Properties

Label 3840.2.a.bm.1.1
Level $3840$
Weight $2$
Character 3840.1
Self dual yes
Analytic conductor $30.663$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(1,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3840.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} +2.00000 q^{7} +1.00000 q^{9} -0.828427 q^{11} -0.828427 q^{13} +1.00000 q^{15} +2.82843 q^{17} +2.00000 q^{21} +5.65685 q^{23} +1.00000 q^{25} +1.00000 q^{27} -3.65685 q^{29} +1.17157 q^{31} -0.828427 q^{33} +2.00000 q^{35} +6.48528 q^{37} -0.828427 q^{39} -3.65685 q^{41} +1.65685 q^{43} +1.00000 q^{45} -1.65685 q^{47} -3.00000 q^{49} +2.82843 q^{51} +11.6569 q^{53} -0.828427 q^{55} +4.82843 q^{59} -9.65685 q^{61} +2.00000 q^{63} -0.828427 q^{65} -9.65685 q^{67} +5.65685 q^{69} +13.6569 q^{71} +9.31371 q^{73} +1.00000 q^{75} -1.65685 q^{77} +12.4853 q^{79} +1.00000 q^{81} +2.82843 q^{85} -3.65685 q^{87} -4.34315 q^{89} -1.65685 q^{91} +1.17157 q^{93} +7.65685 q^{97} -0.828427 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} + 4 q^{7} + 2 q^{9} + 4 q^{11} + 4 q^{13} + 2 q^{15} + 4 q^{21} + 2 q^{25} + 2 q^{27} + 4 q^{29} + 8 q^{31} + 4 q^{33} + 4 q^{35} - 4 q^{37} + 4 q^{39} + 4 q^{41} - 8 q^{43} + 2 q^{45}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.828427 −0.249780 −0.124890 0.992171i \(-0.539858\pi\)
−0.124890 + 0.992171i \(0.539858\pi\)
\(12\) 0 0
\(13\) −0.828427 −0.229764 −0.114882 0.993379i \(-0.536649\pi\)
−0.114882 + 0.993379i \(0.536649\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 2.82843 0.685994 0.342997 0.939336i \(-0.388558\pi\)
0.342997 + 0.939336i \(0.388558\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 5.65685 1.17954 0.589768 0.807573i \(-0.299219\pi\)
0.589768 + 0.807573i \(0.299219\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.65685 −0.679061 −0.339530 0.940595i \(-0.610268\pi\)
−0.339530 + 0.940595i \(0.610268\pi\)
\(30\) 0 0
\(31\) 1.17157 0.210421 0.105210 0.994450i \(-0.466448\pi\)
0.105210 + 0.994450i \(0.466448\pi\)
\(32\) 0 0
\(33\) −0.828427 −0.144211
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 6.48528 1.06617 0.533087 0.846061i \(-0.321032\pi\)
0.533087 + 0.846061i \(0.321032\pi\)
\(38\) 0 0
\(39\) −0.828427 −0.132655
\(40\) 0 0
\(41\) −3.65685 −0.571105 −0.285552 0.958363i \(-0.592177\pi\)
−0.285552 + 0.958363i \(0.592177\pi\)
\(42\) 0 0
\(43\) 1.65685 0.252668 0.126334 0.991988i \(-0.459679\pi\)
0.126334 + 0.991988i \(0.459679\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −1.65685 −0.241677 −0.120839 0.992672i \(-0.538558\pi\)
−0.120839 + 0.992672i \(0.538558\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.82843 0.396059
\(52\) 0 0
\(53\) 11.6569 1.60119 0.800596 0.599204i \(-0.204516\pi\)
0.800596 + 0.599204i \(0.204516\pi\)
\(54\) 0 0
\(55\) −0.828427 −0.111705
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.82843 0.628608 0.314304 0.949322i \(-0.398229\pi\)
0.314304 + 0.949322i \(0.398229\pi\)
\(60\) 0 0
\(61\) −9.65685 −1.23643 −0.618217 0.786008i \(-0.712145\pi\)
−0.618217 + 0.786008i \(0.712145\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) −0.828427 −0.102754
\(66\) 0 0
\(67\) −9.65685 −1.17977 −0.589886 0.807486i \(-0.700827\pi\)
−0.589886 + 0.807486i \(0.700827\pi\)
\(68\) 0 0
\(69\) 5.65685 0.681005
\(70\) 0 0
\(71\) 13.6569 1.62077 0.810385 0.585897i \(-0.199258\pi\)
0.810385 + 0.585897i \(0.199258\pi\)
\(72\) 0 0
\(73\) 9.31371 1.09009 0.545044 0.838408i \(-0.316513\pi\)
0.545044 + 0.838408i \(0.316513\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −1.65685 −0.188816
\(78\) 0 0
\(79\) 12.4853 1.40470 0.702352 0.711830i \(-0.252133\pi\)
0.702352 + 0.711830i \(0.252133\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 2.82843 0.306786
\(86\) 0 0
\(87\) −3.65685 −0.392056
\(88\) 0 0
\(89\) −4.34315 −0.460373 −0.230186 0.973147i \(-0.573934\pi\)
−0.230186 + 0.973147i \(0.573934\pi\)
\(90\) 0 0
\(91\) −1.65685 −0.173686
\(92\) 0 0
\(93\) 1.17157 0.121486
