Properties

Label 3840.1.dy.a
Level $3840$
Weight $1$
Character orbit 3840.dy
Analytic conductor $1.916$
Analytic rank $0$
Dimension $64$
Projective image $D_{64}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,1,Mod(29,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(64))
 
chi = DirichletCharacter(H, H._module([0, 59, 32, 32]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3840.dy (of order \(64\), degree \(32\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(2\) over \(\Q(\zeta_{64})\)
Coefficient field: \(\Q(\zeta_{128})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{64} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{64}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{64} + \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{128}^{29} q^{2} - \zeta_{128} q^{3} + \zeta_{128}^{58} q^{4} - \zeta_{128}^{11} q^{5} + \zeta_{128}^{30} q^{6} + \zeta_{128}^{23} q^{8} + \zeta_{128}^{2} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{128}^{29} q^{2} - \zeta_{128} q^{3} + \zeta_{128}^{58} q^{4} - \zeta_{128}^{11} q^{5} + \zeta_{128}^{30} q^{6} + \zeta_{128}^{23} q^{8} + \zeta_{128}^{2} q^{9} + \zeta_{128}^{40} q^{10} - \zeta_{128}^{59} q^{12} + \zeta_{128}^{12} q^{15} - \zeta_{128}^{52} q^{16} + ( - \zeta_{128}^{25} + \zeta_{128}^{15}) q^{17} - \zeta_{128}^{31} q^{18} + (\zeta_{128}^{38} - \zeta_{128}^{20}) q^{19} + \zeta_{128}^{5} q^{20} + ( - \zeta_{128}^{45} - \zeta_{128}^{7}) q^{23} - \zeta_{128}^{24} q^{24} + \zeta_{128}^{22} q^{25} - \zeta_{128}^{3} q^{27} - \zeta_{128}^{41} q^{30} + (\zeta_{128}^{62} - \zeta_{128}^{50}) q^{31} - \zeta_{128}^{17} q^{32} + (\zeta_{128}^{54} - \zeta_{128}^{44}) q^{34} + \zeta_{128}^{60} q^{36} + (\zeta_{128}^{49} + \zeta_{128}^{3}) q^{38} - \zeta_{128}^{34} q^{40} - \zeta_{128}^{13} q^{45} + (\zeta_{128}^{36} - \zeta_{128}^{10}) q^{46} + ( - \zeta_{128}^{53} - \zeta_{128}^{19}) q^{47} + \zeta_{128}^{53} q^{48} - \zeta_{128}^{28} q^{49} - \zeta_{128}^{51} q^{50} + (\zeta_{128}^{26} - \zeta_{128}^{16}) q^{51} + (\zeta_{128}^{41} - \zeta_{128}^{5}) q^{53} + \zeta_{128}^{32} q^{54} + ( - \zeta_{128}^{39} + \zeta_{128}^{21}) q^{57} - \zeta_{128}^{6} q^{60} + ( - \zeta_{128}^{56} + \zeta_{128}^{42}) q^{61} + (\zeta_{128}^{27} - \zeta_{128}^{15}) q^{62} + \zeta_{128}^{46} q^{64} + (\zeta_{128}^{19} - \zeta_{128}^{9}) q^{68} + (\zeta_{128}^{46} + \zeta_{128}^{8}) q^{69} + \zeta_{128}^{25} q^{72} - \zeta_{128}^{23} q^{75} + ( - \zeta_{128}^{32} + \zeta_{128}^{14}) q^{76} + (\zeta_{128}^{48} - \zeta_{128}^{8}) q^{79} + \zeta_{128}^{63} q^{80} + \zeta_{128}^{4} q^{81} + (\zeta_{128}^{47} + \zeta_{128}^{43}) q^{83} + (\zeta_{128}^{36} - \zeta_{128}^{26}) q^{85} + \zeta_{128}^{42} q^{90} + (\zeta_{128}^{39} + \zeta_{128}) q^{92} + ( - \zeta_{128}^{63} + \zeta_{128}^{51}) q^{93} + (\zeta_{128}^{48} - \zeta_{128}^{18}) q^{94} + ( - \zeta_{128}^{49} + \zeta_{128}^{31}) q^{95} + \zeta_{128}^{18} q^{96} + \zeta_{128}^{57} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q+O(q^{10}) \) Copy content Toggle raw display \( 64 q+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(\zeta_{128}^{22}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1
