Properties

Label 3724.2.a.p.1.2
Level $3724$
Weight $2$
Character 3724.1
Self dual yes
Analytic conductor $29.736$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,2,Mod(1,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3724 = 2^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3724.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.7362897127\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 4x^{6} + 24x^{5} + x^{4} - 40x^{3} + 6x^{2} + 16x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.39347\) of defining polynomial
Character \(\chi\) \(=\) 3724.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.39347 q^{3} +3.30592 q^{5} -1.05823 q^{9} -1.10587 q^{11} -2.11454 q^{13} -4.60671 q^{15} -6.05149 q^{17} -1.00000 q^{19} +4.53461 q^{23} +5.92909 q^{25} +5.65504 q^{27} -7.82502 q^{29} +1.85247 q^{31} +1.54100 q^{33} +5.34419 q^{37} +2.94655 q^{39} +6.37802 q^{41} -2.53815 q^{43} -3.49842 q^{45} +9.90863 q^{47} +8.43260 q^{51} +8.26962 q^{53} -3.65592 q^{55} +1.39347 q^{57} +8.35210 q^{59} +7.17111 q^{61} -6.99048 q^{65} +3.78722 q^{67} -6.31886 q^{69} +2.96100 q^{71} +7.20336 q^{73} -8.26203 q^{75} +0.252831 q^{79} -4.70547 q^{81} +13.2004 q^{83} -20.0057 q^{85} +10.9040 q^{87} +12.0299 q^{89} -2.58137 q^{93} -3.30592 q^{95} +5.47652 q^{97} +1.17026 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 8 q^{11} + 8 q^{17} - 8 q^{19} + 4 q^{23} + 4 q^{25} + 16 q^{27} - 4 q^{29} + 24 q^{31} - 12 q^{33} + 12 q^{37} + 4 q^{39} + 20 q^{41} + 12 q^{43} + 24 q^{45} + 24 q^{47} + 12 q^{51} + 4 q^{53}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.39347 −0.804523 −0.402261 0.915525i \(-0.631776\pi\)
−0.402261 + 0.915525i \(0.631776\pi\)
\(4\) 0 0
\(5\) 3.30592 1.47845 0.739226 0.673458i \(-0.235192\pi\)
0.739226 + 0.673458i \(0.235192\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.05823 −0.352743
\(10\) 0 0
\(11\) −1.10587 −0.333433 −0.166716 0.986005i \(-0.553316\pi\)
−0.166716 + 0.986005i \(0.553316\pi\)
\(12\) 0 0
\(13\) −2.11454 −0.586467 −0.293233 0.956041i \(-0.594731\pi\)
−0.293233 + 0.956041i \(0.594731\pi\)
\(14\) 0 0
\(15\) −4.60671 −1.18945
\(16\) 0 0
\(17\) −6.05149 −1.46770 −0.733851 0.679310i \(-0.762279\pi\)
−0.733851 + 0.679310i \(0.762279\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.53461 0.945531 0.472766 0.881188i \(-0.343256\pi\)
0.472766 + 0.881188i \(0.343256\pi\)
\(24\) 0 0
\(25\) 5.92909 1.18582
\(26\) 0 0
\(27\) 5.65504 1.08831
\(28\) 0 0
\(29\) −7.82502 −1.45307 −0.726535 0.687130i \(-0.758870\pi\)
−0.726535 + 0.687130i \(0.758870\pi\)
\(30\) 0 0
\(31\) 1.85247 0.332714 0.166357 0.986066i \(-0.446800\pi\)
0.166357 + 0.986066i \(0.446800\pi\)
\(32\) 0 0
\(33\) 1.54100 0.268254
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.34419 0.878580 0.439290 0.898345i \(-0.355230\pi\)
0.439290 + 0.898345i \(0.355230\pi\)
\(38\) 0 0
\(39\) 2.94655 0.471826
\(40\) 0 0
\(41\) 6.37802 0.996079 0.498040 0.867154i \(-0.334053\pi\)
0.498040 + 0.867154i \(0.334053\pi\)
\(42\) 0 0
\(43\) −2.53815 −0.387064 −0.193532 0.981094i \(-0.561994\pi\)
−0.193532 + 0.981094i \(0.561994\pi\)
\(44\) 0 0
\(45\) −3.49842 −0.521513
\(46\) 0 0
\(47\) 9.90863 1.44532 0.722661 0.691202i \(-0.242919\pi\)
0.722661 + 0.691202i \(0.242919\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 8.43260 1.18080
\(52\) 0 0
\(53\) 8.26962 1.13592 0.567960 0.823056i \(-0.307733\pi\)
0.567960 + 0.823056i \(0.307733\pi\)
\(54\) 0 0
\(55\) −3.65592 −0.492964
\(56\) 0 0
\(57\) 1.39347 0.184570
\(58\) 0 0
\(59\) 8.35210 1.08735 0.543675 0.839296i \(-0.317032\pi\)
0.543675 + 0.839296i \(0.317032\pi\)
\(60\) 0 0
\(61\) 7.17111 0.918167 0.459083 0.888393i \(-0.348178\pi\)
0.459083 + 0.888393i \(0.348178\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.99048 −0.867062
\(66\) 0 0
\(67\) 3.78722 0.462683 0.231342 0.972873i \(-0.425689\pi\)
0.231342 + 0.972873i \(0.425689\pi\)
\(68\) 0 0
\(69\) −6.31886 −0.760702
\(70\) 0 0
\(71\) 2.96100 0.351406 0.175703 0.984443i \(-0.443780\pi\)
0.175703 + 0.984443i \(0.443780\pi\)
\(72\) 0 0