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.65685 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(98\) 0 0
\(99\) −0.828427 −0.0832601
\(100\) 0 0
\(101\) 5.31371 0.528734 0.264367 0.964422i \(-0.414837\pi\)
0.264367 + 0.964422i \(0.414837\pi\)
\(102\) 0 0
\(103\) 4.34315 0.427943 0.213971 0.976840i \(-0.431360\pi\)
0.213971 + 0.976840i \(0.431360\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) −2.34315 −0.226520 −0.113260 0.993565i \(-0.536129\pi\)
−0.113260 + 0.993565i \(0.536129\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 6.48528 0.615556
\(112\) 0 0
\(113\) −20.4853 −1.92709 −0.963547 0.267541i \(-0.913789\pi\)
−0.963547 + 0.267541i \(0.913789\pi\)
\(114\) 0 0
\(115\) 5.65685 0.527504
\(116\) 0 0
\(117\) −0.828427 −0.0765881
\(118\) 0 0
\(119\) 5.65685 0.518563
\(120\) 0 0
\(121\) −10.3137 −0.937610
\(122\) 0 0
\(123\) −3.65685 −0.329727
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 15.6569 1.38932 0.694661 0.719338i \(-0.255555\pi\)
0.694661 + 0.719338i \(0.255555\pi\)
\(128\) 0 0
\(129\) 1.65685 0.145878
\(130\) 0 0
\(131\) 14.4853 1.26558 0.632792 0.774321i \(-0.281909\pi\)
0.632792 + 0.774321i \(0.281909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 1.17157 0.100094 0.0500471 0.998747i \(-0.484063\pi\)
0.0500471 + 0.998747i \(0.484063\pi\)
\(138\) 0 0
\(139\) −9.65685 −0.819084 −0.409542 0.912291i \(-0.634311\pi\)
−0.409542 + 0.912291i \(0.634311\pi\)
\(140\) 0 0
\(141\) −1.65685 −0.139532
\(142\) 0 0
\(143\) 0.686292 0.0573906
\(144\) 0 0
\(145\) −3.65685 −0.303685
\(146\) 0 0
\(147\) −3.00000 −0.247436
\(148\) 0 0
\(149\) 11.6569 0.954967 0.477483 0.878641i \(-0.341549\pi\)
0.477483 + 0.878641i \(0.341549\pi\)
\(150\) 0 0
\(151\) −8.48528 −0.690522 −0.345261 0.938507i \(-0.612210\pi\)
−0.345261 + 0.938507i \(0.612210\pi\)
\(152\) 0 0
\(153\) 2.82843 0.228665
\(154\) 0 0
\(155\) 1.17157 0.0941030
\(156\) 0 0
\(157\) −22.4853 −1.79452 −0.897260 0.441502i \(-0.854446\pi\)
−0.897260 + 0.441502i \(0.854446\pi\)
\(158\) 0 0
\(159\) 11.6569 0.924449
\(160\) 0 0
\(161\) 11.3137 0.891645
\(162\) 0 0
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) 0 0
\(165\) −0.828427 −0.0644930
\(166\) 0 0
\(167\) 21.6569 1.67586 0.837929 0.545779i \(-0.183766\pi\)
0.837929 + 0.545779i \(0.183766\pi\)
\(168\) 0 0
\(169\) −12.3137 −0.947208
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.34315 0.330203 0.165102 0.986277i \(-0.447205\pi\)
0.165102 + 0.986277i \(0.447205\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 4.82843 0.362927
\(178\) 0 0
\(179\) −14.4853 −1.08268 −0.541340 0.840804i \(-0.682083\pi\)
−0.541340 + 0.840804i \(0.682083\pi\)
\(180\) 0 0
\(181\) −12.0000 −0.891953 −0.445976 0.895045i \(-0.647144\pi\)
−0.445976 + 0.895045i \(0.647144\pi\)
\(182\) 0 0
\(183\) −9.65685 −0.713855
\(184\) 0 0
\(185\) 6.48528 0.476807
\(186\) 0 0
\(187\) −2.34315 −0.171348
\(188\) 0 0
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) 4.68629 0.339088 0.169544 0.985523i \(-0.445770\pi\)
0.169544 + 0.985523i \(0.445770\pi\)
\(192\) 0 0
\(193\) −10.9706 −0.789678 −0.394839 0.918750i \(-0.629200\pi\)
−0.394839 + 0.918750i \(0.629200\pi\)
\(194\) 0 0
\(195\) −0.828427 −0.0593249
\(196\) 0 0
\(197\) −1.31371 −0.0935979 −0.0467989 0.998904i \(-0.514902\pi\)
−0.0467989 + 0.998904i \(0.514902\pi\)
\(198\) 0 0
\(199\) 13.1716 0.933708 0.466854 0.884334i \(-0.345387\pi\)
0.466854 + 0.884334i \(0.345387\pi\)
\(200\) 0 0
\(201\) −9.65685 −0.681142
\(202\) 0 0
\(203\) −7.31371 −0.513322
\(204\) 0 0
\(205\) −3.65685 −0.255406
\(206\) 0 0
\(207\) 5.65685 0.393179
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 14.3431 0.987423 0.493711 0.869626i \(-0.335640\pi\)
0.493711 + 0.869626i \(0.335640\pi\)
\(212\) 0 0
\(213\) 13.6569 0.935752
\(214\) 0 0
\(215\) 1.65685 0.112997
\(216\) 0 0
\(217\) 2.34315 0.159063
\(218\) 0 0
\(219\) 9.31371 0.629362
\(220\) 0 0
\(221\) −2.34315 −0.157617
\(222\) 0 0
\(223\) 18.9706 1.27036 0.635181 0.772363i \(-0.280925\pi\)
