Properties

Label 3960.2.a.y.1.2
Level $3960$
Weight $2$
Character 3960.1
Self dual yes
Analytic conductor $31.621$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3960,2,Mod(1,3960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3960.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3960 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.6207592004\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3960.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +1.41421 q^{7} +1.00000 q^{11} -0.585786 q^{13} +3.41421 q^{17} -5.65685 q^{19} +2.82843 q^{23} +1.00000 q^{25} -0.828427 q^{29} +6.48528 q^{31} -1.41421 q^{35} -7.65685 q^{37} +10.4853 q^{41} +2.58579 q^{43} -2.82843 q^{47} -5.00000 q^{49} +7.17157 q^{53} -1.00000 q^{55} +10.4853 q^{59} -3.17157 q^{61} +0.585786 q^{65} -8.48528 q^{67} +3.17157 q^{71} +7.41421 q^{73} +1.41421 q^{77} +1.65685 q^{79} -0.242641 q^{83} -3.41421 q^{85} +4.34315 q^{89} -0.828427 q^{91} +5.65685 q^{95} +0.828427 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 2 q^{11} - 4 q^{13} + 4 q^{17} + 2 q^{25} + 4 q^{29} - 4 q^{31} - 4 q^{37} + 4 q^{41} + 8 q^{43} - 10 q^{49} + 20 q^{53} - 2 q^{55} + 4 q^{59} - 12 q^{61} + 4 q^{65} + 12 q^{71} + 12 q^{73}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.41421 0.534522 0.267261 0.963624i \(-0.413881\pi\)
0.267261 + 0.963624i \(0.413881\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −0.585786 −0.162468 −0.0812340 0.996695i \(-0.525886\pi\)
−0.0812340 + 0.996695i \(0.525886\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.41421 0.828068 0.414034 0.910261i \(-0.364119\pi\)
0.414034 + 0.910261i \(0.364119\pi\)
\(18\) 0 0
\(19\) −5.65685 −1.29777 −0.648886 0.760886i \(-0.724765\pi\)
−0.648886 + 0.760886i \(0.724765\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 0.589768 0.294884 0.955533i \(-0.404719\pi\)
0.294884 + 0.955533i \(0.404719\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.828427 −0.153835 −0.0769175 0.997037i \(-0.524508\pi\)
−0.0769175 + 0.997037i \(0.524508\pi\)
\(30\) 0 0
\(31\) 6.48528 1.16479 0.582395 0.812906i \(-0.302116\pi\)
0.582395 + 0.812906i \(0.302116\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) −7.65685 −1.25878 −0.629390 0.777090i \(-0.716695\pi\)
−0.629390 + 0.777090i \(0.716695\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.4853 1.63753 0.818763 0.574132i \(-0.194660\pi\)
0.818763 + 0.574132i \(0.194660\pi\)
\(42\) 0 0
\(43\) 2.58579 0.394329 0.197164 0.980370i \(-0.436827\pi\)
0.197164 + 0.980370i \(0.436827\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.17157 0.985091 0.492546 0.870287i \(-0.336066\pi\)
0.492546 + 0.870287i \(0.336066\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.4853 1.36507 0.682534 0.730854i \(-0.260878\pi\)
0.682534 + 0.730854i \(0.260878\pi\)
\(60\) 0 0
\(61\) −3.17157 −0.406078 −0.203039 0.979171i \(-0.565082\pi\)
−0.203039 + 0.979171i \(0.565082\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.585786 0.0726579
\(66\) 0 0
\(67\) −8.48528 −1.03664 −0.518321 0.855186i \(-0.673443\pi\)
−0.518321 + 0.855186i \(0.673443\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.17157 0.376396 0.188198 0.982131i \(-0.439735\pi\)
0.188198 + 0.982131i \(0.439735\pi\)
\(72\) 0 0
\(73\) 7.41421 0.867768 0.433884 0.900969i \(-0.357143\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.41421 0.161165
\(78\) 0 0
\(79\) 1.65685 0.186411 0.0932053 0.995647i \(-0.470289\pi\)
0.0932053 + 0.995647i \(0.470289\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.242641 −0.0266333 −0.0133166 0.999911i \(-0.504239\pi\)
−0.0133166 + 0.999911i \(0.504239\pi\)
\(84\) 0 0
\(85\) −3.41421 −0.370323