\(73\) 7.20336 0.843089 0.421545 0.906808i \(-0.361488\pi\)
0.421545 + 0.906808i \(0.361488\pi\)
\(74\) 0 0
\(75\) −8.26203 −0.954017
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.252831 0.0284457 0.0142229 0.999899i \(-0.495473\pi\)
0.0142229 + 0.999899i \(0.495473\pi\)
\(80\) 0 0
\(81\) −4.70547 −0.522830
\(82\) 0 0
\(83\) 13.2004 1.44893 0.724464 0.689313i \(-0.242087\pi\)
0.724464 + 0.689313i \(0.242087\pi\)
\(84\) 0 0
\(85\) −20.0057 −2.16993
\(86\) 0 0
\(87\) 10.9040 1.16903
\(88\) 0 0
\(89\) 12.0299 1.27516 0.637581 0.770383i \(-0.279935\pi\)
0.637581 + 0.770383i \(0.279935\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.58137 −0.267676
\(94\) 0 0
\(95\) −3.30592 −0.339180
\(96\) 0 0
\(97\) 5.47652 0.556056 0.278028 0.960573i \(-0.410319\pi\)
0.278028 + 0.960573i \(0.410319\pi\)
\(98\) 0 0
\(99\) 1.17026 0.117616
\(100\) 0 0
\(101\) −9.48169 −0.943463 −0.471732 0.881742i \(-0.656371\pi\)
−0.471732 + 0.881742i \(0.656371\pi\)
\(102\) 0 0
\(103\) 5.26893 0.519163 0.259581 0.965721i \(-0.416415\pi\)
0.259581 + 0.965721i \(0.416415\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.45965 −0.431130 −0.215565 0.976489i \(-0.569159\pi\)
−0.215565 + 0.976489i \(0.569159\pi\)
\(108\) 0 0
\(109\) 8.16815 0.782367 0.391183 0.920313i \(-0.372066\pi\)
0.391183 + 0.920313i \(0.372066\pi\)
\(110\) 0 0
\(111\) −7.44700 −0.706838
\(112\) 0 0
\(113\) −17.6303 −1.65852 −0.829260 0.558863i \(-0.811238\pi\)
−0.829260 + 0.558863i \(0.811238\pi\)
\(114\) 0 0
\(115\) 14.9910 1.39792
\(116\) 0 0
\(117\) 2.23766 0.206872
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.77705 −0.888823
\(122\) 0 0
\(123\) −8.88761 −0.801369
\(124\) 0 0
\(125\) 3.07149 0.274722
\(126\) 0 0
\(127\) −3.63795 −0.322815 −0.161408 0.986888i \(-0.551603\pi\)
−0.161408 + 0.986888i \(0.551603\pi\)
\(128\) 0 0
\(129\) 3.53685 0.311402
\(130\) 0 0
\(131\) 8.10458 0.708101 0.354050 0.935226i \(-0.384804\pi\)
0.354050 + 0.935226i \(0.384804\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 18.6951 1.60902
\(136\) 0 0
\(137\) −16.6223 −1.42014 −0.710070 0.704132i \(-0.751337\pi\)
−0.710070 + 0.704132i \(0.751337\pi\)
\(138\) 0 0
\(139\) −20.0563 −1.70115 −0.850576 0.525852i \(-0.823747\pi\)
−0.850576 + 0.525852i \(0.823747\pi\)
\(140\) 0 0
\(141\) −13.8074 −1.16280
\(142\) 0 0
\(143\) 2.33840 0.195547
\(144\) 0 0
\(145\) −25.8689 −2.14829
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.56699 −0.537989 −0.268994 0.963142i \(-0.586691\pi\)
−0.268994 + 0.963142i \(0.586691\pi\)
\(150\) 0 0
\(151\) 9.02020 0.734053 0.367027 0.930210i \(-0.380376\pi\)
0.367027 + 0.930210i \(0.380376\pi\)
\(152\) 0 0
\(153\) 6.40386 0.517721
\(154\) 0 0
\(155\) 6.12412 0.491901
\(156\) 0 0
\(157\) 17.2831 1.37934 0.689669 0.724124i \(-0.257756\pi\)
0.689669 + 0.724124i \(0.257756\pi\)
\(158\) 0 0
\(159\) −11.5235 −0.913873
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.97122 −0.781007 −0.390503 0.920602i \(-0.627699\pi\)
−0.390503 + 0.920602i \(0.627699\pi\)
\(164\) 0 0
\(165\) 5.09443 0.396601
\(166\) 0 0
\(167\) 17.6449 1.36541 0.682703 0.730696i \(-0.260804\pi\)
0.682703 + 0.730696i \(0.260804\pi\)
\(168\) 0 0
\(169\) −8.52874 −0.656057
\(170\) 0 0
\(171\) 1.05823 0.0809247
\(172\) 0 0
\(173\) −21.2223 −1.61350 −0.806752 0.590890i \(-0.798777\pi\)
−0.806752 + 0.590890i \(0.798777\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.6384 −0.874799
\(178\) 0 0
\(179\) 12.5697 0.939503 0.469751 0.882799i \(-0.344344\pi\)
0.469751 + 0.882799i \(0.344344\pi\)
\(180\) 0 0
\(181\) 0.739327 0.0549538 0.0274769 0.999622i \(-0.491253\pi\)
0.0274769 + 0.999622i \(0.491253\pi\)
\(182\) 0 0
\(183\) −9.99276 −0.738686
\(184\) 0 0
\(185\) 17.6675 1.29894
\(186\) 0 0
\(187\) 6.69217 0.489380
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.3243 1.54297 0.771486 0.636246i \(-0.219514\pi\)
0.771486 + 0.636246i \(0.219514\pi\)
\(192\) 0 0
\(193\) −6.18487 −0.445197 −0.222598 0.974910i \(-0.571454\pi\)
−0.222598 + 0.974910i \(0.571454\pi\)
\(194\) 0 0
\(195\) 9.74106 0.697572
\(196\) 0 0
\(197\) 7.18658 0.512023 0.256011 0.966674i \(-0.417592\pi\)