0.635181 + 0.772363i \(0.280925\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −17.6569 −1.17193 −0.585963 0.810338i \(-0.699284\pi\)
−0.585963 + 0.810338i \(0.699284\pi\)
\(228\) 0 0
\(229\) −21.6569 −1.43113 −0.715563 0.698549i \(-0.753830\pi\)
−0.715563 + 0.698549i \(0.753830\pi\)
\(230\) 0 0
\(231\) −1.65685 −0.109013
\(232\) 0 0
\(233\) 11.7990 0.772978 0.386489 0.922294i \(-0.373688\pi\)
0.386489 + 0.922294i \(0.373688\pi\)
\(234\) 0 0
\(235\) −1.65685 −0.108081
\(236\) 0 0
\(237\) 12.4853 0.811006
\(238\) 0 0
\(239\) −22.6274 −1.46365 −0.731823 0.681495i \(-0.761330\pi\)
−0.731823 + 0.681495i \(0.761330\pi\)
\(240\) 0 0
\(241\) 20.6274 1.32873 0.664364 0.747409i \(-0.268702\pi\)
0.664364 + 0.747409i \(0.268702\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.82843 0.557245 0.278623 0.960401i \(-0.410122\pi\)
0.278623 + 0.960401i \(0.410122\pi\)
\(252\) 0 0
\(253\) −4.68629 −0.294625
\(254\) 0 0
\(255\) 2.82843 0.177123
\(256\) 0 0
\(257\) 14.8284 0.924972 0.462486 0.886627i \(-0.346958\pi\)
0.462486 + 0.886627i \(0.346958\pi\)
\(258\) 0 0
\(259\) 12.9706 0.805952
\(260\) 0 0
\(261\) −3.65685 −0.226354
\(262\) 0 0
\(263\) 29.6569 1.82872 0.914360 0.404902i \(-0.132694\pi\)
0.914360 + 0.404902i \(0.132694\pi\)
\(264\) 0 0
\(265\) 11.6569 0.716075
\(266\) 0 0
\(267\) −4.34315 −0.265796
\(268\) 0 0
\(269\) 7.65685 0.466847 0.233423 0.972375i \(-0.425007\pi\)
0.233423 + 0.972375i \(0.425007\pi\)
\(270\) 0 0
\(271\) 8.48528 0.515444 0.257722 0.966219i \(-0.417028\pi\)
0.257722 + 0.966219i \(0.417028\pi\)
\(272\) 0 0
\(273\) −1.65685 −0.100277
\(274\) 0 0
\(275\) −0.828427 −0.0499560
\(276\) 0 0
\(277\) −23.1716 −1.39224 −0.696122 0.717923i \(-0.745093\pi\)
−0.696122 + 0.717923i \(0.745093\pi\)
\(278\) 0 0
\(279\) 1.17157 0.0701402
\(280\) 0 0
\(281\) −10.9706 −0.654449 −0.327224 0.944947i \(-0.606113\pi\)
−0.327224 + 0.944947i \(0.606113\pi\)
\(282\) 0 0
\(283\) 12.9706 0.771020 0.385510 0.922704i \(-0.374026\pi\)
0.385510 + 0.922704i \(0.374026\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.31371 −0.431715
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 0 0
\(291\) 7.65685 0.448853
\(292\) 0 0
\(293\) −17.3137 −1.01148 −0.505739 0.862687i \(-0.668780\pi\)
−0.505739 + 0.862687i \(0.668780\pi\)
\(294\) 0 0
\(295\) 4.82843 0.281122
\(296\) 0 0
\(297\) −0.828427 −0.0480702
\(298\) 0 0
\(299\) −4.68629 −0.271015
\(300\) 0 0
\(301\) 3.31371 0.190999
\(302\) 0 0
\(303\) 5.31371 0.305265
\(304\) 0 0
\(305\) −9.65685 −0.552950
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 4.34315 0.247073
\(310\) 0 0
\(311\) 11.3137 0.641542 0.320771 0.947157i \(-0.396058\pi\)
0.320771 + 0.947157i \(0.396058\pi\)
\(312\) 0 0
\(313\) 22.9706 1.29837 0.649186 0.760629i \(-0.275109\pi\)
0.649186 + 0.760629i \(0.275109\pi\)
\(314\) 0 0
\(315\) 2.00000 0.112687
\(316\) 0 0
\(317\) 13.3137 0.747772 0.373886 0.927475i \(-0.378025\pi\)
0.373886 + 0.927475i \(0.378025\pi\)
\(318\) 0 0
\(319\) 3.02944 0.169616
\(320\) 0 0
\(321\) −2.34315 −0.130782
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.828427 −0.0459529
\(326\) 0 0
\(327\) −4.00000 −0.221201
\(328\) 0 0
\(329\) −3.31371 −0.182691
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) 0 0
\(333\) 6.48528 0.355391
\(334\) 0 0
\(335\) −9.65685 −0.527610
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) −20.4853 −1.11261
\(340\) 0 0
\(341\) −0.970563 −0.0525589
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 5.65685 0.304555
\(346\) 0 0
\(347\) −9.65685 −0.518407 −0.259204 0.965823i \(-0.583460\pi\)
−0.259204 + 0.965823i \(0.583460\pi\)
\(348\) 0 0
\(349\) −3.02944 −0.162162 −0.0810810 0.996708i \(-0.525837\pi\)
−0.0810810 + 0.996708i \(0.525837\pi\)
\(350\) 0 0
\(351\) −0.828427 −0.0442182
\(352\) 0 0
\(353\) −25.4558 −1.35488 −0.677439 0.735579i \(-0.736910\pi\)
−0.677439 + 0.735579i \(0.736910\pi\)
\(354\) 0 0
\(355\) 13.6569 0.724831
\(356\) 0 0
\(357\) 5.65685 0.299392
\(358\) 0 0