0.671559 + 0.740951i
−0.671559 0.740951i
−0.941544 0.336890i
0.941544 + 0.336890i
−0.595699 + 0.803208i
0.595699 0.803208i
−0.989177 0.146730i
0.989177 + 0.146730i
0.903989 + 0.427555i
−0.903989 0.427555i
0.998795 0.0490677i
−0.998795 + 0.0490677i
0.242980 0.970031i
−0.242980 + 0.970031i
0.970031 0.242980i
−0.970031 + 0.242980i
0.998795 + 0.0490677i
−0.998795 0.0490677i
0.903989 0.427555i
−0.903989 + 0.427555i
−0.595699 + 0.803208i −0.671559 0.740951i −0.290285 0.956940i 0.970031 0.242980i 0.995185 0.0980171i 0 0.941544 + 0.336890i −0.0980171 + 0.995185i −0.382683 + 0.923880i
29.2 0.595699 0.803208i 0.671559 + 0.740951i −0.290285 0.956940i −0.970031 + 0.242980i 0.995185 0.0980171i 0 −0.941544 0.336890i −0.0980171 + 0.995185i −0.382683 + 0.923880i
149.1 −0.857729 0.514103i 0.941544 + 0.336890i 0.471397 + 0.881921i −0.803208 0.595699i −0.634393 0.773010i 0 0.0490677 0.998795i 0.773010 + 0.634393i 0.382683 + 0.923880i
149.2 0.857729 + 0.514103i −0.941544 0.336890i 0.471397 + 0.881921i 0.803208 + 0.595699i −0.634393 0.773010i 0 −0.0490677 + 0.998795i 0.773010 + 0.634393i 0.382683 + 0.923880i
269.1 −0.336890 0.941544i 0.595699 0.803208i −0.773010 + 0.634393i −0.671559 + 0.740951i −0.956940 0.290285i 0 0.857729 + 0.514103i −0.290285 0.956940i 0.923880 + 0.382683i
269.2 0.336890 + 0.941544i −0.595699 + 0.803208i −0.773010 + 0.634393i 0.671559 0.740951i −0.956940 0.290285i 0 −0.857729 0.514103i −0.290285 0.956940i 0.923880 + 0.382683i
389.1 −0.427555 0.903989i 0.989177 + 0.146730i −0.634393 + 0.773010i −0.0490677 + 0.998795i −0.290285 0.956940i 0 0.970031 + 0.242980i 0.956940 + 0.290285i 0.923880 0.382683i
389.2 0.427555 + 0.903989i −0.989177 0.146730i −0.634393 + 0.773010i 0.0490677 0.998795i −0.290285 0.956940i 0 −0.970031 0.242980i 0.956940 + 0.290285i 0.923880 0.382683i
509.1 −0.970031 0.242980i −0.903989 0.427555i 0.881921 + 0.471397i −0.146730 + 0.989177i 0.773010 + 0.634393i 0 −0.740951 0.671559i 0.634393 + 0.773010i 0.382683 0.923880i
509.2 0.970031 + 0.242980i 0.903989 + 0.427555i 0.881921 + 0.471397i 0.146730 0.989177i 0.773010 + 0.634393i 0 0.740951 + 0.671559i 0.634393 + 0.773010i 0.382683 0.923880i
629.1 −0.146730 + 0.989177i −0.998795 + 0.0490677i −0.956940 0.290285i −0.857729 + 0.514103i 0.0980171 0.995185i 0 0.427555 0.903989i 0.995185 0.0980171i −0.382683 0.923880i
629.2 0.146730 0.989177i 0.998795 0.0490677i −0.956940 0.290285i 0.857729 0.514103i 0.0980171 0.995185i 0 −0.427555 + 0.903989i 0.995185 0.0980171i −0.382683 0.923880i
749.1 −0.740951 + 0.671559i −0.242980 + 0.970031i 0.0980171 0.995185i 0.427555 + 0.903989i −0.471397 0.881921i 0 0.595699 + 0.803208i −0.881921 0.471397i −0.923880 0.382683i
749.2 0.740951 0.671559i 0.242980 0.970031i 0.0980171 0.995185i −0.427555 0.903989i −0.471397 0.881921i 0 −0.595699 0.803208i −0.881921 0.471397i −0.923880 0.382683i
869.1 −0.671559 + 0.740951i −0.970031 + 0.242980i −0.0980171 0.995185i 0.903989 + 0.427555i 0.471397 0.881921i 0 0.803208 + 0.595699i 0.881921 0.471397i −0.923880 + 0.382683i
869.2 0.671559 0.740951i 0.970031 0.242980i −0.0980171 0.995185i −0.903989 0.427555i 0.471397 0.881921i 0 −0.803208 0.595699i 0.881921 0.471397i −0.923880 + 0.382683i