0.256011 + 0.966674i \(0.417592\pi\)
\(198\) 0 0
\(199\) 11.2582 0.798072 0.399036 0.916935i \(-0.369345\pi\)
0.399036 + 0.916935i \(0.369345\pi\)
\(200\) 0 0
\(201\) −5.27740 −0.372239
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 21.0852 1.47265
\(206\) 0 0
\(207\) −4.79865 −0.333529
\(208\) 0 0
\(209\) 1.10587 0.0764947
\(210\) 0 0
\(211\) 26.4910 1.82371 0.911856 0.410509i \(-0.134649\pi\)
0.911856 + 0.410509i \(0.134649\pi\)
\(212\) 0 0
\(213\) −4.12608 −0.282714
\(214\) 0 0
\(215\) −8.39092 −0.572256
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −10.0377 −0.678285
\(220\) 0 0
\(221\) 12.7961 0.860759
\(222\) 0 0
\(223\) 6.11655 0.409594 0.204797 0.978804i \(-0.434347\pi\)
0.204797 + 0.978804i \(0.434347\pi\)
\(224\) 0 0
\(225\) −6.27433 −0.418289
\(226\) 0 0
\(227\) 21.1675 1.40494 0.702469 0.711714i \(-0.252081\pi\)
0.702469 + 0.711714i \(0.252081\pi\)
\(228\) 0 0
\(229\) 13.0632 0.863243 0.431621 0.902055i \(-0.357942\pi\)
0.431621 + 0.902055i \(0.357942\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.260769 0.0170836 0.00854178 0.999964i \(-0.497281\pi\)
0.00854178 + 0.999964i \(0.497281\pi\)
\(234\) 0 0
\(235\) 32.7571 2.13684
\(236\) 0 0
\(237\) −0.352314 −0.0228852
\(238\) 0 0
\(239\) −3.63705 −0.235261 −0.117631 0.993057i \(-0.537530\pi\)
−0.117631 + 0.993057i \(0.537530\pi\)
\(240\) 0 0
\(241\) 8.84444 0.569721 0.284860 0.958569i \(-0.408053\pi\)
0.284860 + 0.958569i \(0.408053\pi\)
\(242\) 0 0
\(243\) −10.4082 −0.667684
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.11454 0.134545
\(248\) 0 0
\(249\) −18.3944 −1.16570
\(250\) 0 0
\(251\) −1.96113 −0.123786 −0.0618929 0.998083i \(-0.519714\pi\)
−0.0618929 + 0.998083i \(0.519714\pi\)
\(252\) 0 0
\(253\) −5.01469 −0.315271
\(254\) 0 0
\(255\) 27.8775 1.74576
\(256\) 0 0
\(257\) 1.16068 0.0724011 0.0362006 0.999345i \(-0.488474\pi\)
0.0362006 + 0.999345i \(0.488474\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 8.28066 0.512560
\(262\) 0 0
\(263\) 8.26461 0.509618 0.254809 0.966991i \(-0.417987\pi\)
0.254809 + 0.966991i \(0.417987\pi\)
\(264\) 0 0
\(265\) 27.3387 1.67940
\(266\) 0 0
\(267\) −16.7633 −1.02590
\(268\) 0 0
\(269\) −2.68700 −0.163829 −0.0819146 0.996639i \(-0.526103\pi\)
−0.0819146 + 0.996639i \(0.526103\pi\)
\(270\) 0 0
\(271\) 14.5909 0.886337 0.443169 0.896438i \(-0.353854\pi\)
0.443169 + 0.896438i \(0.353854\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.55681 −0.395390
\(276\) 0 0
\(277\) 5.52475 0.331950 0.165975 0.986130i \(-0.446923\pi\)
0.165975 + 0.986130i \(0.446923\pi\)
\(278\) 0 0
\(279\) −1.96034 −0.117362
\(280\) 0 0
\(281\) −32.3126 −1.92761 −0.963804 0.266612i \(-0.914096\pi\)
−0.963804 + 0.266612i \(0.914096\pi\)
\(282\) 0 0
\(283\) −8.47948 −0.504053 −0.252027 0.967720i \(-0.581097\pi\)
−0.252027 + 0.967720i \(0.581097\pi\)
\(284\) 0 0
\(285\) 4.60671 0.272878
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.6206 1.15415
\(290\) 0 0
\(291\) −7.63139 −0.447360
\(292\) 0 0
\(293\) 5.99888 0.350458 0.175229 0.984528i \(-0.443933\pi\)
0.175229 + 0.984528i \(0.443933\pi\)
\(294\) 0 0
\(295\) 27.6114 1.60760
\(296\) 0 0
\(297\) −6.25374 −0.362879
\(298\) 0 0
\(299\) −9.58859 −0.554523
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 13.2125 0.759038
\(304\) 0 0
\(305\) 23.7071 1.35746
\(306\) 0 0
\(307\) −15.1571 −0.865061 −0.432530 0.901619i \(-0.642379\pi\)
−0.432530 + 0.901619i \(0.642379\pi\)
\(308\) 0 0
\(309\) −7.34212 −0.417678
\(310\) 0 0
\(311\) −12.5193 −0.709907 −0.354953 0.934884i \(-0.615503\pi\)
−0.354953 + 0.934884i \(0.615503\pi\)
\(312\) 0 0
\(313\) 7.33341 0.414509 0.207254 0.978287i \(-0.433547\pi\)
0.207254 + 0.978287i \(0.433547\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.12002 −0.287569 −0.143784 0.989609i \(-0.545927\pi\)
−0.143784 + 0.989609i \(0.545927\pi\)
\(318\) 0 0
\(319\) 8.65346 0.484501
\(320\) 0 0
\(321\) 6.21441 0.346854
\(322\) 0 0
\(323\) 6.05149 0.336714
\(324\) 0 0
\(325\) −12.5373 −0.695442
\(326\) 0 0
\(327\) −11.3821 −0.629432
