Properties

Label 3800.2.d.n.3649.4
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.4
Root \(0.264658 - 1.38923i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.n.3649.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.470683i q^{3} +2.71982i q^{7} +2.77846 q^{9} -5.55691 q^{11} -2.02760i q^{13} -3.77846i q^{17} -1.00000 q^{19} -1.28018 q^{21} +5.77846i q^{23} +2.71982i q^{27} +5.66119 q^{29} +7.55691 q^{31} -2.61555i q^{33} -3.75086i q^{37} +0.954357 q^{39} -12.6155 q^{41} +9.43965i q^{43} +11.1138i q^{47} -0.397442 q^{49} +1.77846 q^{51} +8.85170i q^{53} -0.470683i q^{57} -11.4526 q^{59} -10.6155 q^{61} +7.55691i q^{63} -11.5845i q^{67} -2.71982 q^{69} +9.45264i q^{73} -15.1138i q^{77} -8.94137 q^{79} +7.05520 q^{81} +4.94137i q^{83} +2.66463i q^{87} -15.4948 q^{89} +5.51471 q^{91} +3.55691i q^{93} +10.8647i q^{97} -15.4396 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{19} - 26 q^{21} + 14 q^{29} + 12 q^{31} - 6 q^{39} - 44 q^{41} - 24 q^{49} - 6 q^{51} - 22 q^{59} - 32 q^{61} + 2 q^{69} - 52 q^{79} - 26 q^{81} + 12 q^{89} + 58 q^{91} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.470683i 0.271749i 0.990726 + 0.135875i \(0.0433844\pi\)
−0.990726 + 0.135875i \(0.956616\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.71982i 1.02800i 0.857791 + 0.513998i \(0.171836\pi\)
−0.857791 + 0.513998i \(0.828164\pi\)
\(8\) 0 0
\(9\) 2.77846 0.926152
\(10\) 0 0
\(11\) −5.55691 −1.67547 −0.837736 0.546075i \(-0.816121\pi\)
−0.837736 + 0.546075i \(0.816121\pi\)
\(12\) 0 0
\(13\) − 2.02760i − 0.562354i −0.959656 0.281177i \(-0.909275\pi\)
0.959656 0.281177i \(-0.0907249\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.77846i − 0.916410i −0.888846 0.458205i \(-0.848492\pi\)
0.888846 0.458205i \(-0.151508\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.28018 −0.279357
\(22\) 0 0
\(23\) 5.77846i 1.20489i 0.798160 + 0.602446i \(0.205807\pi\)
−0.798160 + 0.602446i \(0.794193\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.71982i 0.523430i
\(28\) 0 0
\(29\) 5.66119 1.05126 0.525628 0.850714i \(-0.323830\pi\)
0.525628 + 0.850714i \(0.323830\pi\)
\(30\) 0 0
\(31\) 7.55691 1.35726 0.678631 0.734479i \(-0.262574\pi\)
0.678631 + 0.734479i \(0.262574\pi\)
\(32\) 0 0
\(33\) − 2.61555i − 0.455308i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 3.75086i − 0.616637i −0.951283 0.308319i \(-0.900234\pi\)
0.951283 0.308319i \(-0.0997663\pi\)
\(38\) 0 0
\(39\) 0.954357 0.152819
\(40\) 0 0
\(41\) −12.6155 −1.97022 −0.985109 0.171932i \(-0.944999\pi\)
−0.985109 + 0.171932i \(0.944999\pi\)
\(42\) 0 0
\(43\) 9.43965i 1.43953i 0.694216 + 0.719766i \(0.255751\pi\)
−0.694216 + 0.719766i \(0.744249\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.1138i 1.62112i 0.585657 + 0.810559i \(0.300837\pi\)
−0.585657 + 0.810559i \(0.699163\pi\)
\(48\) 0 0
\(49\) −0.397442 −0.0567775
\(50\) 0 0
\(51\) 1.77846 0.249034
\(52\) 0 0
\(53\) 8.85170i 1.21587i 0.793985 + 0.607937i \(0.208003\pi\)
−0.793985 + 0.607937i \(0.791997\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 0.470683i − 0.0623435i
\(58\) 0 0
\(59\) −11.4526 −1.49101 −0.745503 0.666502i \(-0.767791\pi\)
−0.745503 + 0.666502i \(0.767791\pi\)
\(60\) 0 0
\(61\) −10.6155 −1.35918 −0.679591 0.733591i \(-0.737843\pi\)
−0.679591 + 0.733591i \(0.737843\pi\)
\(62\) 0 0
\(63\) 7.55691i 0.952082i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 11.5845i − 1.41527i −0.706576 0.707637i \(-0.749761\pi\)
0.706576 0.707637i \(-0.250239\pi\)
\(68\) 0 0
\(69\) −2.71982 −0.327428
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 9.45264i 1.10635i 0.833066 + 0.553174i \(0.186583\pi\)
−0.833066 + 0.553174i \(0.813417\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 15.1138i − 1.72238i
\(78\) 0 0
\(79\) −8.94137 −1.00598 −0.502991 0.864292i \(-0.667767\pi\)
−0.502991 + 0.864292i \(0.667767\pi\)
\(80\) 0 0
\(81\) 7.05520 0.783911
\(82\) 0 0
\(83\) 4.94137i 0.542385i 0.962525 + 0.271193i \(0.0874181\pi\)
−0.962525 + 0.271193i \(0.912582\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.66463i 0.285678i