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.34315 0.460373 0.230186 0.973147i \(-0.426066\pi\)
0.230186 + 0.973147i \(0.426066\pi\)
\(90\) 0 0
\(91\) −0.828427 −0.0868428
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.65685 0.580381
\(96\) 0 0
\(97\) 0.828427 0.0841140 0.0420570 0.999115i \(-0.486609\pi\)
0.0420570 + 0.999115i \(0.486609\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.65685 −0.761885 −0.380943 0.924599i \(-0.624401\pi\)
−0.380943 + 0.924599i \(0.624401\pi\)
\(102\) 0 0
\(103\) 6.34315 0.625009 0.312504 0.949916i \(-0.398832\pi\)
0.312504 + 0.949916i \(0.398832\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.89949 −0.570326 −0.285163 0.958479i \(-0.592048\pi\)
−0.285163 + 0.958479i \(0.592048\pi\)
\(108\) 0 0
\(109\) 14.9706 1.43392 0.716960 0.697114i \(-0.245533\pi\)
0.716960 + 0.697114i \(0.245533\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.343146 0.0322804 0.0161402 0.999870i \(-0.494862\pi\)
0.0161402 + 0.999870i \(0.494862\pi\)
\(114\) 0 0
\(115\) −2.82843 −0.263752
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.82843 0.442621
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 3.75736 0.333412 0.166706 0.986007i \(-0.446687\pi\)
0.166706 + 0.986007i \(0.446687\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.485281 −0.0423992 −0.0211996 0.999775i \(-0.506749\pi\)
−0.0211996 + 0.999775i \(0.506749\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) 2.82843 0.239904 0.119952 0.992780i \(-0.461726\pi\)
0.119952 + 0.992780i \(0.461726\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.585786 −0.0489859
\(144\) 0 0
\(145\) 0.828427 0.0687971
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 10.3431 0.841713 0.420857 0.907127i \(-0.361730\pi\)
0.420857 + 0.907127i \(0.361730\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.48528 −0.520910
\(156\) 0 0
\(157\) −3.17157 −0.253119 −0.126560 0.991959i \(-0.540393\pi\)
−0.126560 + 0.991959i \(0.540393\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 17.6569 1.38299 0.691496 0.722380i \(-0.256952\pi\)
0.691496 + 0.722380i \(0.256952\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.24264 0.328305 0.164153 0.986435i \(-0.447511\pi\)
0.164153 + 0.986435i \(0.447511\pi\)
\(168\) 0 0
\(169\) −12.6569 −0.973604
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.7279 1.42386 0.711929 0.702252i \(-0.247822\pi\)
0.711929 + 0.702252i \(0.247822\pi\)
\(174\) 0 0
\(175\) 1.41421 0.106904
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.3137 1.14460 0.572300 0.820044i \(-0.306051\pi\)
0.572300 + 0.820044i \(0.306051\pi\)
\(180\) 0 0
\(181\) −13.6569 −1.01511 −0.507553 0.861621i \(-0.669450\pi\)
−0.507553 + 0.861621i \(0.669450\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.65685 0.562943
\(186\) 0 0
\(187\) 3.41421 0.249672
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.3431 0.748404 0.374202 0.927347i \(-0.377917\pi\)
0.374202 + 0.927347i \(0.377917\pi\)
\(192\) 0 0
\(193\) −16.3848 −1.17940 −0.589701 0.807622i \(-0.700754\pi\)
−0.589701 + 0.807622i \(0.700754\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.3848 1.16737 0.583683 0.811981i \(-0.301611\pi\)
0.583683 + 0.811981i \(0.301611\pi\)
\(198\) 0 0
\(199\) 11.3137 0.802008 0.401004 0.916076i \(-0.368661\pi\)
0.401004 + 0.916076i \(0.368661\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.17157 −0.0822283
\(204\) 0 0
\(205\) −10.4853 −0.732324
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.58579 −0.176349
\(216\) 0 0
\(217\) 9.17157 0.622607
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 22.1421 1.48275 0.741374 0.671093i \(-0.234175\pi\)
0.741374 + 0.671093i \(0.234175\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.7279 1.64125 0.820625 0.571467i \(-0.193626\pi\)
