Properties

Label 3822.2.bi
Level $3822$
Weight $2$
Character orbit 3822.bi
Rep. character $\chi_{3822}(803,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $372$
Sturm bound $1568$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.bi (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 273 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1568\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3822, [\chi])\).

Total New Old
Modular forms 1632 372 1260
Cusp forms 1504 372 1132
Eisenstein series 128 0 128

Trace form

\( 372 q + 372 q^{4} + 8 q^{9} - 2 q^{13} + 24 q^{15} + 372 q^{16} - 36 q^{18} + 14 q^{19} + 182 q^{25} + 2 q^{30} + 16 q^{31} - 12 q^{33} + 8 q^{36} - 14 q^{39} - 14 q^{43} - 18 q^{51} - 2 q^{52} + 36 q^{54}+ \cdots + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3822, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3822, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3822, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(546, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1911, [\chi])\)\(^{\oplus 2}\)