\(359\) 16.9706 0.895672 0.447836 0.894116i \(-0.352195\pi\)
0.447836 + 0.894116i \(0.352195\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −10.3137 −0.541329
\(364\) 0 0
\(365\) 9.31371 0.487502
\(366\) 0 0
\(367\) −2.68629 −0.140223 −0.0701116 0.997539i \(-0.522336\pi\)
−0.0701116 + 0.997539i \(0.522336\pi\)
\(368\) 0 0
\(369\) −3.65685 −0.190368
\(370\) 0 0
\(371\) 23.3137 1.21039
\(372\) 0 0
\(373\) −30.4853 −1.57847 −0.789234 0.614093i \(-0.789522\pi\)
−0.789234 + 0.614093i \(0.789522\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 3.02944 0.156024
\(378\) 0 0
\(379\) −24.2843 −1.24740 −0.623700 0.781664i \(-0.714371\pi\)
−0.623700 + 0.781664i \(0.714371\pi\)
\(380\) 0 0
\(381\) 15.6569 0.802125
\(382\) 0 0
\(383\) 6.34315 0.324120 0.162060 0.986781i \(-0.448186\pi\)
0.162060 + 0.986781i \(0.448186\pi\)
\(384\) 0 0
\(385\) −1.65685 −0.0844411
\(386\) 0 0
\(387\) 1.65685 0.0842226
\(388\) 0 0
\(389\) −13.3137 −0.675032 −0.337516 0.941320i \(-0.609587\pi\)
−0.337516 + 0.941320i \(0.609587\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 14.4853 0.730686
\(394\) 0 0
\(395\) 12.4853 0.628203
\(396\) 0 0
\(397\) 6.48528 0.325487 0.162743 0.986668i \(-0.447966\pi\)
0.162743 + 0.986668i \(0.447966\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 36.6274 1.82909 0.914543 0.404489i \(-0.132551\pi\)
0.914543 + 0.404489i \(0.132551\pi\)
\(402\) 0 0
\(403\) −0.970563 −0.0483472
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −5.37258 −0.266309
\(408\) 0 0
\(409\) −2.68629 −0.132829 −0.0664143 0.997792i \(-0.521156\pi\)
−0.0664143 + 0.997792i \(0.521156\pi\)
\(410\) 0 0
\(411\) 1.17157 0.0577894
\(412\) 0 0
\(413\) 9.65685 0.475183
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −9.65685 −0.472898
\(418\) 0 0
\(419\) −2.48528 −0.121414 −0.0607070 0.998156i \(-0.519336\pi\)
−0.0607070 + 0.998156i \(0.519336\pi\)
\(420\) 0 0
\(421\) −16.9706 −0.827095 −0.413547 0.910483i \(-0.635710\pi\)
−0.413547 + 0.910483i \(0.635710\pi\)
\(422\) 0 0
\(423\) −1.65685 −0.0805590
\(424\) 0 0
\(425\) 2.82843 0.137199
\(426\) 0 0
\(427\) −19.3137 −0.934656
\(428\) 0 0
\(429\) 0.686292 0.0331345
\(430\) 0 0
\(431\) −21.6569 −1.04317 −0.521587 0.853198i \(-0.674660\pi\)
−0.521587 + 0.853198i \(0.674660\pi\)
\(432\) 0 0
\(433\) −32.6274 −1.56797 −0.783987 0.620777i \(-0.786817\pi\)
−0.783987 + 0.620777i \(0.786817\pi\)
\(434\) 0 0
\(435\) −3.65685 −0.175333
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −22.1421 −1.05679 −0.528393 0.849000i \(-0.677205\pi\)
−0.528393 + 0.849000i \(0.677205\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −17.6569 −0.838902 −0.419451 0.907778i \(-0.637777\pi\)
−0.419451 + 0.907778i \(0.637777\pi\)
\(444\) 0 0
\(445\) −4.34315 −0.205885
\(446\) 0 0
\(447\) 11.6569 0.551350
\(448\) 0 0
\(449\) 1.31371 0.0619977 0.0309989 0.999519i \(-0.490131\pi\)
0.0309989 + 0.999519i \(0.490131\pi\)
\(450\) 0 0
\(451\) 3.02944 0.142651
\(452\) 0 0
\(453\) −8.48528 −0.398673
\(454\) 0 0
\(455\) −1.65685 −0.0776745
\(456\) 0 0
\(457\) −14.9706 −0.700293 −0.350147 0.936695i \(-0.613868\pi\)
−0.350147 + 0.936695i \(0.613868\pi\)
\(458\) 0 0
\(459\) 2.82843 0.132020
\(460\) 0 0
\(461\) 19.6569 0.915511 0.457755 0.889078i \(-0.348654\pi\)
0.457755 + 0.889078i \(0.348654\pi\)
\(462\) 0 0
\(463\) −24.6274 −1.14453 −0.572267 0.820068i \(-0.693936\pi\)
−0.572267 + 0.820068i \(0.693936\pi\)
\(464\) 0 0
\(465\) 1.17157 0.0543304
\(466\) 0 0
\(467\) −12.6863 −0.587052 −0.293526 0.955951i \(-0.594829\pi\)
−0.293526 + 0.955951i \(0.594829\pi\)
\(468\) 0 0
\(469\) −19.3137 −0.891824
\(470\) 0 0
\(471\) −22.4853 −1.03607
\(472\) 0 0
\(473\) −1.37258 −0.0631114
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 11.6569 0.533731
\(478\) 0 0
\(479\) −10.3431 −0.472590 −0.236295 0.971681i \(-0.575933\pi\)
−0.236295 + 0.971681i \(0.575933\pi\)
\(480\) 0 0
\(481\) −5.37258 −0.244969
\(482\) 0 0
\(483\) 11.3137 0.514792
\(484\) 0 0
\(485\) 7.65685 0.347680
\(486\) 0 0