0.820625 + 0.571467i \(0.193626\pi\)
\(228\) 0 0
\(229\) −25.3137 −1.67278 −0.836388 0.548137i \(-0.815337\pi\)
−0.836388 + 0.548137i \(0.815337\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.7279 0.702810 0.351405 0.936224i \(-0.385704\pi\)
0.351405 + 0.936224i \(0.385704\pi\)
\(234\) 0 0
\(235\) 2.82843 0.184506
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.7990 −0.763213 −0.381607 0.924325i \(-0.624629\pi\)
−0.381607 + 0.924325i \(0.624629\pi\)
\(240\) 0 0
\(241\) 5.51472 0.355234 0.177617 0.984100i \(-0.443161\pi\)
0.177617 + 0.984100i \(0.443161\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.00000 0.319438
\(246\) 0 0
\(247\) 3.31371 0.210846
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 29.7990 1.88090 0.940448 0.339938i \(-0.110406\pi\)
0.940448 + 0.339938i \(0.110406\pi\)
\(252\) 0 0
\(253\) 2.82843 0.177822
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.7990 −1.11027 −0.555135 0.831760i \(-0.687334\pi\)
−0.555135 + 0.831760i \(0.687334\pi\)
\(258\) 0 0
\(259\) −10.8284 −0.672846
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.5858 0.899398 0.449699 0.893180i \(-0.351531\pi\)
0.449699 + 0.893180i \(0.351531\pi\)
\(264\) 0 0
\(265\) −7.17157 −0.440546
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.34315 0.386748 0.193374 0.981125i \(-0.438057\pi\)
0.193374 + 0.981125i \(0.438057\pi\)
\(270\) 0 0
\(271\) −16.9706 −1.03089 −0.515444 0.856923i \(-0.672373\pi\)
−0.515444 + 0.856923i \(0.672373\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −1.75736 −0.105589 −0.0527947 0.998605i \(-0.516813\pi\)
−0.0527947 + 0.998605i \(0.516813\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.1421 −0.724339 −0.362170 0.932112i \(-0.617964\pi\)
−0.362170 + 0.932112i \(0.617964\pi\)
\(282\) 0 0
\(283\) 22.3848 1.33064 0.665318 0.746560i \(-0.268296\pi\)
0.665318 + 0.746560i \(0.268296\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.8284 0.875294
\(288\) 0 0
\(289\) −5.34315 −0.314303
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.5563 −0.791970 −0.395985 0.918257i \(-0.629597\pi\)
−0.395985 + 0.918257i \(0.629597\pi\)
\(294\) 0 0
\(295\) −10.4853 −0.610477
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.65685 −0.0958184
\(300\) 0 0
\(301\) 3.65685 0.210778
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.17157 0.181604
\(306\) 0 0
\(307\) 32.7279 1.86788 0.933941 0.357428i \(-0.116346\pi\)
0.933941 + 0.357428i \(0.116346\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.1716 −0.860301 −0.430150 0.902757i \(-0.641540\pi\)
−0.430150 + 0.902757i \(0.641540\pi\)
\(312\) 0 0
\(313\) 12.6274 0.713744 0.356872 0.934153i \(-0.383843\pi\)
0.356872 + 0.934153i \(0.383843\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.6274 −0.933889 −0.466944 0.884287i \(-0.654645\pi\)
−0.466944 + 0.884287i \(0.654645\pi\)
\(318\) 0 0
\(319\) −0.828427 −0.0463830
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −19.3137 −1.07464
\(324\) 0 0
\(325\) −0.585786 −0.0324936
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 8.82843 0.485254 0.242627 0.970120i \(-0.421991\pi\)
0.242627 + 0.970120i \(0.421991\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.48528 0.463600
\(336\) 0 0
\(337\) −13.0711 −0.712026 −0.356013 0.934481i \(-0.615864\pi\)
−0.356013 + 0.934481i \(0.615864\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.48528 0.351198
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.8995 0.746164 0.373082 0.927798i \(-0.378301\pi\)
0.373082 + 0.927798i \(0.378301\pi\)
\(348\) 0 0
\(349\) −26.4853 −1.41772 −0.708862 0.705347i \(-0.750791\pi\)
