0 0
\(701\) 0.454165 0.0171536 0.00857679 0.999963i \(-0.497270\pi\)
0.00857679 + 0.999963i \(0.497270\pi\)
\(702\) 0 0
\(703\) 0.287650 0.0108489
\(704\) 0 0
\(705\) −5.89920 −0.222177
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −46.6947 −1.75366 −0.876828 0.480804i \(-0.840345\pi\)
−0.876828 + 0.480804i \(0.840345\pi\)
\(710\) 0 0
\(711\) −32.7783 −1.22928
\(712\) 0 0
\(713\) −1.44343 −0.0540567
\(714\) 0 0
\(715\) −1.37312 −0.0513519
\(716\) 0 0
\(717\) −9.09250 −0.339566
\(718\) 0 0
\(719\) −31.5759 −1.17758 −0.588792 0.808285i \(-0.700396\pi\)
−0.588792 + 0.808285i \(0.700396\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.43105 0.0532212
\(724\) 0 0
\(725\) −28.9136 −1.07382
\(726\) 0 0
\(727\) 49.9721 1.85336 0.926681 0.375850i \(-0.122649\pi\)
0.926681 + 0.375850i \(0.122649\pi\)
\(728\) 0 0
\(729\) −5.24522 −0.194267
\(730\) 0 0
\(731\) 7.54802 0.279174
\(732\) 0 0
\(733\) −3.43860 −0.127008 −0.0635038 0.997982i \(-0.520227\pi\)
−0.0635038 + 0.997982i \(0.520227\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.17681 −0.338032
\(738\) 0 0
\(739\) −51.8202 −1.90624 −0.953118 0.302599i \(-0.902146\pi\)
−0.953118 + 0.302599i \(0.902146\pi\)
\(740\) 0 0
\(741\) 0.863046 0.0317048
\(742\) 0 0
\(743\) −0.546552 −0.0200510 −0.0100255 0.999950i \(-0.503191\pi\)
−0.0100255 + 0.999950i \(0.503191\pi\)
\(744\) 0 0
\(745\) 8.18951 0.300040
\(746\) 0 0
\(747\) −6.51689 −0.238441
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 40.0726 1.46227 0.731135 0.682233i \(-0.238991\pi\)
0.731135 + 0.682233i \(0.238991\pi\)
\(752\) 0 0
\(753\) −13.5630 −0.494265
\(754\) 0 0
\(755\) 11.1273 0.404965
\(756\) 0 0
\(757\) −17.5545 −0.638029 −0.319015 0.947750i \(-0.603352\pi\)
−0.319015 + 0.947750i \(0.603352\pi\)
\(758\) 0 0
\(759\) 0.449680 0.0163224
\(760\) 0 0
\(761\) −40.2270 −1.45823 −0.729114 0.684393i \(-0.760067\pi\)
−0.729114 + 0.684393i \(0.760067\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.59121 −0.0575304
\(766\) 0 0
\(767\) −7.39457 −0.267002
\(768\) 0 0
\(769\) −0.653049 −0.0235495 −0.0117748 0.999931i \(-0.503748\pi\)
−0.0117748 + 0.999931i \(0.503748\pi\)
\(770\) 0 0
\(771\) −3.74896 −0.135015
\(772\) 0 0
\(773\) 50.2290 1.80661 0.903306 0.428996i \(-0.141133\pi\)
0.903306 + 0.428996i \(0.141133\pi\)
\(774\) 0 0
\(775\) 11.3828 0.408883
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.3686 0.407324
\(780\) 0 0
\(781\) 9.59222 0.343237
\(782\) 0 0
\(783\) 25.6402 0.916307
\(784\) 0 0
\(785\) 5.54817 0.198023
\(786\) 0 0
\(787\) −27.5490 −0.982014 −0.491007 0.871156i \(-0.663371\pi\)
−0.491007 + 0.871156i \(0.663371\pi\)
\(788\) 0 0
\(789\) −7.76459 −0.276427
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −4.58079 −0.162668
\(794\) 0 0
\(795\) −5.81861 −0.206365
\(796\) 0 0
\(797\) 47.9140 1.69720 0.848601 0.529033i \(-0.177445\pi\)
0.848601 + 0.529033i \(0.177445\pi\)
\(798\) 0 0
\(799\) 7.13589 0.252450
\(800\) 0 0
\(801\) 10.9006 0.385155
\(802\) 0 0
\(803\) −11.2225 −0.396033
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 16.9358 0.596168