\(88\) 0 0
\(89\) −15.4948 −1.64245 −0.821225 0.570604i \(-0.806709\pi\)
−0.821225 + 0.570604i \(0.806709\pi\)
\(90\) 0 0
\(91\) 5.51471 0.578099
\(92\) 0 0
\(93\) 3.55691i 0.368835i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.8647i 1.10314i 0.834128 + 0.551571i \(0.185971\pi\)
−0.834128 + 0.551571i \(0.814029\pi\)
\(98\) 0 0
\(99\) −15.4396 −1.55174
\(100\) 0 0
\(101\) 4.49828 0.447596 0.223798 0.974636i \(-0.428154\pi\)
0.223798 + 0.974636i \(0.428154\pi\)
\(102\) 0 0
\(103\) − 4.36641i − 0.430235i −0.976588 0.215117i \(-0.930987\pi\)
0.976588 0.215117i \(-0.0690134\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.64658i − 0.159181i −0.996828 0.0795906i \(-0.974639\pi\)
0.996828 0.0795906i \(-0.0253613\pi\)
\(108\) 0 0
\(109\) 0.954357 0.0914108 0.0457054 0.998955i \(-0.485446\pi\)
0.0457054 + 0.998955i \(0.485446\pi\)
\(110\) 0 0
\(111\) 1.76547 0.167571
\(112\) 0 0
\(113\) − 5.68879i − 0.535156i −0.963536 0.267578i \(-0.913777\pi\)
0.963536 0.267578i \(-0.0862233\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 5.63359i − 0.520826i
\(118\) 0 0
\(119\) 10.2767 0.942067
\(120\) 0 0
\(121\) 19.8793 1.80721
\(122\) 0 0
\(123\) − 5.93793i − 0.535405i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 10.3043i − 0.914362i −0.889374 0.457181i \(-0.848859\pi\)
0.889374 0.457181i \(-0.151141\pi\)
\(128\) 0 0
\(129\) −4.44309 −0.391192
\(130\) 0 0
\(131\) 3.11383 0.272056 0.136028 0.990705i \(-0.456566\pi\)
0.136028 + 0.990705i \(0.456566\pi\)
\(132\) 0 0
\(133\) − 2.71982i − 0.235839i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.4526i 1.14934i 0.818386 + 0.574668i \(0.194869\pi\)
−0.818386 + 0.574668i \(0.805131\pi\)
\(138\) 0 0
\(139\) −9.55691 −0.810607 −0.405303 0.914182i \(-0.632834\pi\)
−0.405303 + 0.914182i \(0.632834\pi\)
\(140\) 0 0
\(141\) −5.23109 −0.440538
\(142\) 0 0
\(143\) 11.2672i 0.942209i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 0.187070i − 0.0154292i
\(148\) 0 0
\(149\) −19.6121 −1.60669 −0.803343 0.595516i \(-0.796948\pi\)
−0.803343 + 0.595516i \(0.796948\pi\)
\(150\) 0 0
\(151\) −17.0518 −1.38765 −0.693826 0.720143i \(-0.744076\pi\)
−0.693826 + 0.720143i \(0.744076\pi\)
\(152\) 0 0
\(153\) − 10.4983i − 0.848736i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 22.4983i − 1.79556i −0.440446 0.897779i \(-0.645180\pi\)
0.440446 0.897779i \(-0.354820\pi\)
\(158\) 0 0
\(159\) −4.16635 −0.330413
\(160\) 0 0
\(161\) −15.7164 −1.23862
\(162\) 0 0
\(163\) − 22.4362i − 1.75734i −0.477430 0.878670i \(-0.658432\pi\)
0.477430 0.878670i \(-0.341568\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 6.69223i − 0.517860i −0.965896 0.258930i \(-0.916630\pi\)
0.965896 0.258930i \(-0.0833699\pi\)
\(168\) 0 0
\(169\) 8.88885 0.683758
\(170\) 0 0
\(171\) −2.77846 −0.212474
\(172\) 0 0
\(173\) 2.86469i 0.217798i 0.994053 + 0.108899i \(0.0347325\pi\)
−0.994053 + 0.108899i \(0.965267\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 5.39057i − 0.405180i
\(178\) 0 0
\(179\) −1.38445 −0.103479 −0.0517394 0.998661i \(-0.516477\pi\)
−0.0517394 + 0.998661i \(0.516477\pi\)
\(180\) 0 0
\(181\) −20.8793 −1.55195 −0.775973 0.630766i \(-0.782741\pi\)
−0.775973 + 0.630766i \(0.782741\pi\)
\(182\) 0 0
\(183\) − 4.99656i − 0.369357i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 20.9966i 1.53542i
\(188\) 0 0
\(189\) −7.39744 −0.538085
\(190\) 0 0
\(191\) 19.2733 1.39457 0.697284 0.716795i \(-0.254392\pi\)
0.697284 + 0.716795i \(0.254392\pi\)
\(192\) 0 0
\(193\) 8.01461i 0.576904i 0.957494 + 0.288452i \(0.0931406\pi\)
−0.957494 + 0.288452i \(0.906859\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.8793i 1.20260i 0.799023 + 0.601300i \(0.205350\pi\)
−0.799023 + 0.601300i \(0.794650\pi\)
\(198\) 0 0
\(199\) −1.28018 −0.0907493 −0.0453746 0.998970i \(-0.514448\pi\)
−0.0453746 + 0.998970i \(0.514448\pi\)
\(200\) 0 0
\(201\) 5.45264 0.384599
\(202\) 0 0
\(203\) 15.3974i 1.08069i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 16.0552i 1.11591i
\(208\) 0 0
\(209\) 5.55691 0.384380
\(210\) 0 0