−0.708862 + 0.705347i \(0.750791\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.7990 1.37314 0.686571 0.727063i \(-0.259115\pi\)
0.686571 + 0.727063i \(0.259115\pi\)
\(354\) 0 0
\(355\) −3.17157 −0.168330
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.82843 −0.360391 −0.180195 0.983631i \(-0.557673\pi\)
−0.180195 + 0.983631i \(0.557673\pi\)
\(360\) 0 0
\(361\) 13.0000 0.684211
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.41421 −0.388078
\(366\) 0 0
\(367\) 11.5147 0.601063 0.300532 0.953772i \(-0.402836\pi\)
0.300532 + 0.953772i \(0.402836\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.1421 0.526553
\(372\) 0 0
\(373\) 5.75736 0.298105 0.149052 0.988829i \(-0.452378\pi\)
0.149052 + 0.988829i \(0.452378\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.485281 0.0249933
\(378\) 0 0
\(379\) −31.3137 −1.60848 −0.804239 0.594307i \(-0.797427\pi\)
−0.804239 + 0.594307i \(0.797427\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.3137 −0.782494 −0.391247 0.920286i \(-0.627956\pi\)
−0.391247 + 0.920286i \(0.627956\pi\)
\(384\) 0 0
\(385\) −1.41421 −0.0720750
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.2843 1.43407 0.717035 0.697037i \(-0.245499\pi\)
0.717035 + 0.697037i \(0.245499\pi\)
\(390\) 0 0
\(391\) 9.65685 0.488368
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.65685 −0.0833654
\(396\) 0 0
\(397\) −16.8284 −0.844595 −0.422297 0.906457i \(-0.638776\pi\)
−0.422297 + 0.906457i \(0.638776\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.6274 0.630583 0.315292 0.948995i \(-0.397898\pi\)
0.315292 + 0.948995i \(0.397898\pi\)
\(402\) 0 0
\(403\) −3.79899 −0.189241
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.65685 −0.379536
\(408\) 0 0
\(409\) −21.3137 −1.05390 −0.526948 0.849898i \(-0.676664\pi\)
−0.526948 + 0.849898i \(0.676664\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.8284 0.729659
\(414\) 0 0
\(415\) 0.242641 0.0119108
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.65685 0.471768 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(420\) 0 0
\(421\) −4.68629 −0.228396 −0.114198 0.993458i \(-0.536430\pi\)
−0.114198 + 0.993458i \(0.536430\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.41421 0.165614
\(426\) 0 0
\(427\) −4.48528 −0.217058
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.3431 0.498212 0.249106 0.968476i \(-0.419863\pi\)
0.249106 + 0.968476i \(0.419863\pi\)
\(432\) 0 0
\(433\) 28.1421 1.35242 0.676212 0.736707i \(-0.263620\pi\)
0.676212 + 0.736707i \(0.263620\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16.0000 −0.765384
\(438\) 0 0
\(439\) −18.1421 −0.865877 −0.432938 0.901423i \(-0.642523\pi\)
−0.432938 + 0.901423i \(0.642523\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.9706 −0.996342 −0.498171 0.867079i \(-0.665995\pi\)
−0.498171 + 0.867079i \(0.665995\pi\)
\(444\) 0 0
\(445\) −4.34315 −0.205885
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) 10.4853 0.493733
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.828427 0.0388373
\(456\) 0 0
\(457\) 3.21320 0.150307 0.0751537 0.997172i \(-0.476055\pi\)
0.0751537 + 0.997172i \(0.476055\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.3137 −1.17898 −0.589488 0.807777i \(-0.700671\pi\)
−0.589488 + 0.807777i \(0.700671\pi\)
\(462\) 0 0
\(463\) 18.8284 0.875031 0.437516 0.899211i \(-0.355858\pi\)
0.437516 + 0.899211i \(0.355858\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.4853 −0.762848 −0.381424 0.924400i \(-0.624566\pi\)
−0.381424 + 0.924400i \(0.624566\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.58579 0.118895
\(474\) 0 0
\(475\) −5.65685 −0.259554
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.4558 1.16311 0.581554 0.813508i \(-0.302445\pi\)