\(808\) 0 0
\(809\) −47.4786 −1.66926 −0.834629 0.550813i \(-0.814318\pi\)
−0.834629 + 0.550813i \(0.814318\pi\)
\(810\) 0 0
\(811\) 23.1518 0.812968 0.406484 0.913658i \(-0.366755\pi\)
0.406484 + 0.913658i \(0.366755\pi\)
\(812\) 0 0
\(813\) 2.41225 0.0846012
\(814\) 0 0
\(815\) −13.2108 −0.462753
\(816\) 0 0
\(817\) −10.5302 −0.368405
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.15956 −0.110269 −0.0551347 0.998479i \(-0.517559\pi\)
−0.0551347 + 0.998479i \(0.517559\pi\)
\(822\) 0 0
\(823\) −32.3487 −1.12761 −0.563803 0.825909i \(-0.690662\pi\)
−0.563803 + 0.825909i \(0.690662\pi\)
\(824\) 0 0
\(825\) −3.54617 −0.123462
\(826\) 0 0
\(827\) 44.2730 1.53952 0.769762 0.638331i \(-0.220375\pi\)
0.769762 + 0.638331i \(0.220375\pi\)
\(828\) 0 0
\(829\) 4.07390 0.141492 0.0707462 0.997494i \(-0.477462\pi\)
0.0707462 + 0.997494i \(0.477462\pi\)
\(830\) 0 0
\(831\) 1.46632 0.0508661
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −8.27844 −0.286487
\(836\) 0 0
\(837\) −10.0941 −0.348905
\(838\) 0 0
\(839\) −11.8655 −0.409643 −0.204822 0.978799i \(-0.565661\pi\)
−0.204822 + 0.978799i \(0.565661\pi\)
\(840\) 0 0
\(841\) 17.5834 0.606324
\(842\) 0 0
\(843\) −17.1274 −0.589900
\(844\) 0 0
\(845\) −9.94501 −0.342119
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.60137 0.0549589
\(850\) 0 0
\(851\) −0.154524 −0.00529700
\(852\) 0 0
\(853\) −2.96092 −0.101380 −0.0506900 0.998714i \(-0.516142\pi\)
−0.0506900 + 0.998714i \(0.516142\pi\)
\(854\) 0 0
\(855\) 2.21989 0.0759186
\(856\) 0 0
\(857\) −12.7096 −0.434152 −0.217076 0.976155i \(-0.569652\pi\)
−0.217076 + 0.976155i \(0.569652\pi\)
\(858\) 0 0
\(859\) −12.0777 −0.412087 −0.206043 0.978543i \(-0.566059\pi\)
−0.206043 + 0.978543i \(0.566059\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −51.2481 −1.74451 −0.872253 0.489055i \(-0.837342\pi\)
−0.872253 + 0.489055i \(0.837342\pi\)
\(864\) 0 0
\(865\) 17.6390 0.599745
\(866\) 0 0
\(867\) 11.1789 0.379657
\(868\) 0 0
\(869\) −15.9298 −0.540381
\(870\) 0 0
\(871\) 9.46135 0.320586
\(872\) 0 0
\(873\) 28.1141 0.951519
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 42.6177 1.43910 0.719549 0.694442i \(-0.244349\pi\)
0.719549 + 0.694442i \(0.244349\pi\)
\(878\) 0 0
\(879\) 20.9683 0.707243
\(880\) 0 0
\(881\) 15.2551 0.513956 0.256978 0.966417i \(-0.417273\pi\)
0.256978 + 0.966417i \(0.417273\pi\)
\(882\) 0 0
\(883\) −36.0622 −1.21359 −0.606795 0.794858i \(-0.707545\pi\)
−0.606795 + 0.794858i \(0.707545\pi\)
\(884\) 0 0
\(885\) 3.44271 0.115726
\(886\) 0 0
\(887\) −45.0387 −1.51225 −0.756126 0.654426i \(-0.772911\pi\)
−0.756126 + 0.654426i \(0.772911\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −6.26301 −0.209819
\(892\) 0 0
\(893\) −9.95523 −0.333139
\(894\) 0 0
\(895\) 1.06338 0.0355450
\(896\) 0 0
\(897\) −0.463623 −0.0154799
\(898\) 0 0
\(899\) −18.3391 −0.611645
\(900\) 0 0
\(901\) 7.03841 0.234483
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.629832 −0.0209363
\(906\) 0 0
\(907\) 42.3073 1.40479 0.702396 0.711787i \(-0.252114\pi\)