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 29.8484 1.64061 0.820307 0.571923i \(-0.193802\pi\)
0.820307 + 0.571923i \(0.193802\pi\)
\(332\) 0 0
\(333\) −5.65538 −0.309913
\(334\) 0 0
\(335\) 12.5202 0.684054
\(336\) 0 0
\(337\) 30.2473 1.64768 0.823839 0.566824i \(-0.191828\pi\)
0.823839 + 0.566824i \(0.191828\pi\)
\(338\) 0 0
\(339\) 24.5674 1.33432
\(340\) 0 0
\(341\) −2.04859 −0.110938
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −20.8896 −1.12466
\(346\) 0 0
\(347\) −32.0242 −1.71915 −0.859573 0.511012i \(-0.829271\pi\)
−0.859573 + 0.511012i \(0.829271\pi\)
\(348\) 0 0
\(349\) −14.6171 −0.782438 −0.391219 0.920298i \(-0.627946\pi\)
−0.391219 + 0.920298i \(0.627946\pi\)
\(350\) 0 0
\(351\) −11.9578 −0.638259
\(352\) 0 0
\(353\) −37.4179 −1.99156 −0.995778 0.0917968i \(-0.970739\pi\)
−0.995778 + 0.0917968i \(0.970739\pi\)
\(354\) 0 0
\(355\) 9.78882 0.519537
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.80414 −0.306331 −0.153166 0.988201i \(-0.548947\pi\)
−0.153166 + 0.988201i \(0.548947\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 13.6241 0.715078
\(364\) 0 0
\(365\) 23.8137 1.24647
\(366\) 0 0
\(367\) −37.9239 −1.97961 −0.989805 0.142426i \(-0.954510\pi\)
−0.989805 + 0.142426i \(0.954510\pi\)
\(368\) 0 0
\(369\) −6.74940 −0.351360
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.18554 −0.0613848 −0.0306924 0.999529i \(-0.509771\pi\)
−0.0306924 + 0.999529i \(0.509771\pi\)
\(374\) 0 0
\(375\) −4.28004 −0.221020
\(376\) 0 0
\(377\) 16.5463 0.852177
\(378\) 0 0
\(379\) −12.0108 −0.616954 −0.308477 0.951232i \(-0.599819\pi\)
−0.308477 + 0.951232i \(0.599819\pi\)
\(380\) 0 0
\(381\) 5.06938 0.259712
\(382\) 0 0
\(383\) 33.4886 1.71119 0.855595 0.517646i \(-0.173192\pi\)
0.855595 + 0.517646i \(0.173192\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.68594 0.136534
\(388\) 0 0
\(389\) 14.7766 0.749204 0.374602 0.927186i \(-0.377779\pi\)
0.374602 + 0.927186i \(0.377779\pi\)
\(390\) 0 0
\(391\) −27.4411 −1.38776
\(392\) 0 0
\(393\) −11.2935 −0.569683
\(394\) 0 0
\(395\) 0.835839 0.0420556
\(396\) 0 0
\(397\) −5.56015 −0.279056 −0.139528 0.990218i \(-0.544559\pi\)
−0.139528 + 0.990218i \(0.544559\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.18319 −0.158961 −0.0794805 0.996836i \(-0.525326\pi\)
−0.0794805 + 0.996836i \(0.525326\pi\)
\(402\) 0 0
\(403\) −3.91712 −0.195126
\(404\) 0 0
\(405\) −15.5559 −0.772978
\(406\) 0 0
\(407\) −5.90999 −0.292947
\(408\) 0 0
\(409\) −25.8865 −1.28001 −0.640003 0.768372i \(-0.721067\pi\)
−0.640003 + 0.768372i \(0.721067\pi\)
\(410\) 0 0
\(411\) 23.1628 1.14253
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 43.6393 2.14217
\(416\) 0 0
\(417\) 27.9479 1.36862
\(418\) 0 0
\(419\) 31.7199 1.54962 0.774809 0.632196i \(-0.217846\pi\)
0.774809 + 0.632196i \(0.217846\pi\)
\(420\) 0 0
\(421\) 18.5654 0.904821 0.452411 0.891810i \(-0.350564\pi\)
0.452411 + 0.891810i \(0.350564\pi\)
\(422\) 0 0
\(423\) −10.4856 −0.509827
\(424\) 0 0
\(425\) −35.8798 −1.74043
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.25851 −0.157322
\(430\) 0 0
\(431\) −4.48598 −0.216082 −0.108041 0.994146i \(-0.534458\pi\)
−0.108041 + 0.994146i \(0.534458\pi\)
\(432\) 0 0
\(433\) −9.99063 −0.480119 −0.240060 0.970758i \(-0.577167\pi\)
−0.240060 + 0.970758i \(0.577167\pi\)
\(434\) 0 0
\(435\) 36.0476 1.72835
\(436\) 0 0
\(437\) −4.53461 −0.216920
\(438\) 0 0
\(439\) 11.9717 0.571377 0.285688 0.958323i \(-0.407778\pi\)
0.285688 + 0.958323i \(0.407778\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.15582 −0.435006 −0.217503 0.976060i \(-0.569791\pi\)
−0.217503 + 0.976060i \(0.569791\pi\)
\(444\) 0 0
\(445\) 39.7697 1.88527
\(446\) 0 0
\(447\) 9.15093 0.432824
\(448\) 0 0
\(449\) 35.0930 1.65614 0.828071 0.560624i \(-0.189439\pi\)
0.828071 + 0.560624i \(0.189439\pi\)
\(450\) 0 0
\(451\) −7.05327 −0.332125
\(452\) 0 0
\(453\) −12.5694 −0.590563
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.21975 −0.103835 −0.0519177 0.998651i \(-0.516533\pi\)
−0.0519177 + 0.998651i \(0.516533\pi\)
\(458\) 0 0
\(459\) −34.2214 −1.59732