0.581554 + 0.813508i \(0.302445\pi\)
\(480\) 0 0
\(481\) 4.48528 0.204511
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.828427 −0.0376169
\(486\) 0 0
\(487\) −5.17157 −0.234346 −0.117173 0.993111i \(-0.537383\pi\)
−0.117173 + 0.993111i \(0.537383\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20.2843 −0.915416 −0.457708 0.889102i \(-0.651330\pi\)
−0.457708 + 0.889102i \(0.651330\pi\)
\(492\) 0 0
\(493\) −2.82843 −0.127386
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.48528 0.201192
\(498\) 0 0
\(499\) 36.9706 1.65503 0.827515 0.561444i \(-0.189754\pi\)
0.827515 + 0.561444i \(0.189754\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.9289 −1.11153 −0.555763 0.831341i \(-0.687574\pi\)
−0.555763 + 0.831341i \(0.687574\pi\)
\(504\) 0 0
\(505\) 7.65685 0.340726
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) 0 0
\(511\) 10.4853 0.463842
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.34315 −0.279512
\(516\) 0 0
\(517\) −2.82843 −0.124394
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.3137 −0.933771 −0.466885 0.884318i \(-0.654624\pi\)
−0.466885 + 0.884318i \(0.654624\pi\)
\(522\) 0 0
\(523\) 0.242641 0.0106099 0.00530497 0.999986i \(-0.498311\pi\)
0.00530497 + 0.999986i \(0.498311\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.1421 0.964527
\(528\) 0 0
\(529\) −15.0000 −0.652174
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.14214 −0.266045
\(534\) 0 0
\(535\) 5.89949 0.255057
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.00000 −0.215365
\(540\) 0 0
\(541\) −26.2843 −1.13005 −0.565025 0.825074i \(-0.691133\pi\)
−0.565025 + 0.825074i \(0.691133\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.9706 −0.641268
\(546\) 0 0
\(547\) 4.92893 0.210746 0.105373 0.994433i \(-0.466396\pi\)
0.105373 + 0.994433i \(0.466396\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.68629 0.199643
\(552\) 0 0
\(553\) 2.34315 0.0996407
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.41421 −0.314150 −0.157075 0.987587i \(-0.550206\pi\)
−0.157075 + 0.987587i \(0.550206\pi\)
\(558\) 0 0
\(559\) −1.51472 −0.0640658
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −37.4142 −1.57682 −0.788411 0.615149i \(-0.789096\pi\)
−0.788411 + 0.615149i \(0.789096\pi\)
\(564\) 0 0
\(565\) −0.343146 −0.0144363
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.62742 −0.361680 −0.180840 0.983513i \(-0.557882\pi\)
−0.180840 + 0.983513i \(0.557882\pi\)
\(570\) 0 0
\(571\) 22.8284 0.955340 0.477670 0.878539i \(-0.341481\pi\)
0.477670 + 0.878539i \(0.341481\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.82843 0.117954
\(576\) 0 0
\(577\) −26.7696 −1.11443 −0.557216 0.830368i \(-0.688130\pi\)
−0.557216 + 0.830368i \(0.688130\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.343146 −0.0142361
\(582\) 0 0
\(583\) 7.17157 0.297016
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.82843 −0.116742 −0.0583708 0.998295i \(-0.518591\pi\)
−0.0583708 + 0.998295i \(0.518591\pi\)
\(588\) 0 0
\(589\) −36.6863 −1.51163
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −20.3848 −0.837102 −0.418551 0.908193i \(-0.637462\pi\)
−0.418551 + 0.908193i \(0.637462\pi\)
\(594\) 0 0
\(595\) −4.82843 −0.197946
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.9706 −1.02027 −0.510135 0.860094i \(-0.670404\pi\)
−0.510135 + 0.860094i \(0.670404\pi\)
\(600\) 0 0
\(601\) 45.7990 1.86818 0.934090 0.357038i \(-0.116213\pi\)
0.934090 + 0.357038i \(0.116213\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) −4.24264 −0.172203 −0.0861017 0.996286i \(-0.527441\pi\)
−0.0861017 + 0.996286i \(0.527441\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.65685 0.0670291