989.1 −0.146730 0.989177i −0.998795 0.0490677i −0.956940 + 0.290285i −0.857729 0.514103i 0.0980171 + 0.995185i 0 0.427555 + 0.903989i 0.995185 + 0.0980171i −0.382683 + 0.923880i
989.2 0.146730 + 0.989177i 0.998795 + 0.0490677i −0.956940 + 0.290285i 0.857729 + 0.514103i 0.0980171 + 0.995185i 0 −0.427555 0.903989i 0.995185 + 0.0980171i −0.382683 + 0.923880i
1109.1 −0.970031 + 0.242980i −0.903989 + 0.427555i 0.881921 0.471397i −0.146730 0.989177i 0.773010 0.634393i 0 −0.740951 + 0.671559i 0.634393 0.773010i 0.382683 + 0.923880i
1109.2 0.970031 0.242980i 0.903989 0.427555i 0.881921 0.471397i 0.146730 + 0.989177i 0.773010 0.634393i 0 0.740951 0.671559i 0.634393 0.773010i 0.382683 + 0.923880i
See all 64 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
256.m even 64 1 inner
768.y odd 64 1 inner
1280.bw even 64 1 inner
3840.dy odd 64 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3840.1.dy.a 64
3.b odd 2 1 inner 3840.1.dy.a 64
5.b even 2 1 inner 3840.1.dy.a 64
15.d odd 2 1 CM 3840.1.dy.a 64
256.m even 64 1 inner 3840.1.dy.a 64
768.y odd 64 1 inner 3840.1.dy.a 64
1280.bw even 64 1 inner 3840.1.dy.a 64
3840.dy odd 64 1 inner 3840.1.dy.a 64
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3840.1.dy.a 64 1.a even 1 1 trivial
3840.1.dy.a 64 3.b odd 2 1 inner
3840.1.dy.a 64 5.b even 2 1 inner
3840.1.dy.a 64 15.d odd 2 1 CM
3840.1.dy.a 64 256.m even 64 1 inner
3840.1.dy.a 64 768.y odd 64 1 inner
3840.1.dy.a 64 1280.bw even 64 1 inner
3840.1.dy.a 64 3840.dy odd 64 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(3840, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{64} + 1 \) Copy content Toggle raw display
$3$ \( T^{64} + 1 \) Copy content Toggle raw display
$5$ \( T^{64} + 1 \) Copy content Toggle raw display
$7$ \( T^{64} \) Copy content Toggle raw display
$11$ \( T^{64} \) Copy content Toggle raw display
$13$ \( T^{64} \) Copy content Toggle raw display
$17$ \( T^{64} - 1664 T^{50} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( (T^{32} + 80 T^{26} + \cdots + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{64} + 64 T^{42} + \cdots + 4 \) Copy content Toggle raw display
$29$ \( T^{64} \) Copy content Toggle raw display
$31$ \( (T^{32} + 280 T^{24} + \cdots + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{64} \) Copy content Toggle raw display
$41$ \( T^{64} \) Copy content Toggle raw display
$43$ \( T^{64} \) Copy content Toggle raw display
$47$ \( T^{64} - 1664 T^{50} + \cdots + 4 \) Copy content Toggle raw display
$53$ \( T^{64} + 64 T^{60} + \cdots + 16 \) Copy content Toggle raw display
$59$ \( T^{64} \) Copy content Toggle raw display
$61$ \( (T^{32} + 4 T^{24} + \cdots + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{64} \) Copy content Toggle raw display
$71$ \( T^{64} \) Copy content Toggle raw display
$73$ \( T^{64} \) Copy content Toggle raw display
$79$ \( (T^{8} + 8 T^{5} + 2 T^{4} + \cdots + 2)^{8} \) Copy content Toggle raw display
$83$ \( T^{64} + 7280 T^{48} + \cdots + 16 \) Copy content Toggle raw display
$89$ \( T^{64} \) Copy content Toggle raw display
$97$ \( T^{64} \) Copy content Toggle raw display
show more
show less