\(460\) 0 0
\(461\) −3.70689 −0.172647 −0.0863236 0.996267i \(-0.527512\pi\)
−0.0863236 + 0.996267i \(0.527512\pi\)
\(462\) 0 0
\(463\) 2.34922 0.109177 0.0545887 0.998509i \(-0.482615\pi\)
0.0545887 + 0.998509i \(0.482615\pi\)
\(464\) 0 0
\(465\) −8.53380 −0.395746
\(466\) 0 0
\(467\) 16.9497 0.784339 0.392170 0.919893i \(-0.371725\pi\)
0.392170 + 0.919893i \(0.371725\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −24.0835 −1.10971
\(472\) 0 0
\(473\) 2.80687 0.129060
\(474\) 0 0
\(475\) −5.92909 −0.272045
\(476\) 0 0
\(477\) −8.75115 −0.400687
\(478\) 0 0
\(479\) 9.45654 0.432080 0.216040 0.976385i \(-0.430686\pi\)
0.216040 + 0.976385i \(0.430686\pi\)
\(480\) 0 0
\(481\) −11.3005 −0.515258
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.1049 0.822102
\(486\) 0 0
\(487\) −36.4997 −1.65396 −0.826980 0.562231i \(-0.809943\pi\)
−0.826980 + 0.562231i \(0.809943\pi\)
\(488\) 0 0
\(489\) 13.8946 0.628338
\(490\) 0 0
\(491\) −25.8603 −1.16706 −0.583529 0.812093i \(-0.698328\pi\)
−0.583529 + 0.812093i \(0.698328\pi\)
\(492\) 0 0
\(493\) 47.3530 2.13267
\(494\) 0 0
\(495\) 3.86880 0.173889
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 28.0470 1.25555 0.627777 0.778393i \(-0.283965\pi\)
0.627777 + 0.778393i \(0.283965\pi\)
\(500\) 0 0
\(501\) −24.5878 −1.09850
\(502\) 0 0
\(503\) 15.9737 0.712233 0.356116 0.934442i \(-0.384101\pi\)
0.356116 + 0.934442i \(0.384101\pi\)
\(504\) 0 0
\(505\) −31.3457 −1.39486
\(506\) 0 0
\(507\) 11.8846 0.527813
\(508\) 0 0
\(509\) 13.1937 0.584803 0.292401 0.956296i \(-0.405546\pi\)
0.292401 + 0.956296i \(0.405546\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −5.65504 −0.249676
\(514\) 0 0
\(515\) 17.4186 0.767557
\(516\) 0 0
\(517\) −10.9577 −0.481918
\(518\) 0 0
\(519\) 29.5728 1.29810
\(520\) 0 0
\(521\) 13.1695 0.576967 0.288483 0.957485i \(-0.406849\pi\)
0.288483 + 0.957485i \(0.406849\pi\)
\(522\) 0 0
\(523\) 31.6786 1.38521 0.692603 0.721319i \(-0.256464\pi\)
0.692603 + 0.721319i \(0.256464\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.2102 −0.488325
\(528\) 0 0
\(529\) −2.43733 −0.105971
\(530\) 0 0
\(531\) −8.83843 −0.383555
\(532\) 0 0
\(533\) −13.4866 −0.584167
\(534\) 0 0
\(535\) −14.7432 −0.637405
\(536\) 0 0
\(537\) −17.5155 −0.755851
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 7.70012 0.331054 0.165527 0.986205i \(-0.447068\pi\)
0.165527 + 0.986205i \(0.447068\pi\)
\(542\) 0 0
\(543\) −1.03023 −0.0442116
\(544\) 0 0
\(545\) 27.0032 1.15669
\(546\) 0 0
\(547\) −44.2782 −1.89320 −0.946600 0.322410i \(-0.895507\pi\)
−0.946600 + 0.322410i \(0.895507\pi\)
\(548\) 0 0
\(549\) −7.58867 −0.323877
\(550\) 0 0
\(551\) 7.82502 0.333357
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −24.6192 −1.04503
\(556\) 0 0
\(557\) 12.0573 0.510884 0.255442 0.966824i \(-0.417779\pi\)
0.255442 + 0.966824i \(0.417779\pi\)
\(558\) 0 0
\(559\) 5.36701 0.227000
\(560\) 0 0
\(561\) −9.32537 −0.393717
\(562\) 0 0
\(563\) −6.86141 −0.289174 −0.144587 0.989492i \(-0.546185\pi\)
−0.144587 + 0.989492i \(0.546185\pi\)
\(564\) 0 0
\(565\) −58.2843 −2.45204
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.33611 −0.0979346 −0.0489673 0.998800i \(-0.515593\pi\)
−0.0489673 + 0.998800i \(0.515593\pi\)
\(570\) 0 0
\(571\) −36.7697 −1.53876 −0.769381 0.638790i \(-0.779435\pi\)
−0.769381 + 0.638790i \(0.779435\pi\)
\(572\) 0 0
\(573\) −29.7149 −1.24136
\(574\) 0 0
\(575\) 26.8861 1.12123
\(576\) 0 0
\(577\) −25.3319 −1.05458 −0.527289 0.849686i \(-0.676792\pi\)
−0.527289 + 0.849686i \(0.676792\pi\)
\(578\) 0 0
\(579\) 8.61846 0.358171
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −9.14513 −0.378753
\(584\) 0 0
\(585\) 7.39752 0.305850
\(586\) 0 0
\(587\) −40.6611 −1.67826 −0.839132 0.543928i \(-0.816937\pi\)
−0.839132 + 0.543928i \(0.816937\pi\)
\(588\) 0 0
\(589\) −1.85247 −0.0763298
\(590\) 0 0
\(591\) −10.0143 −0.411934
\(592\) 0 0
\(593\) −15.2067 −0.624463 −0.312232 0.950006i \(-0.601076\pi\)
−0.312232 + 0.950006i \(0.601076\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −15.6880 −0.642067