\(612\) 0 0
\(613\) −2.04163 −0.0824607 −0.0412303 0.999150i \(-0.513128\pi\)
−0.0412303 + 0.999150i \(0.513128\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8.34315 −0.335882 −0.167941 0.985797i \(-0.553712\pi\)
−0.167941 + 0.985797i \(0.553712\pi\)
\(618\) 0 0
\(619\) −34.4853 −1.38608 −0.693040 0.720899i \(-0.743729\pi\)
−0.693040 + 0.720899i \(0.743729\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.14214 0.246079
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −26.1421 −1.04236
\(630\) 0 0
\(631\) 29.6569 1.18062 0.590310 0.807176i \(-0.299005\pi\)
0.590310 + 0.807176i \(0.299005\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.75736 −0.149106
\(636\) 0 0
\(637\) 2.92893 0.116049
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.02944 −0.0406603 −0.0203302 0.999793i \(-0.506472\pi\)
−0.0203302 + 0.999793i \(0.506472\pi\)
\(642\) 0 0
\(643\) −21.9411 −0.865274 −0.432637 0.901568i \(-0.642417\pi\)
−0.432637 + 0.901568i \(0.642417\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28.9706 −1.13895 −0.569475 0.822009i \(-0.692854\pi\)
−0.569475 + 0.822009i \(0.692854\pi\)
\(648\) 0 0
\(649\) 10.4853 0.411583
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29.1127 1.13927 0.569634 0.821899i \(-0.307085\pi\)
0.569634 + 0.821899i \(0.307085\pi\)
\(654\) 0 0
\(655\) 0.485281 0.0189615
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.3431 0.714548 0.357274 0.934000i \(-0.383706\pi\)
0.357274 + 0.934000i \(0.383706\pi\)
\(660\) 0 0
\(661\) −16.3431 −0.635675 −0.317837 0.948145i \(-0.602957\pi\)
−0.317837 + 0.948145i \(0.602957\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) −2.34315 −0.0907270
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.17157 −0.122437
\(672\) 0 0
\(673\) 31.4142 1.21093 0.605464 0.795872i \(-0.292987\pi\)
0.605464 + 0.795872i \(0.292987\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −31.8995 −1.22600 −0.612999 0.790084i \(-0.710037\pi\)
−0.612999 + 0.790084i \(0.710037\pi\)
\(678\) 0 0
\(679\) 1.17157 0.0449608
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.82843 0.261283 0.130641 0.991430i \(-0.458296\pi\)
0.130641 + 0.991430i \(0.458296\pi\)
\(684\) 0 0
\(685\) −14.0000 −0.534913
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.20101 −0.160046
\(690\) 0 0
\(691\) 6.34315 0.241305 0.120652 0.992695i \(-0.461501\pi\)
0.120652 + 0.992695i \(0.461501\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.82843 −0.107288
\(696\) 0 0
\(697\) 35.7990 1.35598
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.17157 0.119789 0.0598943 0.998205i \(-0.480924\pi\)
0.0598943 + 0.998205i \(0.480924\pi\)
\(702\) 0 0
\(703\) 43.3137 1.63361
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.8284 −0.407245
\(708\) 0 0
\(709\) −38.3431 −1.44001 −0.720004 0.693970i \(-0.755860\pi\)
−0.720004 + 0.693970i \(0.755860\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.3431 0.686956
\(714\) 0 0
\(715\) 0.585786 0.0219072
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) 8.97056 0.334081
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.828427 −0.0307670
\(726\) 0 0
\(727\) −18.3431 −0.680310 −0.340155 0.940369i \(-0.610479\pi\)
−0.340155 + 0.940369i \(0.610479\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.82843 0.326531
\(732\) 0 0
\(733\) 14.7279 0.543988 0.271994 0.962299i \(-0.412317\pi\)
0.271994 + 0.962299i \(0.412317\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.48528 −0.312559
\(738\) 0 0
\(739\) −7.51472 −0.276433 −0.138217 0.990402i \(-0.544137\pi\)
−0.138217 + 0.990402i \(0.544137\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.8701 0.692275 0.346138 0.938184i \(-0.387493\pi\)