\(211\) −1.54392 −0.106288 −0.0531441 0.998587i \(-0.516924\pi\)
−0.0531441 + 0.998587i \(0.516924\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 20.5535i 1.39526i
\(218\) 0 0
\(219\) −4.44920 −0.300649
\(220\) 0 0
\(221\) −7.66119 −0.515347
\(222\) 0 0
\(223\) 3.92332i 0.262725i 0.991334 + 0.131363i \(0.0419352\pi\)
−0.991334 + 0.131363i \(0.958065\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.9069i 0.723916i 0.932194 + 0.361958i \(0.117892\pi\)
−0.932194 + 0.361958i \(0.882108\pi\)
\(228\) 0 0
\(229\) −10.1725 −0.672215 −0.336108 0.941824i \(-0.609111\pi\)
−0.336108 + 0.941824i \(0.609111\pi\)
\(230\) 0 0
\(231\) 7.11383 0.468056
\(232\) 0 0
\(233\) 9.11383i 0.597067i 0.954399 + 0.298533i \(0.0964974\pi\)
−0.954399 + 0.298533i \(0.903503\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 4.20855i − 0.273375i
\(238\) 0 0
\(239\) −20.1595 −1.30401 −0.652004 0.758216i \(-0.726071\pi\)
−0.652004 + 0.758216i \(0.726071\pi\)
\(240\) 0 0
\(241\) −4.82410 −0.310748 −0.155374 0.987856i \(-0.549658\pi\)
−0.155374 + 0.987856i \(0.549658\pi\)
\(242\) 0 0
\(243\) 11.4802i 0.736457i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.02760i 0.129013i
\(248\) 0 0
\(249\) −2.32582 −0.147393
\(250\) 0 0
\(251\) −18.2277 −1.15052 −0.575260 0.817971i \(-0.695099\pi\)
−0.575260 + 0.817971i \(0.695099\pi\)
\(252\) 0 0
\(253\) − 32.1104i − 2.01876i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.5941i 1.78365i 0.452382 + 0.891824i \(0.350574\pi\)
−0.452382 + 0.891824i \(0.649426\pi\)
\(258\) 0 0
\(259\) 10.2017 0.633901
\(260\) 0 0
\(261\) 15.7294 0.973624
\(262\) 0 0
\(263\) 27.3776i 1.68817i 0.536206 + 0.844087i \(0.319857\pi\)
−0.536206 + 0.844087i \(0.680143\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 7.29317i − 0.446334i
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) 15.8337 0.961826 0.480913 0.876768i \(-0.340305\pi\)
0.480913 + 0.876768i \(0.340305\pi\)
\(272\) 0 0
\(273\) 2.59568i 0.157098i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 6.70683i − 0.402975i −0.979491 0.201487i \(-0.935423\pi\)
0.979491 0.201487i \(-0.0645775\pi\)
\(278\) 0 0
\(279\) 20.9966 1.25703
\(280\) 0 0
\(281\) 8.38101 0.499969 0.249985 0.968250i \(-0.419574\pi\)
0.249985 + 0.968250i \(0.419574\pi\)
\(282\) 0 0
\(283\) 20.2897i 1.20610i 0.797704 + 0.603050i \(0.206048\pi\)
−0.797704 + 0.603050i \(0.793952\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 34.3121i − 2.02538i
\(288\) 0 0
\(289\) 2.72326 0.160192
\(290\) 0 0
\(291\) −5.11383 −0.299778
\(292\) 0 0
\(293\) 6.76041i 0.394947i 0.980308 + 0.197474i \(0.0632737\pi\)
−0.980308 + 0.197474i \(0.936726\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 15.1138i − 0.876993i
\(298\) 0 0
\(299\) 11.7164 0.677576
\(300\) 0 0
\(301\) −25.6742 −1.47984
\(302\) 0 0
\(303\) 2.11727i 0.121634i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.74398i 0.441972i 0.975277 + 0.220986i \(0.0709276\pi\)
−0.975277 + 0.220986i \(0.929072\pi\)
\(308\) 0 0
\(309\) 2.05520 0.116916
\(310\) 0 0
\(311\) −11.0456 −0.626341 −0.313170 0.949697i \(-0.601391\pi\)
−0.313170 + 0.949697i \(0.601391\pi\)
\(312\) 0 0
\(313\) − 1.16291i − 0.0657315i −0.999460 0.0328658i \(-0.989537\pi\)
0.999460 0.0328658i \(-0.0104634\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 21.8742i − 1.22858i −0.789080 0.614290i \(-0.789443\pi\)
0.789080 0.614290i \(-0.210557\pi\)
\(318\) 0 0
\(319\) −31.4588 −1.76135
\(320\) 0 0
\(321\) 0.775019 0.0432574
\(322\) 0 0
\(323\) 3.77846i 0.210239i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.449200i 0.0248408i
\(328\) 0 0
\(329\) −30.2277 −1.66650
\(330\) 0 0
\(331\) 14.6646 0.806041 0.403020 0.915191i \(-0.367960\pi\)
0.403020 + 0.915191i \(0.367960\pi\)
\(332\) 0 0
\(333\) − 10.4216i − 0.571100i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 20.0958i − 1.09469i −0.836908 0.547344i \(-0.815639\pi\)
0.836908 0.547344i \(-0.184361\pi\)
\(338\) 0 0
\(339\) 2.67762 0.145428
\(340\) 0 0
\(341\) −41.9931 −2.27406
\(342\) 0 0
\(343\) 17.9578i 0.969630i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 11.0586i − 0.593659i −0.954931 0.296829i \(-0.904071\pi\)