\(487\) −2.97056 −0.134609 −0.0673045 0.997732i \(-0.521440\pi\)
−0.0673045 + 0.997732i \(0.521440\pi\)
\(488\) 0 0
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 27.1716 1.22624 0.613118 0.789991i \(-0.289915\pi\)
0.613118 + 0.789991i \(0.289915\pi\)
\(492\) 0 0
\(493\) −10.3431 −0.465832
\(494\) 0 0
\(495\) −0.828427 −0.0372350
\(496\) 0 0
\(497\) 27.3137 1.22519
\(498\) 0 0
\(499\) 6.62742 0.296684 0.148342 0.988936i \(-0.452606\pi\)
0.148342 + 0.988936i \(0.452606\pi\)
\(500\) 0 0
\(501\) 21.6569 0.967557
\(502\) 0 0
\(503\) −9.65685 −0.430578 −0.215289 0.976550i \(-0.569069\pi\)
−0.215289 + 0.976550i \(0.569069\pi\)
\(504\) 0 0
\(505\) 5.31371 0.236457
\(506\) 0 0
\(507\) −12.3137 −0.546871
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 18.6274 0.824028
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.34315 0.191382
\(516\) 0 0
\(517\) 1.37258 0.0603661
\(518\) 0 0
\(519\) 4.34315 0.190643
\(520\) 0 0
\(521\) −5.31371 −0.232798 −0.116399 0.993203i \(-0.537135\pi\)
−0.116399 + 0.993203i \(0.537135\pi\)
\(522\) 0 0
\(523\) 37.9411 1.65905 0.829525 0.558470i \(-0.188611\pi\)
0.829525 + 0.558470i \(0.188611\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) 3.31371 0.144347
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) 4.82843 0.209536
\(532\) 0 0
\(533\) 3.02944 0.131219
\(534\) 0 0
\(535\) −2.34315 −0.101303
\(536\) 0 0
\(537\) −14.4853 −0.625086
\(538\) 0 0
\(539\) 2.48528 0.107049
\(540\) 0 0
\(541\) −12.0000 −0.515920 −0.257960 0.966156i \(-0.583050\pi\)
−0.257960 + 0.966156i \(0.583050\pi\)
\(542\) 0 0
\(543\) −12.0000 −0.514969
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) −25.6569 −1.09701 −0.548504 0.836148i \(-0.684802\pi\)
−0.548504 + 0.836148i \(0.684802\pi\)
\(548\) 0 0
\(549\) −9.65685 −0.412144
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 24.9706 1.06186
\(554\) 0 0
\(555\) 6.48528 0.275285
\(556\) 0 0
\(557\) 23.6569 1.00237 0.501187 0.865339i \(-0.332897\pi\)
0.501187 + 0.865339i \(0.332897\pi\)
\(558\) 0 0
\(559\) −1.37258 −0.0580541
\(560\) 0 0
\(561\) −2.34315 −0.0989277
\(562\) 0 0
\(563\) 28.9706 1.22096 0.610482 0.792030i \(-0.290976\pi\)
0.610482 + 0.792030i \(0.290976\pi\)
\(564\) 0 0
\(565\) −20.4853 −0.861822
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) −5.31371 −0.222762 −0.111381 0.993778i \(-0.535527\pi\)
−0.111381 + 0.993778i \(0.535527\pi\)
\(570\) 0 0
\(571\) 38.6274 1.61651 0.808254 0.588835i \(-0.200413\pi\)
0.808254 + 0.588835i \(0.200413\pi\)
\(572\) 0 0
\(573\) 4.68629 0.195773
\(574\) 0 0
\(575\) 5.65685 0.235907
\(576\) 0 0
\(577\) −5.02944 −0.209378 −0.104689 0.994505i \(-0.533385\pi\)
−0.104689 + 0.994505i \(0.533385\pi\)
\(578\) 0 0
\(579\) −10.9706 −0.455921
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −9.65685 −0.399946
\(584\) 0 0
\(585\) −0.828427 −0.0342512
\(586\) 0 0
\(587\) −29.6569 −1.22407 −0.612035 0.790831i \(-0.709649\pi\)
−0.612035 + 0.790831i \(0.709649\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −1.31371 −0.0540387
\(592\) 0 0
\(593\) −39.7990 −1.63435 −0.817174 0.576391i \(-0.804461\pi\)
−0.817174 + 0.576391i \(0.804461\pi\)
\(594\) 0 0
\(595\) 5.65685 0.231908
\(596\) 0 0
\(597\) 13.1716 0.539077
\(598\) 0 0
\(599\) −45.6569 −1.86549 −0.932744 0.360539i \(-0.882593\pi\)
−0.932744 + 0.360539i \(0.882593\pi\)
\(600\) 0 0
\(601\) −27.9411 −1.13974 −0.569871 0.821734i \(-0.693007\pi\)
−0.569871 + 0.821734i \(0.693007\pi\)
\(602\) 0 0
\(603\) −9.65685 −0.393258
\(604\) 0 0
\(605\) −10.3137 −0.419312
\(606\) 0 0
\(607\) −24.6274 −0.999596 −0.499798 0.866142i \(-0.666592\pi\)
−0.499798 + 0.866142i \(0.666592\pi\)
\(608\) 0 0
\(609\) −7.31371 −0.296366
\(610\) 0 0
\(611\) 1.37258 0.0555288
\(612\) 0 0
\(613\) −9.51472 −0.384296 −0.192148 0.981366i \(-0.561545\pi\)
−0.192148 + 0.981366i \(0.561545\pi\)
\(614\) 0 0
\(615\) −3.65685 −0.147459
\(616\) 0 0
\(617\) −2.82843 −0.113868 −0.0569341 0.998378i \(-0.518132\pi\)
−0.0569341 + 0.998378i \(0.518132\pi\)
\(618\) 0 0