0.346138 + 0.938184i \(0.387493\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8.34315 −0.304852
\(750\) 0 0
\(751\) −6.62742 −0.241838 −0.120919 0.992662i \(-0.538584\pi\)
−0.120919 + 0.992662i \(0.538584\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10.3431 −0.376426
\(756\) 0 0
\(757\) 50.0833 1.82031 0.910154 0.414271i \(-0.135963\pi\)
0.910154 + 0.414271i \(0.135963\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −38.9706 −1.41268 −0.706341 0.707872i \(-0.749655\pi\)
−0.706341 + 0.707872i \(0.749655\pi\)
\(762\) 0 0
\(763\) 21.1716 0.766462
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.14214 −0.221780
\(768\) 0 0
\(769\) 2.20101 0.0793705 0.0396852 0.999212i \(-0.487364\pi\)
0.0396852 + 0.999212i \(0.487364\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.17157 0.257944 0.128972 0.991648i \(-0.458832\pi\)
0.128972 + 0.991648i \(0.458832\pi\)
\(774\) 0 0
\(775\) 6.48528 0.232958
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −59.3137 −2.12513
\(780\) 0 0
\(781\) 3.17157 0.113488
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.17157 0.113198
\(786\) 0 0
\(787\) 35.5563 1.26745 0.633723 0.773560i \(-0.281526\pi\)
0.633723 + 0.773560i \(0.281526\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.485281 0.0172546
\(792\) 0 0
\(793\) 1.85786 0.0659747
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) −9.65685 −0.341635
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.41421 0.261642
\(804\) 0 0
\(805\) −4.00000 −0.140981
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −25.5147 −0.897050 −0.448525 0.893770i \(-0.648050\pi\)
−0.448525 + 0.893770i \(0.648050\pi\)
\(810\) 0 0
\(811\) −27.7990 −0.976155 −0.488077 0.872800i \(-0.662302\pi\)
−0.488077 + 0.872800i \(0.662302\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −17.6569 −0.618493
\(816\) 0 0
\(817\) −14.6274 −0.511749
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 29.7990 1.03999 0.519996 0.854169i \(-0.325933\pi\)
0.519996 + 0.854169i \(0.325933\pi\)
\(822\) 0 0
\(823\) −16.9706 −0.591557 −0.295778 0.955257i \(-0.595579\pi\)
−0.295778 + 0.955257i \(0.595579\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.5269 1.27017 0.635083 0.772444i \(-0.280966\pi\)
0.635083 + 0.772444i \(0.280966\pi\)
\(828\) 0 0
\(829\) −35.5980 −1.23637 −0.618184 0.786033i \(-0.712132\pi\)
−0.618184 + 0.786033i \(0.712132\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −17.0711 −0.591477
\(834\) 0 0
\(835\) −4.24264 −0.146823
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.4558 −0.395500 −0.197750 0.980253i \(-0.563363\pi\)
−0.197750 + 0.980253i \(0.563363\pi\)
\(840\) 0 0
\(841\) −28.3137 −0.976335
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.6569 0.435409
\(846\) 0 0
\(847\) 1.41421 0.0485930
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −21.6569 −0.742387
\(852\) 0 0
\(853\) 6.72792 0.230360 0.115180 0.993345i \(-0.463256\pi\)
0.115180 + 0.993345i \(0.463256\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.21320 0.109761 0.0548805 0.998493i \(-0.482522\pi\)
0.0548805 + 0.998493i \(0.482522\pi\)
\(858\) 0 0
\(859\) −50.4853 −1.72254 −0.861268 0.508151i \(-0.830329\pi\)
−0.861268 + 0.508151i \(0.830329\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −19.0294 −0.647770 −0.323885 0.946097i \(-0.604989\pi\)
−0.323885 + 0.946097i \(0.604989\pi\)
\(864\) 0 0
\(865\) −18.7279 −0.636768
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.65685 0.0562049
\(870\) 0 0
\(871\) 4.97056 0.168421
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.41421 −0.0478091
\(876\) 0 0
\(877\) 22.5269 0.760680 0.380340 0.924847i \(-0.375807\pi\)
