Properties

Label 399.2.a.d.1.3
Level $399$
Weight $2$
Character 399.1
Self dual yes
Analytic conductor $3.186$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [399,2,Mod(1,399)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(399, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("399.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 399.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17009 q^{2} -1.00000 q^{3} +2.70928 q^{4} +3.70928 q^{5} -2.17009 q^{6} -1.00000 q^{7} +1.53919 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+2.17009 q^{2} -1.00000 q^{3} +2.70928 q^{4} +3.70928 q^{5} -2.17009 q^{6} -1.00000 q^{7} +1.53919 q^{8} +1.00000 q^{9} +8.04945 q^{10} -1.07838 q^{11} -2.70928 q^{12} +0.921622 q^{13} -2.17009 q^{14} -3.70928 q^{15} -2.07838 q^{16} +0.290725 q^{17} +2.17009 q^{18} +1.00000 q^{19} +10.0494 q^{20} +1.00000 q^{21} -2.34017 q^{22} -7.60197 q^{23} -1.53919 q^{24} +8.75872 q^{25} +2.00000 q^{26} -1.00000 q^{27} -2.70928 q^{28} +5.36910 q^{29} -8.04945 q^{30} +8.49693 q^{31} -7.58864 q^{32} +1.07838 q^{33} +0.630898 q^{34} -3.70928 q^{35} +2.70928 q^{36} -10.6803 q^{37} +2.17009 q^{38} -0.921622 q^{39} +5.70928 q^{40} -3.75872 q^{41} +2.17009 q^{42} -8.49693 q^{43} -2.92162 q^{44} +3.70928 q^{45} -16.4969 q^{46} -6.20620 q^{47} +2.07838 q^{48} +1.00000 q^{49} +19.0072 q^{50} -0.290725 q^{51} +2.49693 q^{52} +4.78765 q^{53} -2.17009 q^{54} -4.00000 q^{55} -1.53919 q^{56} -1.00000 q^{57} +11.6514 q^{58} +4.00000 q^{59} -10.0494 q^{60} -2.68035 q^{61} +18.4391 q^{62} -1.00000 q^{63} -12.3112 q^{64} +3.41855 q^{65} +2.34017 q^{66} +1.26180 q^{67} +0.787653 q^{68} +7.60197 q^{69} -8.04945 q^{70} -3.86603 q^{71} +1.53919 q^{72} +1.41855 q^{73} -23.1773 q^{74} -8.75872 q^{75} +2.70928 q^{76} +1.07838 q^{77} -2.00000 q^{78} -10.5236 q^{79} -7.70928 q^{80} +1.00000 q^{81} -8.15676 q^{82} +8.72979 q^{83} +2.70928 q^{84} +1.07838 q^{85} -18.4391 q^{86} -5.36910 q^{87} -1.65983 q^{88} -3.75872 q^{89} +8.04945 q^{90} -0.921622 q^{91} -20.5958 q^{92} -8.49693 q^{93} -13.4680 q^{94} +3.70928 q^{95} +7.58864 q^{96} -13.5174 q^{97} +2.17009 q^{98} -1.07838 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} - 3 q^{3} + q^{4} + 4 q^{5} - q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + q^{2} - 3 q^{3} + q^{4} + 4 q^{5} - q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9} + 6 q^{10} - q^{12} + 6 q^{13} - q^{14} - 4 q^{15} - 3 q^{16} + 8 q^{17} + q^{18} + 3 q^{19} + 12 q^{20} + 3 q^{21} + 4 q^{22} - 4 q^{23} - 3 q^{24} + q^{25} + 6 q^{26} - 3 q^{27} - q^{28} + 20 q^{29} - 6 q^{30} + 8 q^{31} - 3 q^{32} - 2 q^{34} - 4 q^{35} + q^{36} - 10 q^{37} + q^{38} - 6 q^{39} + 10 q^{40} + 14 q^{41} + q^{42} - 8 q^{43} - 12 q^{44} + 4 q^{45} - 32 q^{46} + 6 q^{47} + 3 q^{48} + 3 q^{49} + 23 q^{50} - 8 q^{51} - 10 q^{52} + 4 q^{53} - q^{54} - 