\(598\) 0 0
\(599\) −44.4621 −1.81667 −0.908336 0.418242i \(-0.862646\pi\)
−0.908336 + 0.418242i \(0.862646\pi\)
\(600\) 0 0
\(601\) −17.7062 −0.722251 −0.361125 0.932517i \(-0.617607\pi\)
−0.361125 + 0.932517i \(0.617607\pi\)
\(602\) 0 0
\(603\) −4.00775 −0.163208
\(604\) 0 0
\(605\) −32.3221 −1.31408
\(606\) 0 0
\(607\) 27.0208 1.09674 0.548370 0.836236i \(-0.315248\pi\)
0.548370 + 0.836236i \(0.315248\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −20.9522 −0.847633
\(612\) 0 0
\(613\) 37.6644 1.52125 0.760626 0.649191i \(-0.224892\pi\)
0.760626 + 0.649191i \(0.224892\pi\)
\(614\) 0 0
\(615\) −29.3817 −1.18478
\(616\) 0 0
\(617\) −3.46803 −0.139618 −0.0698089 0.997560i \(-0.522239\pi\)
−0.0698089 + 0.997560i \(0.522239\pi\)
\(618\) 0 0
\(619\) −33.6070 −1.35078 −0.675390 0.737461i \(-0.736025\pi\)
−0.675390 + 0.737461i \(0.736025\pi\)
\(620\) 0 0
\(621\) 25.6434 1.02903
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −19.4914 −0.779654
\(626\) 0 0
\(627\) −1.54100 −0.0615417
\(628\) 0 0
\(629\) −32.3404 −1.28949
\(630\) 0 0
\(631\) 44.3149 1.76415 0.882074 0.471112i \(-0.156147\pi\)
0.882074 + 0.471112i \(0.156147\pi\)
\(632\) 0 0
\(633\) −36.9145 −1.46722
\(634\) 0 0
\(635\) −12.0267 −0.477267
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3.13342 −0.123956
\(640\) 0 0
\(641\) 5.54793 0.219130 0.109565 0.993980i \(-0.465054\pi\)
0.109565 + 0.993980i \(0.465054\pi\)
\(642\) 0 0
\(643\) −43.2591 −1.70597 −0.852985 0.521935i \(-0.825210\pi\)
−0.852985 + 0.521935i \(0.825210\pi\)
\(644\) 0 0
\(645\) 11.6925 0.460393
\(646\) 0 0
\(647\) 15.5566 0.611594 0.305797 0.952097i \(-0.401077\pi\)
0.305797 + 0.952097i \(0.401077\pi\)
\(648\) 0 0
\(649\) −9.23634 −0.362558
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.263998 −0.0103310 −0.00516551 0.999987i \(-0.501644\pi\)
−0.00516551 + 0.999987i \(0.501644\pi\)
\(654\) 0 0
\(655\) 26.7931 1.04689
\(656\) 0 0
\(657\) −7.62280 −0.297394
\(658\) 0 0
\(659\) −5.92918 −0.230968 −0.115484 0.993309i \(-0.536842\pi\)
−0.115484 + 0.993309i \(0.536842\pi\)
\(660\) 0 0
\(661\) 43.9414 1.70912 0.854562 0.519349i \(-0.173826\pi\)
0.854562 + 0.519349i \(0.173826\pi\)
\(662\) 0 0
\(663\) −17.8310 −0.692500
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −35.4834 −1.37392
\(668\) 0 0
\(669\) −8.52325 −0.329528
\(670\) 0 0
\(671\) −7.93032 −0.306147
\(672\) 0 0
\(673\) −34.5137 −1.33040 −0.665202 0.746663i \(-0.731655\pi\)
−0.665202 + 0.746663i \(0.731655\pi\)
\(674\) 0 0
\(675\) 33.5292 1.29054
\(676\) 0 0
\(677\) 32.3753 1.24428 0.622142 0.782904i \(-0.286263\pi\)
0.622142 + 0.782904i \(0.286263\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −29.4964 −1.13031
\(682\) 0 0
\(683\) −7.82676 −0.299483 −0.149741 0.988725i \(-0.547844\pi\)
−0.149741 + 0.988725i \(0.547844\pi\)
\(684\) 0 0
\(685\) −54.9520 −2.09961
\(686\) 0 0
\(687\) −18.2033 −0.694498
\(688\) 0 0
\(689\) −17.4864 −0.666179
\(690\) 0 0
\(691\) 10.4415 0.397213 0.198607 0.980079i \(-0.436358\pi\)
0.198607 + 0.980079i \(0.436358\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −66.3044 −2.51507
\(696\) 0 0
\(697\) −38.5965 −1.46195
\(698\) 0 0
\(699\) −0.363375 −0.0137441
\(700\) 0 0
\(701\) 49.5542 1.87164 0.935818 0.352482i \(-0.114662\pi\)
0.935818 + 0.352482i \(0.114662\pi\)
\(702\) 0 0
\(703\) −5.34419 −0.201560
\(704\) 0 0
\(705\) −45.6462 −1.71914
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −33.5339 −1.25939 −0.629696 0.776842i \(-0.716820\pi\)
−0.629696 + 0.776842i \(0.716820\pi\)
\(710\) 0 0
\(711\) −0.267553 −0.0100340
\(712\) 0 0
\(713\) 8.40023 0.314591
\(714\) 0 0
\(715\) 7.73057 0.289107
\(716\) 0 0
\(717\) 5.06814 0.189273
\(718\) 0 0
\(719\) 42.1990 1.57376 0.786879 0.617108i \(-0.211696\pi\)
0.786879 + 0.617108i \(0.211696\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −12.3245 −0.458353
\(724\) 0 0
\(725\) −46.3952 −1.72308
\(726\) 0 0
\(727\) 36.5947 1.35722 0.678611 0.734498i \(-0.262582\pi\)
0.678611 + 0.734498i \(0.262582\pi\)
\(728\) 0 0
\(729\) 28.6199 1.06000
\(730\) 0 0
\(731\) 15.3596 0.568095