0.954931 0.296829i \(-0.0959292\pi\)
\(348\) 0 0
\(349\) −8.11727 −0.434507 −0.217254 0.976115i \(-0.569710\pi\)
−0.217254 + 0.976115i \(0.569710\pi\)
\(350\) 0 0
\(351\) 5.51471 0.294353
\(352\) 0 0
\(353\) − 12.0130i − 0.639387i −0.947521 0.319693i \(-0.896420\pi\)
0.947521 0.319693i \(-0.103580\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.83709i 0.256006i
\(358\) 0 0
\(359\) 17.9509 0.947413 0.473707 0.880683i \(-0.342916\pi\)
0.473707 + 0.880683i \(0.342916\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 9.35685i 0.491108i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 3.11383i − 0.162541i −0.996692 0.0812703i \(-0.974102\pi\)
0.996692 0.0812703i \(-0.0258977\pi\)
\(368\) 0 0
\(369\) −35.0518 −1.82472
\(370\) 0 0
\(371\) −24.0751 −1.24991
\(372\) 0 0
\(373\) 21.8742i 1.13261i 0.824197 + 0.566303i \(0.191627\pi\)
−0.824197 + 0.566303i \(0.808373\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 11.4786i − 0.591179i
\(378\) 0 0
\(379\) 5.28018 0.271224 0.135612 0.990762i \(-0.456700\pi\)
0.135612 + 0.990762i \(0.456700\pi\)
\(380\) 0 0
\(381\) 4.85008 0.248477
\(382\) 0 0
\(383\) 16.1319i 0.824300i 0.911116 + 0.412150i \(0.135222\pi\)
−0.911116 + 0.412150i \(0.864778\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 26.2277i 1.33323i
\(388\) 0 0
\(389\) −3.43965 −0.174397 −0.0871985 0.996191i \(-0.527791\pi\)
−0.0871985 + 0.996191i \(0.527791\pi\)
\(390\) 0 0
\(391\) 21.8337 1.10418
\(392\) 0 0
\(393\) 1.46563i 0.0739311i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 1.29317i − 0.0649021i −0.999473 0.0324511i \(-0.989669\pi\)
0.999473 0.0324511i \(-0.0103313\pi\)
\(398\) 0 0
\(399\) 1.28018 0.0640890
\(400\) 0 0
\(401\) −35.1070 −1.75316 −0.876579 0.481258i \(-0.840180\pi\)
−0.876579 + 0.481258i \(0.840180\pi\)
\(402\) 0 0
\(403\) − 15.3224i − 0.763262i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.8432i 1.03316i
\(408\) 0 0
\(409\) 24.8793 1.23020 0.615101 0.788448i \(-0.289115\pi\)
0.615101 + 0.788448i \(0.289115\pi\)
\(410\) 0 0
\(411\) −6.33193 −0.312331
\(412\) 0 0
\(413\) − 31.1492i − 1.53275i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 4.49828i − 0.220282i
\(418\) 0 0
\(419\) 35.4328 1.73100 0.865502 0.500905i \(-0.167000\pi\)
0.865502 + 0.500905i \(0.167000\pi\)
\(420\) 0 0
\(421\) 14.2147 0.692780 0.346390 0.938091i \(-0.387407\pi\)
0.346390 + 0.938091i \(0.387407\pi\)
\(422\) 0 0
\(423\) 30.8793i 1.50140i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 28.8724i − 1.39723i
\(428\) 0 0
\(429\) −5.30328 −0.256045
\(430\) 0 0
\(431\) −24.4983 −1.18004 −0.590020 0.807388i \(-0.700880\pi\)
−0.590020 + 0.807388i \(0.700880\pi\)
\(432\) 0 0
\(433\) − 9.45426i − 0.454343i −0.973855 0.227171i \(-0.927052\pi\)
0.973855 0.227171i \(-0.0729477\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.77846i − 0.276421i
\(438\) 0 0
\(439\) −9.70340 −0.463118 −0.231559 0.972821i \(-0.574383\pi\)
−0.231559 + 0.972821i \(0.574383\pi\)
\(440\) 0 0
\(441\) −1.10428 −0.0525846
\(442\) 0 0
\(443\) 6.85008i 0.325457i 0.986671 + 0.162729i \(0.0520295\pi\)
−0.986671 + 0.162729i \(0.947971\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 9.23109i − 0.436616i
\(448\) 0 0
\(449\) 25.7655 1.21595 0.607974 0.793957i \(-0.291983\pi\)
0.607974 + 0.793957i \(0.291983\pi\)
\(450\) 0 0
\(451\) 70.1035 3.30105
\(452\) 0 0
\(453\) − 8.02598i − 0.377093i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.400880i 0.0187524i 0.999956 + 0.00937619i \(0.00298458\pi\)
−0.999956 + 0.00937619i \(0.997015\pi\)
\(458\) 0 0
\(459\) 10.2767 0.479677
\(460\) 0 0
\(461\) 23.1070 1.07620 0.538099 0.842882i \(-0.319143\pi\)
0.538099 + 0.842882i \(0.319143\pi\)
\(462\) 0 0
\(463\) − 4.96735i − 0.230852i −0.993316 0.115426i \(-0.963177\pi\)
0.993316 0.115426i \(-0.0368233\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.6190i 1.00041i 0.865908 + 0.500204i \(0.166742\pi\)
−0.865908 + 0.500204i \(0.833258\pi\)
\(468\) 0 0
\(469\) 31.5078 1.45490
\(470\) 0 0
\(471\) 10.5896 0.487942
\(472\) 0 0