12 q^{55} - 3 q^{56} - 3 q^{57} - 2 q^{58} + 12 q^{59} - 12 q^{60} + 14 q^{61} + 8 q^{62} - 3 q^{63} - 11 q^{64} - 4 q^{65} - 4 q^{66} - 4 q^{67} - 8 q^{68} + 4 q^{69} - 6 q^{70} + 2 q^{71} + 3 q^{72} - 10 q^{73} - 30 q^{74} - q^{75} + q^{76} - 6 q^{78} - 16 q^{79} - 16 q^{80} + 3 q^{81} - 18 q^{82} - 14 q^{83} + q^{84} - 8 q^{86} - 20 q^{87} - 16 q^{88} + 14 q^{89} + 6 q^{90} - 6 q^{91} - 8 q^{92} - 8 q^{93} - 8 q^{94} + 4 q^{95} + 3 q^{96} + 10 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17009 1.53448 0.767241 0.641358i \(-0.221629\pi\)
0.767241 + 0.641358i \(0.221629\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.70928 1.35464
\(5\) 3.70928 1.65884 0.829419 0.558627i \(-0.188672\pi\)
0.829419 + 0.558627i \(0.188672\pi\)
\(6\) −2.17009 −0.885934
\(7\) −1.00000 −0.377964
\(8\) 1.53919 0.544185
\(9\) 1.00000 0.333333
\(10\) 8.04945 2.54546
\(11\) −1.07838 −0.325143 −0.162572 0.986697i \(-0.551979\pi\)
−0.162572 + 0.986697i \(0.551979\pi\)
\(12\) −2.70928 −0.782100
\(13\) 0.921622 0.255612 0.127806 0.991799i \(-0.459207\pi\)
0.127806 + 0.991799i \(0.459207\pi\)
\(14\) −2.17009 −0.579980
\(15\) −3.70928 −0.957731
\(16\) −2.07838 −0.519594
\(17\) 0.290725 0.0705111 0.0352555 0.999378i \(-0.488775\pi\)
0.0352555 + 0.999378i \(0.488775\pi\)
\(18\) 2.17009 0.511494
\(19\) 1.00000 0.229416
\(20\) 10.0494 2.24712
\(21\) 1.00000 0.218218
\(22\) −2.34017 −0.498927
\(23\) −7.60197 −1.58512 −0.792560 0.609794i \(-0.791252\pi\)
−0.792560 + 0.609794i \(0.791252\pi\)
\(24\) −1.53919 −0.314186
\(25\) 8.75872 1.75174
\(26\) 2.00000 0.392232
\(27\) −1.00000 −0.192450
\(28\) −2.70928 −0.512005
\(29\) 5.36910 0.997017 0.498509 0.866885i \(-0.333881\pi\)
0.498509 + 0.866885i \(0.333881\pi\)
\(30\) −8.04945 −1.46962
\(31\) 8.49693 1.52609 0.763047 0.646343i \(-0.223703\pi\)
0.763047 + 0.646343i \(0.223703\pi\)
\(32\) −7.58864 −1.34149
\(33\) 1.07838 0.187721
\(34\) 0.630898 0.108198
\(35\) −3.70928 −0.626982
\(36\) 2.70928 0.451546
\(37\) −10.6803 −1.75584 −0.877919 0.478809i \(-0.841069\pi\)
−0.877919 + 0.478809i \(0.841069\pi\)
\(38\) 2.17009 0.352035
\(39\) −0.921622 −0.147578
\(40\) 5.70928 0.902716
\(41\) −3.75872 −0.587014 −0.293507 0.955957i \(-0.594822\pi\)
−0.293507 + 0.955957i \(0.594822\pi\)
\(42\) 2.17009 0.334852
\(43\) −8.49693 −1.29577 −0.647885 0.761738i \(-0.724346\pi\)
−0.647885 + 0.761738i \(0.724346\pi\)
\(44\) −2.92162 −0.440451
\(45\) 3.70928 0.552946
\(46\) −16.4969 −2.43234
\(47\) −6.20620 −0.905268 −0.452634 0.891696i \(-0.649516\pi\)
−0.452634 + 0.891696i \(0.649516\pi\)
\(48\) 2.07838 0.299988
\(49\) 1.00000 0.142857
\(50\) 19.0072 2.68802
\(51\) −0.290725 −0.0407096
\(52\) 2.49693 0.346262
\(53\) 4.78765 0.657635 0.328817 0.944394i \(-0.393350\pi\)
0.328817 + 0.944394i \(0.393350\pi\)
\(54\) −2.17009 −0.295311
\(55\) −4.00000 −0.539360