\(619\) −44.9706 −1.80752 −0.903760 0.428040i \(-0.859204\pi\)
−0.903760 + 0.428040i \(0.859204\pi\)
\(620\) 0 0
\(621\) 5.65685 0.227002
\(622\) 0 0
\(623\) −8.68629 −0.348009
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.3431 0.731389
\(630\) 0 0
\(631\) −19.5147 −0.776869 −0.388434 0.921476i \(-0.626984\pi\)
−0.388434 + 0.921476i \(0.626984\pi\)
\(632\) 0 0
\(633\) 14.3431 0.570089
\(634\) 0 0
\(635\) 15.6569 0.621323
\(636\) 0 0
\(637\) 2.48528 0.0984704
\(638\) 0 0
\(639\) 13.6569 0.540257
\(640\) 0 0
\(641\) 23.6569 0.934390 0.467195 0.884154i \(-0.345265\pi\)
0.467195 + 0.884154i \(0.345265\pi\)
\(642\) 0 0
\(643\) −42.6274 −1.68106 −0.840531 0.541764i \(-0.817757\pi\)
−0.840531 + 0.541764i \(0.817757\pi\)
\(644\) 0 0
\(645\) 1.65685 0.0652386
\(646\) 0 0
\(647\) 6.34315 0.249375 0.124687 0.992196i \(-0.460207\pi\)
0.124687 + 0.992196i \(0.460207\pi\)
\(648\) 0 0
\(649\) −4.00000 −0.157014
\(650\) 0 0
\(651\) 2.34315 0.0918351
\(652\) 0 0
\(653\) −6.68629 −0.261655 −0.130827 0.991405i \(-0.541763\pi\)
−0.130827 + 0.991405i \(0.541763\pi\)
\(654\) 0 0
\(655\) 14.4853 0.565987
\(656\) 0 0
\(657\) 9.31371 0.363362
\(658\) 0 0
\(659\) −44.8284 −1.74627 −0.873134 0.487481i \(-0.837916\pi\)
−0.873134 + 0.487481i \(0.837916\pi\)
\(660\) 0 0
\(661\) −3.02944 −0.117831 −0.0589157 0.998263i \(-0.518764\pi\)
−0.0589157 + 0.998263i \(0.518764\pi\)
\(662\) 0 0
\(663\) −2.34315 −0.0910002
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −20.6863 −0.800976
\(668\) 0 0
\(669\) 18.9706 0.733444
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) 10.6863 0.411926 0.205963 0.978560i \(-0.433967\pi\)
0.205963 + 0.978560i \(0.433967\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 17.3137 0.665420 0.332710 0.943029i \(-0.392037\pi\)
0.332710 + 0.943029i \(0.392037\pi\)
\(678\) 0 0
\(679\) 15.3137 0.587686
\(680\) 0 0
\(681\) −17.6569 −0.676612
\(682\) 0 0
\(683\) −3.31371 −0.126796 −0.0633978 0.997988i \(-0.520194\pi\)
−0.0633978 + 0.997988i \(0.520194\pi\)
\(684\) 0 0
\(685\) 1.17157 0.0447635
\(686\) 0 0
\(687\) −21.6569 −0.826261
\(688\) 0 0
\(689\) −9.65685 −0.367897
\(690\) 0 0
\(691\) −6.62742 −0.252119 −0.126059 0.992023i \(-0.540233\pi\)
−0.126059 + 0.992023i \(0.540233\pi\)
\(692\) 0 0
\(693\) −1.65685 −0.0629387
\(694\) 0 0
\(695\) −9.65685 −0.366305
\(696\) 0 0
\(697\) −10.3431 −0.391775
\(698\) 0 0
\(699\) 11.7990 0.446279
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.65685 −0.0624007
\(706\) 0 0
\(707\) 10.6274 0.399685
\(708\) 0 0
\(709\) 36.2843 1.36268 0.681342 0.731965i \(-0.261397\pi\)
0.681342 + 0.731965i \(0.261397\pi\)
\(710\) 0 0
\(711\) 12.4853 0.468235
\(712\) 0 0
\(713\) 6.62742 0.248199
\(714\) 0 0
\(715\) 0.686292 0.0256658
\(716\) 0 0
\(717\) −22.6274 −0.845036
\(718\) 0 0
\(719\) 12.2843 0.458126 0.229063 0.973412i \(-0.426434\pi\)
0.229063 + 0.973412i \(0.426434\pi\)
\(720\) 0 0
\(721\) 8.68629 0.323494
\(722\) 0 0
\(723\) 20.6274 0.767142
\(724\) 0 0
\(725\) −3.65685 −0.135812
\(726\) 0 0
\(727\) −50.9706 −1.89039 −0.945197 0.326501i \(-0.894130\pi\)
−0.945197 + 0.326501i \(0.894130\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 4.68629 0.173329
\(732\) 0 0
\(733\) −21.7990 −0.805164 −0.402582 0.915384i \(-0.631887\pi\)
−0.402582 + 0.915384i \(0.631887\pi\)
\(734\) 0 0
\(735\) −3.00000 −0.110657
\(736\) 0 0
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) 41.9411 1.54283 0.771415 0.636333i \(-0.219549\pi\)
0.771415 + 0.636333i \(0.219549\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.97056 0.182352 0.0911761 0.995835i \(-0.470937\pi\)
0.0911761 + 0.995835i \(0.470937\pi\)
\(744\) 0 0
\(745\) 11.6569 0.427074
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.68629 −0.171233
\(750\) 0 0
\(751\) −45.4558 −1.65871 −0.829354 0.558724i \(-0.811291\pi\)
−0.829354 + 0.558724i \(0.811291\pi\)
\(752\) 0 0
\(753\) 8.82843 0.321726
\(754\) 0 0
\(755\) −8.48528 −0.308811
\(756\) 0 0
\(757\) −34.4853 −1.25339 −0.626694 0.779265i \(-0.715593\pi\)