\(732\) 0 0
\(733\) −17.1700 −0.634190 −0.317095 0.948394i \(-0.602707\pi\)
−0.317095 + 0.948394i \(0.602707\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.18818 −0.154274
\(738\) 0 0
\(739\) −25.9736 −0.955453 −0.477726 0.878509i \(-0.658539\pi\)
−0.477726 + 0.878509i \(0.658539\pi\)
\(740\) 0 0
\(741\) −2.94655 −0.108244
\(742\) 0 0
\(743\) 27.5002 1.00888 0.504442 0.863445i \(-0.331698\pi\)
0.504442 + 0.863445i \(0.331698\pi\)
\(744\) 0 0
\(745\) −21.7099 −0.795390
\(746\) 0 0
\(747\) −13.9690 −0.511099
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 16.9167 0.617298 0.308649 0.951176i \(-0.400123\pi\)
0.308649 + 0.951176i \(0.400123\pi\)
\(752\) 0 0
\(753\) 2.73279 0.0995885
\(754\) 0 0
\(755\) 29.8200 1.08526
\(756\) 0 0
\(757\) 18.8931 0.686683 0.343342 0.939211i \(-0.388441\pi\)
0.343342 + 0.939211i \(0.388441\pi\)
\(758\) 0 0
\(759\) 6.98784 0.253643
\(760\) 0 0
\(761\) 53.7492 1.94841 0.974203 0.225673i \(-0.0724580\pi\)
0.974203 + 0.225673i \(0.0724580\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 21.1706 0.765426
\(766\) 0 0
\(767\) −17.6608 −0.637695
\(768\) 0 0
\(769\) 13.1844 0.475442 0.237721 0.971333i \(-0.423600\pi\)
0.237721 + 0.971333i \(0.423600\pi\)
\(770\) 0 0
\(771\) −1.61738 −0.0582484
\(772\) 0 0
\(773\) 12.6052 0.453377 0.226689 0.973967i \(-0.427210\pi\)
0.226689 + 0.973967i \(0.427210\pi\)
\(774\) 0 0
\(775\) 10.9835 0.394538
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.37802 −0.228516
\(780\) 0 0
\(781\) −3.27448 −0.117170
\(782\) 0 0
\(783\) −44.2508 −1.58139
\(784\) 0 0
\(785\) 57.1364 2.03928
\(786\) 0 0
\(787\) −47.0573 −1.67741 −0.838705 0.544586i \(-0.816687\pi\)
−0.838705 + 0.544586i \(0.816687\pi\)
\(788\) 0 0
\(789\) −11.5165 −0.409999
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −15.1636 −0.538474
\(794\) 0 0
\(795\) −38.0957 −1.35112
\(796\) 0 0
\(797\) 39.5629 1.40139 0.700694 0.713462i \(-0.252874\pi\)
0.700694 + 0.713462i \(0.252874\pi\)
\(798\) 0 0
\(799\) −59.9620 −2.12130
\(800\) 0 0
\(801\) −12.7303 −0.449804
\(802\) 0 0
\(803\) −7.96598 −0.281113
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.74426 0.131804
\(808\) 0 0
\(809\) 52.4636 1.84452 0.922261 0.386567i \(-0.126339\pi\)
0.922261 + 0.386567i \(0.126339\pi\)
\(810\) 0 0
\(811\) −11.3982 −0.400246 −0.200123 0.979771i \(-0.564134\pi\)
−0.200123 + 0.979771i \(0.564134\pi\)
\(812\) 0 0
\(813\) −20.3321 −0.713079
\(814\) 0 0
\(815\) −32.9640 −1.15468
\(816\) 0 0
\(817\) 2.53815 0.0887986
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −48.3729 −1.68823 −0.844113 0.536166i \(-0.819872\pi\)
−0.844113 + 0.536166i \(0.819872\pi\)
\(822\) 0 0
\(823\) −30.5538 −1.06504 −0.532520 0.846418i \(-0.678755\pi\)
−0.532520 + 0.846418i \(0.678755\pi\)
\(824\) 0 0
\(825\) 9.13674 0.318101
\(826\) 0 0
\(827\) 10.8367 0.376827 0.188414 0.982090i \(-0.439665\pi\)
0.188414 + 0.982090i \(0.439665\pi\)
\(828\) 0 0
\(829\) 3.98821 0.138516 0.0692582 0.997599i \(-0.477937\pi\)
0.0692582 + 0.997599i \(0.477937\pi\)
\(830\) 0 0
\(831\) −7.69861 −0.267062
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 58.3327 2.01868
\(836\) 0 0
\(837\) 10.4758 0.362097
\(838\) 0 0
\(839\) −25.7895 −0.890353 −0.445176 0.895443i \(-0.646859\pi\)
−0.445176 + 0.895443i \(0.646859\pi\)
\(840\) 0 0
\(841\) 32.2309 1.11141
\(842\) 0 0
\(843\) 45.0268 1.55080
\(844\) 0 0
\(845\) −28.1953 −0.969948
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.8159 0.405522
\(850\) 0 0
\(851\) 24.2338 0.830725
\(852\) 0 0
\(853\) −22.1041 −0.756830 −0.378415 0.925636i \(-0.623531\pi\)
−0.378415 + 0.925636i \(0.623531\pi\)
\(854\) 0 0
\(855\) 3.49842 0.119643
\(856\) 0 0
\(857\) −4.18342 −0.142903 −0.0714514 0.997444i \(-0.522763\pi\)
−0.0714514 + 0.997444i \(0.522763\pi\)
\(858\) 0 0
\(859\) −13.1003 −0.446976 −0.223488 0.974707i \(-0.571744\pi\)
−0.223488 + 0.974707i \(0.571744\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.83219 0.232570 0.116285 0.993216i \(-0.462901\pi\)
0.116285 + 0.993216i \(0.462901\pi\)
\(864\) 0 0
\(865\) −70.1593 −2.38549