0.380340 + 0.924847i \(0.375807\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −35.3137 −1.18975 −0.594875 0.803819i \(-0.702798\pi\)
−0.594875 + 0.803819i \(0.702798\pi\)
\(882\) 0 0
\(883\) −3.02944 −0.101949 −0.0509743 0.998700i \(-0.516233\pi\)
−0.0509743 + 0.998700i \(0.516233\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20.2426 −0.679681 −0.339841 0.940483i \(-0.610373\pi\)
−0.339841 + 0.940483i \(0.610373\pi\)
\(888\) 0 0
\(889\) 5.31371 0.178216
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 16.0000 0.535420
\(894\) 0 0
\(895\) −15.3137 −0.511881
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.37258 −0.179186
\(900\) 0 0
\(901\) 24.4853 0.815723
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.6569 0.453969
\(906\) 0 0
\(907\) 24.7696 0.822459 0.411230 0.911532i \(-0.365099\pi\)
0.411230 + 0.911532i \(0.365099\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.2843 0.406996 0.203498 0.979075i \(-0.434769\pi\)
0.203498 + 0.979075i \(0.434769\pi\)
\(912\) 0 0
\(913\) −0.242641 −0.00803023
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.686292 −0.0226633
\(918\) 0 0
\(919\) −43.7990 −1.44480 −0.722398 0.691478i \(-0.756960\pi\)
−0.722398 + 0.691478i \(0.756960\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.85786 −0.0611524
\(924\) 0 0
\(925\) −7.65685 −0.251756
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 34.6274 1.13609 0.568044 0.822998i \(-0.307700\pi\)
0.568044 + 0.822998i \(0.307700\pi\)
\(930\) 0 0
\(931\) 28.2843 0.926980
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.41421 −0.111657
\(936\) 0 0
\(937\) 22.7279 0.742489 0.371244 0.928535i \(-0.378931\pi\)
0.371244 + 0.928535i \(0.378931\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −25.3137 −0.825203 −0.412602 0.910912i \(-0.635380\pi\)
−0.412602 + 0.910912i \(0.635380\pi\)
\(942\) 0 0
\(943\) 29.6569 0.965760
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.48528 0.275735 0.137867 0.990451i \(-0.455975\pi\)
0.137867 + 0.990451i \(0.455975\pi\)
\(948\) 0 0
\(949\) −4.34315 −0.140984
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.89949 0.126317 0.0631585 0.998004i \(-0.479883\pi\)
0.0631585 + 0.998004i \(0.479883\pi\)
\(954\) 0 0
\(955\) −10.3431 −0.334696
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 19.7990 0.639343
\(960\) 0 0
\(961\) 11.0589 0.356738
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.3848 0.527445
\(966\) 0 0
\(967\) 19.7574 0.635354 0.317677 0.948199i \(-0.397097\pi\)
0.317677 + 0.948199i \(0.397097\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.686292 0.0220241 0.0110121 0.999939i \(-0.496495\pi\)
0.0110121 + 0.999939i \(0.496495\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.9706 0.734893 0.367447 0.930045i \(-0.380232\pi\)
0.367447 + 0.930045i \(0.380232\pi\)
\(978\) 0 0
\(979\) 4.34315 0.138808
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −31.3137 −0.998752 −0.499376 0.866385i \(-0.666437\pi\)
−0.499376 + 0.866385i \(0.666437\pi\)
\(984\) 0 0
\(985\) −16.3848 −0.522062
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.31371 0.232562
\(990\) 0 0
\(991\) −32.8284 −1.04283 −0.521415 0.853303i \(-0.674596\pi\)
−0.521415 + 0.853303i \(0.674596\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.3137 −0.358669
\(996\) 0 0
\(997\) −26.0416 −0.824747 −0.412373 0.911015i \(-0.635300\pi\)
−0.412373 + 0.911015i \(0.635300\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3960.2.a.y.1.2 2
3.2 odd 2 3960.2.a.bd.1.2 yes 2
4.3 odd 2 7920.2.a.br.1.1 2
12.11 even 2 7920.2.a.cc.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3960.2.a.y.1.2 2 1.1 even 1 trivial
3960.2.a.bd.1.2 yes 2 3.2 odd 2
7920.2.a.br.1.1 2 4.3 odd 2
7920.2.a.cc.1.1 2 12.11 even 2