−0.626694 + 0.779265i \(0.715593\pi\)
\(758\) 0 0
\(759\) −4.68629 −0.170102
\(760\) 0 0
\(761\) 33.3137 1.20762 0.603810 0.797128i \(-0.293648\pi\)
0.603810 + 0.797128i \(0.293648\pi\)
\(762\) 0 0
\(763\) −8.00000 −0.289619
\(764\) 0 0
\(765\) 2.82843 0.102262
\(766\) 0 0
\(767\) −4.00000 −0.144432
\(768\) 0 0
\(769\) 13.3137 0.480105 0.240052 0.970760i \(-0.422835\pi\)
0.240052 + 0.970760i \(0.422835\pi\)
\(770\) 0 0
\(771\) 14.8284 0.534033
\(772\) 0 0
\(773\) 39.2548 1.41190 0.705949 0.708263i \(-0.250521\pi\)
0.705949 + 0.708263i \(0.250521\pi\)
\(774\) 0 0
\(775\) 1.17157 0.0420841
\(776\) 0 0
\(777\) 12.9706 0.465316
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −11.3137 −0.404836
\(782\) 0 0
\(783\) −3.65685 −0.130685
\(784\) 0 0
\(785\) −22.4853 −0.802534
\(786\) 0 0
\(787\) −16.6863 −0.594802 −0.297401 0.954753i \(-0.596120\pi\)
−0.297401 + 0.954753i \(0.596120\pi\)
\(788\) 0 0
\(789\) 29.6569 1.05581
\(790\) 0 0
\(791\) −40.9706 −1.45675
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) 0 0
\(795\) 11.6569 0.413426
\(796\) 0 0
\(797\) −22.9706 −0.813659 −0.406830 0.913504i \(-0.633366\pi\)
−0.406830 + 0.913504i \(0.633366\pi\)
\(798\) 0 0
\(799\) −4.68629 −0.165789
\(800\) 0 0
\(801\) −4.34315 −0.153458
\(802\) 0 0
\(803\) −7.71573 −0.272282
\(804\) 0 0
\(805\) 11.3137 0.398756
\(806\) 0 0
\(807\) 7.65685 0.269534
\(808\) 0 0
\(809\) 23.6569 0.831731 0.415865 0.909426i \(-0.363479\pi\)
0.415865 + 0.909426i \(0.363479\pi\)
\(810\) 0 0
\(811\) 35.5980 1.25001 0.625007 0.780619i \(-0.285096\pi\)
0.625007 + 0.780619i \(0.285096\pi\)
\(812\) 0 0
\(813\) 8.48528 0.297592
\(814\) 0 0
\(815\) −12.0000 −0.420342
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −1.65685 −0.0578952
\(820\) 0 0
\(821\) 34.9706 1.22048 0.610241 0.792216i \(-0.291073\pi\)
0.610241 + 0.792216i \(0.291073\pi\)
\(822\) 0 0
\(823\) 18.2843 0.637350 0.318675 0.947864i \(-0.396762\pi\)
0.318675 + 0.947864i \(0.396762\pi\)
\(824\) 0 0
\(825\) −0.828427 −0.0288421
\(826\) 0 0
\(827\) −39.3137 −1.36707 −0.683536 0.729917i \(-0.739559\pi\)
−0.683536 + 0.729917i \(0.739559\pi\)
\(828\) 0 0
\(829\) −37.9411 −1.31775 −0.658875 0.752253i \(-0.728967\pi\)
−0.658875 + 0.752253i \(0.728967\pi\)
\(830\) 0 0
\(831\) −23.1716 −0.803813
\(832\) 0 0
\(833\) −8.48528 −0.293998
\(834\) 0 0
\(835\) 21.6569 0.749466
\(836\) 0 0
\(837\) 1.17157 0.0404955
\(838\) 0 0
\(839\) −12.2843 −0.424100 −0.212050 0.977259i \(-0.568014\pi\)
−0.212050 + 0.977259i \(0.568014\pi\)
\(840\) 0 0
\(841\) −15.6274 −0.538876
\(842\) 0 0
\(843\) −10.9706 −0.377846
\(844\) 0 0
\(845\) −12.3137 −0.423604
\(846\) 0 0
\(847\) −20.6274 −0.708766
\(848\) 0 0
\(849\) 12.9706 0.445149
\(850\) 0 0
\(851\) 36.6863 1.25759
\(852\) 0 0
\(853\) −1.51472 −0.0518630 −0.0259315 0.999664i \(-0.508255\pi\)
−0.0259315 + 0.999664i \(0.508255\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.1421 0.756361 0.378180 0.925732i \(-0.376550\pi\)
0.378180 + 0.925732i \(0.376550\pi\)
\(858\) 0 0
\(859\) −46.9117 −1.60061 −0.800303 0.599596i \(-0.795328\pi\)
−0.800303 + 0.599596i \(0.795328\pi\)
\(860\) 0 0
\(861\) −7.31371 −0.249251
\(862\) 0 0
\(863\) −21.6569 −0.737208 −0.368604 0.929587i \(-0.620164\pi\)
−0.368604 + 0.929587i \(0.620164\pi\)
\(864\) 0 0
\(865\) 4.34315 0.147671
\(866\) 0 0
\(867\) −9.00000 −0.305656
\(868\) 0 0
\(869\) −10.3431 −0.350867
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) 7.65685 0.259145
\(874\) 0 0
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) −14.4853 −0.489133 −0.244567 0.969632i \(-0.578646\pi\)
−0.244567 + 0.969632i \(0.578646\pi\)
\(878\) 0 0
\(879\) −17.3137 −0.583977
\(880\) 0 0
\(881\) 24.3431 0.820141 0.410071 0.912054i \(-0.365504\pi\)
0.410071 + 0.912054i \(0.365504\pi\)
\(882\) 0 0
\(883\) −29.9411 −1.00760 −0.503800 0.863821i \(-0.668065\pi\)
−0.503800 + 0.863821i \(0.668065\pi\)
\(884\) 0 0
\(885\) 4.82843 0.162306
\(886\) 0 0
\(887\) −39.5980 −1.32957 −0.664785 0.747035i \(-0.731477\pi\)