\(473\) − 52.4553i − 2.41190i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 24.5941i 1.12608i
\(478\) 0 0
\(479\) −2.20855 −0.100911 −0.0504557 0.998726i \(-0.516067\pi\)
−0.0504557 + 0.998726i \(0.516067\pi\)
\(480\) 0 0
\(481\) −7.60523 −0.346769
\(482\) 0 0
\(483\) − 7.39744i − 0.336595i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 11.4250i − 0.517718i −0.965915 0.258859i \(-0.916654\pi\)
0.965915 0.258859i \(-0.0833465\pi\)
\(488\) 0 0
\(489\) 10.5604 0.477556
\(490\) 0 0
\(491\) 23.6673 1.06809 0.534045 0.845456i \(-0.320671\pi\)
0.534045 + 0.845456i \(0.320671\pi\)
\(492\) 0 0
\(493\) − 21.3906i − 0.963383i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.99312 −0.178757 −0.0893784 0.995998i \(-0.528488\pi\)
−0.0893784 + 0.995998i \(0.528488\pi\)
\(500\) 0 0
\(501\) 3.14992 0.140728
\(502\) 0 0
\(503\) − 0.338809i − 0.0151068i −0.999971 0.00755338i \(-0.997596\pi\)
0.999971 0.00755338i \(-0.00240434\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4.18383i 0.185811i
\(508\) 0 0
\(509\) 28.4914 1.26286 0.631430 0.775433i \(-0.282468\pi\)
0.631430 + 0.775433i \(0.282468\pi\)
\(510\) 0 0
\(511\) −25.7095 −1.13732
\(512\) 0 0
\(513\) − 2.71982i − 0.120083i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 61.7586i − 2.71614i
\(518\) 0 0
\(519\) −1.34836 −0.0591865
\(520\) 0 0
\(521\) 41.4328 1.81520 0.907601 0.419833i \(-0.137911\pi\)
0.907601 + 0.419833i \(0.137911\pi\)
\(522\) 0 0
\(523\) 22.1741i 0.969605i 0.874624 + 0.484802i \(0.161108\pi\)
−0.874624 + 0.484802i \(0.838892\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 28.5535i − 1.24381i
\(528\) 0 0
\(529\) −10.3906 −0.451764
\(530\) 0 0
\(531\) −31.8207 −1.38090
\(532\) 0 0
\(533\) 25.5793i 1.10796i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 0.651639i − 0.0281203i
\(538\) 0 0
\(539\) 2.20855 0.0951291
\(540\) 0 0
\(541\) −7.61211 −0.327270 −0.163635 0.986521i \(-0.552322\pi\)
−0.163635 + 0.986521i \(0.552322\pi\)
\(542\) 0 0
\(543\) − 9.82754i − 0.421740i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 18.3303i − 0.783748i −0.920019 0.391874i \(-0.871827\pi\)
0.920019 0.391874i \(-0.128173\pi\)
\(548\) 0 0
\(549\) −29.4948 −1.25881
\(550\) 0 0
\(551\) −5.66119 −0.241175
\(552\) 0 0
\(553\) − 24.3189i − 1.03415i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 36.7000i 1.55503i 0.628866 + 0.777514i \(0.283519\pi\)
−0.628866 + 0.777514i \(0.716481\pi\)
\(558\) 0 0
\(559\) 19.1398 0.809528
\(560\) 0 0
\(561\) −9.88273 −0.417249
\(562\) 0 0
\(563\) 16.1319i 0.679877i 0.940448 + 0.339939i \(0.110406\pi\)
−0.940448 + 0.339939i \(0.889594\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 19.1889i 0.805858i
\(568\) 0 0
\(569\) 19.2051 0.805120 0.402560 0.915394i \(-0.368120\pi\)
0.402560 + 0.915394i \(0.368120\pi\)
\(570\) 0 0
\(571\) −2.46907 −0.103327 −0.0516636 0.998665i \(-0.516452\pi\)
−0.0516636 + 0.998665i \(0.516452\pi\)
\(572\) 0 0
\(573\) 9.07162i 0.378972i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 11.7233i 0.488046i 0.969769 + 0.244023i \(0.0784672\pi\)
−0.969769 + 0.244023i \(0.921533\pi\)
\(578\) 0 0
\(579\) −3.77234 −0.156773
\(580\) 0 0
\(581\) −13.4396 −0.557571
\(582\) 0 0
\(583\) − 49.1881i − 2.03716i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 8.28973i − 0.342154i −0.985258 0.171077i \(-0.945275\pi\)
0.985258 0.171077i \(-0.0547246\pi\)
\(588\) 0 0
\(589\) −7.55691 −0.311377
\(590\) 0 0
\(591\) −7.94480 −0.326806
\(592\) 0 0
\(593\) 31.5760i 1.29667i 0.761354 + 0.648336i \(0.224535\pi\)
−0.761354 + 0.648336i \(0.775465\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 0.602558i − 0.0246610i
\(598\) 0 0
\(599\) −1.28629 −0.0525564 −0.0262782 0.999655i \(-0.508366\pi\)
−0.0262782 + 0.999655i \(0.508366\pi\)
\(600\) 0 0
\(601\) 38.8432 1.58445 0.792224 0.610231i \(-0.208923\pi\)
0.792224 + 0.610231i \(0.208923\pi\)
\(602\) 0 0
\(603\) − 32.1871i − 1.31076i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 43.6888i 1.77327i 0.462467 + 0.886637i \(0.346964\pi\)
−0.462467 + 0.886637i \(0.653036\pi\)
\(608\) 0 0
\(609\) −7.24732 −0.293676