0.702396 + 0.711787i \(0.252114\pi\)
\(908\) 0 0
\(909\) −0.779890 −0.0258673
\(910\) 0 0
\(911\) −12.0152 −0.398080 −0.199040 0.979991i \(-0.563782\pi\)
−0.199040 + 0.979991i \(0.563782\pi\)
\(912\) 0 0
\(913\) −3.16712 −0.104816
\(914\) 0 0
\(915\) 2.13269 0.0705046
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.46634 −0.0483702 −0.0241851 0.999707i \(-0.507699\pi\)
−0.0241851 + 0.999707i \(0.507699\pi\)
\(920\) 0 0
\(921\) −8.17370 −0.269333
\(922\) 0 0
\(923\) −9.88964 −0.325521
\(924\) 0 0
\(925\) 1.21857 0.0400664
\(926\) 0 0
\(927\) −33.2792 −1.09303
\(928\) 0 0
\(929\) −40.1951 −1.31876 −0.659380 0.751810i \(-0.729181\pi\)
−0.659380 + 0.751810i \(0.729181\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −8.39058 −0.274695
\(934\) 0 0
\(935\) −0.773307 −0.0252898
\(936\) 0 0
\(937\) −9.59816 −0.313558 −0.156779 0.987634i \(-0.550111\pi\)
−0.156779 + 0.987634i \(0.550111\pi\)
\(938\) 0 0
\(939\) 14.5360 0.474366
\(940\) 0 0
\(941\) 40.8639 1.33213 0.666063 0.745895i \(-0.267978\pi\)
0.666063 + 0.745895i \(0.267978\pi\)
\(942\) 0 0
\(943\) −6.10716 −0.198876
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.6475 1.09340 0.546698 0.837330i \(-0.315885\pi\)
0.546698 + 0.837330i \(0.315885\pi\)
\(948\) 0 0
\(949\) 11.5704 0.375592
\(950\) 0 0
\(951\) 3.12222 0.101245
\(952\) 0 0
\(953\) 53.7762 1.74198 0.870991 0.491300i \(-0.163478\pi\)
0.870991 + 0.491300i \(0.163478\pi\)
\(954\) 0 0
\(955\) 17.3010 0.559847
\(956\) 0 0
\(957\) 5.71332 0.184685
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −23.7802 −0.767102
\(962\) 0 0
\(963\) −19.2097 −0.619023
\(964\) 0 0
\(965\) −3.73665 −0.120287
\(966\) 0 0
\(967\) −1.56796 −0.0504220 −0.0252110 0.999682i \(-0.508026\pi\)
−0.0252110 + 0.999682i \(0.508026\pi\)
\(968\) 0 0
\(969\) 0.486045 0.0156140
\(970\) 0 0
\(971\) 25.7135 0.825185 0.412593 0.910916i \(-0.364623\pi\)
0.412593 + 0.910916i \(0.364623\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 3.65612 0.117090
\(976\) 0 0
\(977\) 36.6885 1.17377 0.586885 0.809670i \(-0.300354\pi\)
0.586885 + 0.809670i \(0.300354\pi\)
\(978\) 0 0
\(979\) 5.29755 0.169311
\(980\) 0 0
\(981\) −27.4308 −0.875799
\(982\) 0 0
\(983\) 20.8920 0.666350 0.333175 0.942865i \(-0.391880\pi\)
0.333175 + 0.942865i \(0.391880\pi\)
\(984\) 0 0
\(985\) 12.9000 0.411028
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.65675 0.179874
\(990\) 0 0
\(991\) −16.0500 −0.509846 −0.254923 0.966961i \(-0.582050\pi\)
−0.254923 + 0.966961i \(0.582050\pi\)
\(992\) 0 0
\(993\) −20.2101 −0.641349
\(994\) 0 0
\(995\) −15.6489 −0.496103
\(996\) 0 0
\(997\) −8.03821 −0.254573 −0.127286 0.991866i \(-0.540627\pi\)
−0.127286 + 0.991866i \(0.540627\pi\)
\(998\) 0 0
\(999\) −1.08061 −0.0341891
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.2.a.m.1.3 7
7.2 even 3 532.2.i.c.305.5 14
7.4 even 3 532.2.i.c.457.5 yes 14
7.6 odd 2 3724.2.a.n.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.i.c.305.5 14 7.2 even 3
532.2.i.c.457.5 yes 14 7.4 even 3
3724.2.a.m.1.3 7 1.1 even 1 trivial
3724.2.a.n.1.5 7 7.6 odd 2