\(866\) 0 0
\(867\) −27.3408 −0.928541
\(868\) 0 0
\(869\) −0.279599 −0.00948474
\(870\) 0 0
\(871\) −8.00822 −0.271348
\(872\) 0 0
\(873\) −5.79541 −0.196145
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 41.0873 1.38742 0.693709 0.720255i \(-0.255975\pi\)
0.693709 + 0.720255i \(0.255975\pi\)
\(878\) 0 0
\(879\) −8.35929 −0.281952
\(880\) 0 0
\(881\) 20.8335 0.701900 0.350950 0.936394i \(-0.385859\pi\)
0.350950 + 0.936394i \(0.385859\pi\)
\(882\) 0 0
\(883\) −24.0758 −0.810215 −0.405108 0.914269i \(-0.632766\pi\)
−0.405108 + 0.914269i \(0.632766\pi\)
\(884\) 0 0
\(885\) −38.4757 −1.29335
\(886\) 0 0
\(887\) −43.4396 −1.45856 −0.729279 0.684217i \(-0.760144\pi\)
−0.729279 + 0.684217i \(0.760144\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 5.20364 0.174328
\(892\) 0 0
\(893\) −9.90863 −0.331580
\(894\) 0 0
\(895\) 41.5543 1.38901
\(896\) 0 0
\(897\) 13.3615 0.446126
\(898\) 0 0
\(899\) −14.4956 −0.483456
\(900\) 0 0
\(901\) −50.0435 −1.66719
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.44415 0.0812465
\(906\) 0 0
\(907\) −13.7357 −0.456087 −0.228043 0.973651i \(-0.573233\pi\)
−0.228043 + 0.973651i \(0.573233\pi\)
\(908\) 0 0
\(909\) 10.0338 0.332800
\(910\) 0 0
\(911\) 34.0715 1.12884 0.564420 0.825488i \(-0.309100\pi\)
0.564420 + 0.825488i \(0.309100\pi\)
\(912\) 0 0
\(913\) −14.5979 −0.483120
\(914\) 0 0
\(915\) −33.0352 −1.09211
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −6.85550 −0.226142 −0.113071 0.993587i \(-0.536069\pi\)
−0.113071 + 0.993587i \(0.536069\pi\)
\(920\) 0 0
\(921\) 21.1210 0.695961
\(922\) 0 0
\(923\) −6.26114 −0.206088
\(924\) 0 0
\(925\) 31.6862 1.04184
\(926\) 0 0
\(927\) −5.57573 −0.183131
\(928\) 0 0
\(929\) 41.7650 1.37027 0.685133 0.728418i \(-0.259744\pi\)
0.685133 + 0.728418i \(0.259744\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 17.4454 0.571136
\(934\) 0 0
\(935\) 22.1238 0.723524
\(936\) 0 0
\(937\) 17.7567 0.580086 0.290043 0.957014i \(-0.406330\pi\)
0.290043 + 0.957014i \(0.406330\pi\)
\(938\) 0 0
\(939\) −10.2189 −0.333482
\(940\) 0 0
\(941\) −4.22123 −0.137608 −0.0688041 0.997630i \(-0.521918\pi\)
−0.0688041 + 0.997630i \(0.521918\pi\)
\(942\) 0 0
\(943\) 28.9218 0.941824
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.4986 −0.633619 −0.316809 0.948489i \(-0.602612\pi\)
−0.316809 + 0.948489i \(0.602612\pi\)
\(948\) 0 0
\(949\) −15.2318 −0.494444
\(950\) 0 0
\(951\) 7.13462 0.231356
\(952\) 0 0
\(953\) 58.9734 1.91034 0.955168 0.296064i \(-0.0956743\pi\)
0.955168 + 0.296064i \(0.0956743\pi\)
\(954\) 0 0
\(955\) 70.4964 2.28121
\(956\) 0 0
\(957\) −12.0584 −0.389792
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −27.5683 −0.889302
\(962\) 0 0
\(963\) 4.71933 0.152078
\(964\) 0 0
\(965\) −20.4467 −0.658202
\(966\) 0 0
\(967\) −30.8592 −0.992366 −0.496183 0.868218i \(-0.665265\pi\)
−0.496183 + 0.868218i \(0.665265\pi\)
\(968\) 0 0
\(969\) −8.43260 −0.270894
\(970\) 0 0
\(971\) −5.55130 −0.178150 −0.0890749 0.996025i \(-0.528391\pi\)
−0.0890749 + 0.996025i \(0.528391\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 17.4704 0.559499
\(976\) 0 0
\(977\) 36.4094 1.16484 0.582420 0.812888i \(-0.302106\pi\)
0.582420 + 0.812888i \(0.302106\pi\)
\(978\) 0 0
\(979\) −13.3035 −0.425181
\(980\) 0 0
\(981\) −8.64377 −0.275974
\(982\) 0 0
\(983\) −36.4131 −1.16140 −0.580699 0.814119i \(-0.697221\pi\)
−0.580699 + 0.814119i \(0.697221\pi\)
\(984\) 0 0
\(985\) 23.7582 0.757000
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −11.5095 −0.365981
\(990\) 0 0
\(991\) 32.1785 1.02218 0.511091 0.859526i \(-0.329241\pi\)
0.511091 + 0.859526i \(0.329241\pi\)
\(992\) 0 0
\(993\) −41.5929 −1.31991
\(994\) 0 0
\(995\) 37.2186 1.17991
\(996\) 0 0
\(997\) −22.7328 −0.719955 −0.359978 0.932961i \(-0.617216\pi\)
−0.359978 + 0.932961i \(0.617216\pi\)
\(998\) 0 0
\(999\) 30.2216 0.956170
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3724.2.a.p.1.2 yes 8
7.6 odd 2 3724.2.a.o.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3724.2.a.o.1.7 8 7.6 odd 2
3724.2.a.p.1.2 yes 8 1.1 even 1 trivial