\(610\) 0 0
\(611\) 22.5344 0.911643
\(612\) 0 0
\(613\) 30.8172i 1.24470i 0.782741 + 0.622348i \(0.213821\pi\)
−0.782741 + 0.622348i \(0.786179\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.4983i 0.422645i 0.977416 + 0.211322i \(0.0677770\pi\)
−0.977416 + 0.211322i \(0.932223\pi\)
\(618\) 0 0
\(619\) −13.3224 −0.535472 −0.267736 0.963492i \(-0.586275\pi\)
−0.267736 + 0.963492i \(0.586275\pi\)
\(620\) 0 0
\(621\) −15.7164 −0.630677
\(622\) 0 0
\(623\) − 42.1432i − 1.68843i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.61555i 0.104455i
\(628\) 0 0
\(629\) −14.1725 −0.565093
\(630\) 0 0
\(631\) 1.21199 0.0482486 0.0241243 0.999709i \(-0.492320\pi\)
0.0241243 + 0.999709i \(0.492320\pi\)
\(632\) 0 0
\(633\) − 0.726700i − 0.0288837i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.805853i 0.0319291i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −49.6965 −1.96289 −0.981447 0.191732i \(-0.938589\pi\)
−0.981447 + 0.191732i \(0.938589\pi\)
\(642\) 0 0
\(643\) 39.0449i 1.53978i 0.638177 + 0.769890i \(0.279689\pi\)
−0.638177 + 0.769890i \(0.720311\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 28.4232i − 1.11743i −0.829359 0.558716i \(-0.811294\pi\)
0.829359 0.558716i \(-0.188706\pi\)
\(648\) 0 0
\(649\) 63.6413 2.49814
\(650\) 0 0
\(651\) −9.67418 −0.379161
\(652\) 0 0
\(653\) − 29.0586i − 1.13715i −0.822631 0.568576i \(-0.807494\pi\)
0.822631 0.568576i \(-0.192506\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 26.2637i 1.02465i
\(658\) 0 0
\(659\) −11.8957 −0.463392 −0.231696 0.972788i \(-0.574427\pi\)
−0.231696 + 0.972788i \(0.574427\pi\)
\(660\) 0 0
\(661\) 30.8923 1.20157 0.600785 0.799410i \(-0.294855\pi\)
0.600785 + 0.799410i \(0.294855\pi\)
\(662\) 0 0
\(663\) − 3.60600i − 0.140045i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 32.7129i 1.26665i
\(668\) 0 0
\(669\) −1.84664 −0.0713953
\(670\) 0 0
\(671\) 58.9897 2.27727
\(672\) 0 0
\(673\) − 37.5354i − 1.44688i −0.690385 0.723442i \(-0.742559\pi\)
0.690385 0.723442i \(-0.257441\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 31.6466i − 1.21628i −0.793831 0.608138i \(-0.791917\pi\)
0.793831 0.608138i \(-0.208083\pi\)
\(678\) 0 0
\(679\) −29.5500 −1.13403
\(680\) 0 0
\(681\) −5.13369 −0.196724
\(682\) 0 0
\(683\) − 22.6233i − 0.865656i −0.901477 0.432828i \(-0.857516\pi\)
0.901477 0.432828i \(-0.142484\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 4.78801i − 0.182674i
\(688\) 0 0
\(689\) 17.9477 0.683752
\(690\) 0 0
\(691\) 17.7655 0.675830 0.337915 0.941177i \(-0.390278\pi\)
0.337915 + 0.941177i \(0.390278\pi\)
\(692\) 0 0
\(693\) − 41.9931i − 1.59519i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 47.6673i 1.80553i
\(698\) 0 0
\(699\) −4.28973 −0.162252
\(700\) 0 0
\(701\) 25.6052 0.967096 0.483548 0.875318i \(-0.339348\pi\)
0.483548 + 0.875318i \(0.339348\pi\)
\(702\) 0 0
\(703\) 3.75086i 0.141466i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.2345i 0.460127i
\(708\) 0 0
\(709\) −23.2311 −0.872462 −0.436231 0.899835i \(-0.643687\pi\)
−0.436231 + 0.899835i \(0.643687\pi\)
\(710\) 0 0
\(711\) −24.8432 −0.931693
\(712\) 0 0
\(713\) 43.6673i 1.63535i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 9.48873i − 0.354363i
\(718\) 0 0
\(719\) −24.9544 −0.930640 −0.465320 0.885142i \(-0.654061\pi\)
−0.465320 + 0.885142i \(0.654061\pi\)
\(720\) 0 0
\(721\) 11.8759 0.442280
\(722\) 0 0
\(723\) − 2.27062i − 0.0844454i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 3.39744i − 0.126004i −0.998013 0.0630021i \(-0.979933\pi\)
0.998013 0.0630021i \(-0.0200675\pi\)
\(728\) 0 0
\(729\) 15.7620 0.583779
\(730\) 0 0
\(731\) 35.6673 1.31920
\(732\) 0 0
\(733\) 9.66730i 0.357070i 0.983934 + 0.178535i \(0.0571358\pi\)
−0.983934 + 0.178535i \(0.942864\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 64.3741i 2.37125i
\(738\) 0 0
\(739\) −17.0225 −0.626184 −0.313092 0.949723i \(-0.601365\pi\)
−0.313092 + 0.949723i \(0.601365\pi\)
\(740\) 0 0
\(741\) −0.954357 −0.0350592
\(742\) 0 0
\(743\) − 8.57496i − 0.314585i −0.987552 0.157292i \(-0.949723\pi\)