−0.664785 + 0.747035i \(0.731477\pi\)
\(888\) 0 0
\(889\) 31.3137 1.05023
\(890\) 0 0
\(891\) −0.828427 −0.0277534
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −14.4853 −0.484190
\(896\) 0 0
\(897\) −4.68629 −0.156471
\(898\) 0 0
\(899\) −4.28427 −0.142888
\(900\) 0 0
\(901\) 32.9706 1.09841
\(902\) 0 0
\(903\) 3.31371 0.110273
\(904\) 0 0
\(905\) −12.0000 −0.398893
\(906\) 0 0
\(907\) −20.9706 −0.696316 −0.348158 0.937436i \(-0.613193\pi\)
−0.348158 + 0.937436i \(0.613193\pi\)
\(908\) 0 0
\(909\) 5.31371 0.176245
\(910\) 0 0
\(911\) −12.6863 −0.420316 −0.210158 0.977667i \(-0.567398\pi\)
−0.210158 + 0.977667i \(0.567398\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −9.65685 −0.319246
\(916\) 0 0
\(917\) 28.9706 0.956692
\(918\) 0 0
\(919\) −27.5147 −0.907627 −0.453813 0.891097i \(-0.649937\pi\)
−0.453813 + 0.891097i \(0.649937\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) −11.3137 −0.372395
\(924\) 0 0
\(925\) 6.48528 0.213235
\(926\) 0 0
\(927\) 4.34315 0.142648
\(928\) 0 0
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 11.3137 0.370394
\(934\) 0 0
\(935\) −2.34315 −0.0766291
\(936\) 0 0
\(937\) −9.31371 −0.304266 −0.152133 0.988360i \(-0.548614\pi\)
−0.152133 + 0.988360i \(0.548614\pi\)
\(938\) 0 0
\(939\) 22.9706 0.749616
\(940\) 0 0
\(941\) −55.2548 −1.80126 −0.900628 0.434591i \(-0.856893\pi\)
−0.900628 + 0.434591i \(0.856893\pi\)
\(942\) 0 0
\(943\) −20.6863 −0.673638
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) −21.9411 −0.712991 −0.356495 0.934297i \(-0.616028\pi\)
−0.356495 + 0.934297i \(0.616028\pi\)
\(948\) 0 0
\(949\) −7.71573 −0.250463
\(950\) 0 0
\(951\) 13.3137 0.431727
\(952\) 0 0
\(953\) −38.8284 −1.25778 −0.628888 0.777496i \(-0.716490\pi\)
−0.628888 + 0.777496i \(0.716490\pi\)
\(954\) 0 0
\(955\) 4.68629 0.151645
\(956\) 0 0
\(957\) 3.02944 0.0979278
\(958\) 0 0
\(959\) 2.34315 0.0756641
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 0 0
\(963\) −2.34315 −0.0755068
\(964\) 0 0
\(965\) −10.9706 −0.353155
\(966\) 0 0
\(967\) 44.9117 1.44426 0.722131 0.691756i \(-0.243163\pi\)
0.722131 + 0.691756i \(0.243163\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.1421 1.41659 0.708294 0.705917i \(-0.249465\pi\)
0.708294 + 0.705917i \(0.249465\pi\)
\(972\) 0 0
\(973\) −19.3137 −0.619169
\(974\) 0 0
\(975\) −0.828427 −0.0265309
\(976\) 0 0
\(977\) −21.1716 −0.677339 −0.338669 0.940905i \(-0.609977\pi\)
−0.338669 + 0.940905i \(0.609977\pi\)
\(978\) 0 0
\(979\) 3.59798 0.114992
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 0 0
\(983\) −52.9706 −1.68950 −0.844749 0.535162i \(-0.820250\pi\)
−0.844749 + 0.535162i \(0.820250\pi\)
\(984\) 0 0
\(985\) −1.31371 −0.0418582
\(986\) 0 0
\(987\) −3.31371 −0.105477
\(988\) 0 0
\(989\) 9.37258 0.298031
\(990\) 0 0
\(991\) −32.4853 −1.03193 −0.515964 0.856610i \(-0.672566\pi\)
−0.515964 + 0.856610i \(0.672566\pi\)
\(992\) 0 0
\(993\) 32.0000 1.01549
\(994\) 0 0
\(995\) 13.1716 0.417567
\(996\) 0 0
\(997\) 16.1421 0.511227 0.255613 0.966779i \(-0.417723\pi\)
0.255613 + 0.966779i \(0.417723\pi\)
\(998\) 0 0
\(999\) 6.48528 0.205185
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.a.bm.1.1 2
4.3 odd 2 3840.2.a.bg.1.2 2
8.3 odd 2 3840.2.a.bj.1.1 2
8.5 even 2 3840.2.a.bd.1.2 2
16.3 odd 4 1920.2.k.k.961.1 yes 4
16.5 even 4 1920.2.k.j.961.1 4
16.11 odd 4 1920.2.k.k.961.4 yes 4
16.13 even 4 1920.2.k.j.961.4 yes 4
48.5 odd 4 5760.2.k.m.2881.2 4
48.11 even 4 5760.2.k.x.2881.1 4
48.29 odd 4 5760.2.k.m.2881.3 4
48.35 even 4 5760.2.k.x.2881.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.k.j.961.1 4 16.5 even 4
1920.2.k.j.961.4 yes 4 16.13 even 4
1920.2.k.k.961.1 yes 4 16.3 odd 4
1920.2.k.k.961.4 yes 4 16.11 odd 4
3840.2.a.bd.1.2 2 8.5 even 2
3840.2.a.bg.1.2 2 4.3 odd 2
3840.2.a.bj.1.1 2 8.3 odd 2
3840.2.a.bm.1.1 2 1.1 even 1 trivial
5760.2.k.m.2881.2 4 48.5 odd 4
5760.2.k.m.2881.3 4 48.29 odd 4
5760.2.k.x.2881.1 4 48.11 even 4
5760.2.k.x.2881.4 4 48.35 even 4