0.987552 0.157292i \(-0.0502765\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 13.7294i 0.502332i
\(748\) 0 0
\(749\) 4.47842 0.163638
\(750\) 0 0
\(751\) 12.8310 0.468209 0.234104 0.972211i \(-0.424784\pi\)
0.234104 + 0.972211i \(0.424784\pi\)
\(752\) 0 0
\(753\) − 8.57946i − 0.312653i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 35.8827i − 1.30418i −0.758142 0.652090i \(-0.773892\pi\)
0.758142 0.652090i \(-0.226108\pi\)
\(758\) 0 0
\(759\) 15.1138 0.548597
\(760\) 0 0
\(761\) −30.1234 −1.09197 −0.545986 0.837794i \(-0.683845\pi\)
−0.545986 + 0.837794i \(0.683845\pi\)
\(762\) 0 0
\(763\) 2.59568i 0.0939700i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.2213i 0.838474i
\(768\) 0 0
\(769\) 6.22154 0.224355 0.112177 0.993688i \(-0.464218\pi\)
0.112177 + 0.993688i \(0.464218\pi\)
\(770\) 0 0
\(771\) −13.4588 −0.484705
\(772\) 0 0
\(773\) − 10.2362i − 0.368169i −0.982910 0.184084i \(-0.941068\pi\)
0.982910 0.184084i \(-0.0589320\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4.80176i 0.172262i
\(778\) 0 0
\(779\) 12.6155 0.451999
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 15.3974i 0.550260i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 4.34654i − 0.154937i −0.996995 0.0774687i \(-0.975316\pi\)
0.996995 0.0774687i \(-0.0246838\pi\)
\(788\) 0 0
\(789\) −12.8862 −0.458760
\(790\) 0 0
\(791\) 15.4725 0.550139
\(792\) 0 0
\(793\) 21.5241i 0.764342i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 30.1932i − 1.06950i −0.845011 0.534749i \(-0.820406\pi\)
0.845011 0.534749i \(-0.179594\pi\)
\(798\) 0 0
\(799\) 41.9931 1.48561
\(800\) 0 0
\(801\) −43.0518 −1.52116
\(802\) 0 0
\(803\) − 52.5275i − 1.85366i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.58957i 0.231964i
\(808\) 0 0
\(809\) 11.8077 0.415136 0.207568 0.978221i \(-0.433445\pi\)
0.207568 + 0.978221i \(0.433445\pi\)
\(810\) 0 0
\(811\) 0.811111 0.0284820 0.0142410 0.999899i \(-0.495467\pi\)
0.0142410 + 0.999899i \(0.495467\pi\)
\(812\) 0 0
\(813\) 7.45264i 0.261375i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 9.43965i − 0.330251i
\(818\) 0 0
\(819\) 15.3224 0.535407
\(820\) 0 0
\(821\) 40.6707 1.41942 0.709709 0.704495i \(-0.248826\pi\)
0.709709 + 0.704495i \(0.248826\pi\)
\(822\) 0 0
\(823\) 7.48185i 0.260801i 0.991461 + 0.130401i \(0.0416263\pi\)
−0.991461 + 0.130401i \(0.958374\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 46.4346i − 1.61469i −0.590080 0.807344i \(-0.700904\pi\)
0.590080 0.807344i \(-0.299096\pi\)
\(828\) 0 0
\(829\) 10.7267 0.372554 0.186277 0.982497i \(-0.440358\pi\)
0.186277 + 0.982497i \(0.440358\pi\)
\(830\) 0 0
\(831\) 3.15680 0.109508
\(832\) 0 0
\(833\) 1.50172i 0.0520315i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 20.5535i 0.710432i
\(838\) 0 0
\(839\) −10.1465 −0.350295 −0.175148 0.984542i \(-0.556040\pi\)
−0.175148 + 0.984542i \(0.556040\pi\)
\(840\) 0 0
\(841\) 3.04908 0.105141
\(842\) 0 0
\(843\) 3.94480i 0.135866i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 54.0682i 1.85780i
\(848\) 0 0
\(849\) −9.55004 −0.327756
\(850\) 0 0
\(851\) 21.6742 0.742981
\(852\) 0 0
\(853\) 26.1104i 0.894003i 0.894533 + 0.447001i \(0.147508\pi\)
−0.894533 + 0.447001i \(0.852492\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.6922i 0.706833i 0.935466 + 0.353416i \(0.114980\pi\)
−0.935466 + 0.353416i \(0.885020\pi\)
\(858\) 0 0
\(859\) −3.53093 −0.120474 −0.0602370 0.998184i \(-0.519186\pi\)
−0.0602370 + 0.998184i \(0.519186\pi\)
\(860\) 0 0
\(861\) 16.1501 0.550395
\(862\) 0 0
\(863\) 3.39906i 0.115705i 0.998325 + 0.0578527i \(0.0184254\pi\)
−0.998325 + 0.0578527i \(0.981575\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.28179i 0.0435320i
\(868\) 0 0
\(869\) 49.6864 1.68550
\(870\) 0 0
\(871\) −23.4887 −0.795885
\(872\) 0 0
\(873\) 30.1871i 1.02168i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 0.422364i − 0.0142622i −0.999975 0.00713111i \(-0.997730\pi\)
0.999975 0.00713111i \(-0.00226992\pi\)
\(878\) 0 0
\(879\) −3.18201 −0.107327
\(880\) 0 0
\(881\) 16.5243 0.556716 0.278358 0.960477i \(-0.410210\pi\)
0.278358 + 0.960477i \(0.410210\pi\)
\(882\) 0 0
\(883\) − 24.5535i − 0.826290i −0.910665 0.413145i \(-0.864430\pi\)
0.910665 0.413145i \(-0.135570\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 41.5975i − 1.39671i −0.715753 0.698354i \(-0.753916\pi\)
0.715753 0.698354i \(-0.246084\pi\)
\(888\) 0 0
\(889\) 28.0260 0.939961
\(890\) 0 0
\(891\) −39.2051 −1.31342
\(892\) 0 0
\(893\) − 11.1138i − 0.371910i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.51471i 0.184131i
\(898\) 0 0
\(899\) 42.7811 1.42683
\(900\) 0 0
\(901\) 33.4458 1.11424
\(902\) 0 0
\(903\) − 12.0844i − 0.402144i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 31.9294i 1.06020i 0.847935 + 0.530100i \(0.177846\pi\)
−0.847935 + 0.530100i \(0.822154\pi\)
\(908\) 0 0
\(909\) 12.4983 0.414542
\(910\) 0 0
\(911\) 26.9605 0.893240 0.446620 0.894724i \(-0.352628\pi\)
0.446620 + 0.894724i \(0.352628\pi\)
\(912\) 0 0
\(913\) − 27.4588i − 0.908752i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.46907i 0.279673i
\(918\) 0 0
\(919\) 0.394005 0.0129970 0.00649850 0.999979i \(-0.497931\pi\)
0.00649850 + 0.999979i \(0.497931\pi\)
\(920\) 0 0
\(921\) −3.64496 −0.120106
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 12.1319i − 0.398463i
\(928\) 0 0
\(929\) 32.9284 1.08035 0.540173 0.841554i \(-0.318359\pi\)
0.540173 + 0.841554i \(0.318359\pi\)
\(930\) 0 0
\(931\) 0.397442 0.0130256
\(932\) 0 0
\(933\) − 5.19900i − 0.170208i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 26.3388i − 0.860451i −0.902721 0.430226i \(-0.858434\pi\)
0.902721 0.430226i \(-0.141566\pi\)
\(938\) 0 0
\(939\) 0.547362 0.0178625
\(940\) 0 0
\(941\) 4.71982 0.153862 0.0769309 0.997036i \(-0.475488\pi\)
0.0769309 + 0.997036i \(0.475488\pi\)
\(942\) 0 0
\(943\) − 72.8984i − 2.37390i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 53.9639i 1.75359i 0.480863 + 0.876796i \(0.340323\pi\)
−0.480863 + 0.876796i \(0.659677\pi\)
\(948\) 0 0
\(949\) 19.1661 0.622159
\(950\) 0 0
\(951\) 10.2958 0.333866
\(952\) 0 0
\(953\) 13.0801i 0.423707i 0.977301 + 0.211853i \(0.0679499\pi\)
−0.977301 + 0.211853i \(0.932050\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 14.8071i − 0.478646i
\(958\) 0 0
\(959\) −36.5888 −1.18151
\(960\) 0 0
\(961\) 26.1070 0.842160
\(962\) 0 0
\(963\) − 4.57496i − 0.147426i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10.4914i 0.337381i 0.985669 + 0.168690i \(0.0539538\pi\)
−0.985669 + 0.168690i \(0.946046\pi\)
\(968\) 0 0
\(969\) −1.77846 −0.0571323
\(970\) 0 0
\(971\) −12.4691 −0.400151 −0.200076 0.979780i \(-0.564119\pi\)
−0.200076 + 0.979780i \(0.564119\pi\)
\(972\) 0 0
\(973\) − 25.9931i − 0.833301i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 52.4699i − 1.67866i −0.543621 0.839331i \(-0.682947\pi\)
0.543621 0.839331i \(-0.317053\pi\)
\(978\) 0 0
\(979\) 86.1035 2.75188
\(980\) 0 0
\(981\) 2.65164 0.0846603
\(982\) 0 0
\(983\) − 14.1939i − 0.452717i −0.974044 0.226358i \(-0.927318\pi\)
0.974044 0.226358i \(-0.0726820\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 14.2277i − 0.452871i
\(988\) 0 0
\(989\) −54.5466 −1.73448
\(990\) 0 0
\(991\) 19.4036 0.616374 0.308187 0.951326i \(-0.400278\pi\)
0.308187 + 0.951326i \(0.400278\pi\)
\(992\) 0 0
\(993\) 6.90240i 0.219041i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 8.14648i − 0.258002i −0.991644 0.129001i \(-0.958823\pi\)
0.991644 0.129001i \(-0.0411770\pi\)
\(998\) 0 0
\(999\) 10.2017 0.322767
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.n.3649.4 6
5.2 odd 4 3800.2.a.w.1.2 3
5.3 odd 4 760.2.a.i.1.2 3
5.4 even 2 inner 3800.2.d.n.3649.3 6
15.8 even 4 6840.2.a.bm.1.3 3
20.3 even 4 1520.2.a.q.1.2 3
20.7 even 4 7600.2.a.bp.1.2 3
40.3 even 4 6080.2.a.br.1.2 3
40.13 odd 4 6080.2.a.bx.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.i.1.2 3 5.3 odd 4
1520.2.a.q.1.2 3 20.3 even 4
3800.2.a.w.1.2 3 5.2 odd 4
3800.2.d.n.3649.3 6 5.4 even 2 inner
3800.2.d.n.3649.4 6 1.1 even 1 trivial
6080.2.a.br.1.2 3 40.3 even 4
6080.2.a.bx.1.2 3 40.13 odd 4
6840.2.a.bm.1.3 3 15.8 even 4
7600.2.a.bp.1.2 3 20.7 even 4