\(56\) −1.53919 −0.205683
\(57\) −1.00000 −0.132453
\(58\) 11.6514 1.52991
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) −10.0494 −1.29738
\(61\) −2.68035 −0.343183 −0.171592 0.985168i \(-0.554891\pi\)
−0.171592 + 0.985168i \(0.554891\pi\)
\(62\) 18.4391 2.34176
\(63\) −1.00000 −0.125988
\(64\) −12.3112 −1.53891
\(65\) 3.41855 0.424019
\(66\) 2.34017 0.288055
\(67\) 1.26180 0.154153 0.0770764 0.997025i \(-0.475441\pi\)
0.0770764 + 0.997025i \(0.475441\pi\)
\(68\) 0.787653 0.0955170
\(69\) 7.60197 0.915169
\(70\) −8.04945 −0.962093
\(71\) −3.86603 −0.458813 −0.229407 0.973331i \(-0.573679\pi\)
−0.229407 + 0.973331i \(0.573679\pi\)
\(72\) 1.53919 0.181395
\(73\) 1.41855 0.166029 0.0830144 0.996548i \(-0.473545\pi\)
0.0830144 + 0.996548i \(0.473545\pi\)
\(74\) −23.1773 −2.69430
\(75\) −8.75872 −1.01137
\(76\) 2.70928 0.310775
\(77\) 1.07838 0.122893
\(78\) −2.00000 −0.226455
\(79\) −10.5236 −1.18400 −0.591998 0.805939i \(-0.701661\pi\)
−0.591998 + 0.805939i \(0.701661\pi\)
\(80\) −7.70928 −0.861923
\(81\) 1.00000 0.111111
\(82\) −8.15676 −0.900763
\(83\) 8.72979 0.958219 0.479110 0.877755i \(-0.340960\pi\)
0.479110 + 0.877755i \(0.340960\pi\)
\(84\) 2.70928 0.295606
\(85\) 1.07838 0.116966
\(86\) −18.4391 −1.98834
\(87\) −5.36910 −0.575628
\(88\) −1.65983 −0.176938
\(89\) −3.75872 −0.398424 −0.199212 0.979956i \(-0.563838\pi\)
−0.199212 + 0.979956i \(0.563838\pi\)
\(90\) 8.04945 0.848486
\(91\) −0.921622 −0.0966123
\(92\) −20.5958 −2.14726
\(93\) −8.49693 −0.881090
\(94\) −13.4680 −1.38912
\(95\) 3.70928 0.380564
\(96\) 7.58864 0.774512
\(97\) −13.5174 −1.37249 −0.686244 0.727371i \(-0.740742\pi\)
−0.686244 + 0.727371i \(0.740742\pi\)
\(98\) 2.17009 0.219212
\(99\) −1.07838 −0.108381
\(100\) 23.7298 2.37298
\(101\) −2.44748 −0.243533 −0.121767 0.992559i \(-0.538856\pi\)
−0.121767 + 0.992559i \(0.538856\pi\)
\(102\) −0.630898 −0.0624682
\(103\) 19.5174 1.92311 0.961556 0.274610i \(-0.0885488\pi\)
0.961556 + 0.274610i \(0.0885488\pi\)
\(104\) 1.41855 0.139100
\(105\) 3.70928 0.361988
\(106\) 10.3896 1.00913
\(107\) 15.6514 1.51308 0.756540 0.653948i \(-0.226888\pi\)
0.756540 + 0.653948i \(0.226888\pi\)
\(108\) −2.70928 −0.260700
\(109\) 14.0989 1.35043 0.675215 0.737621i \(-0.264051\pi\)
0.675215 + 0.737621i \(0.264051\pi\)
\(110\) −8.68035 −0.827639
\(111\) 10.6803 1.01373
\(112\) 2.07838 0.196388
\(113\) 18.7298 1.76195 0.880975 0.473162i \(-0.156887\pi\)
0.880975 + 0.473162i \(0.156887\pi\)
\(114\) −2.17009 −0.203247
\(115\) −28.1978 −2.62946
\(116\) 14.5464 1.35060
\(117\) 0.921622 0.0852040
\(118\) 8.68035 0.799091
\(119\) −0.290725 −0.0266507
\(120\) −5.70928 −0.521183
\(121\) −9.83710 −0.894282
\(122\) −5.81658 −0.526609
\(123\) 3.75872 0.338913
\(124\) 23.0205 2.06730
\(125\) 13.9421 1.24702
\(126\) −2.17009 −0.193327
\(127\) −15.7854 −1.40073 −0.700363 0.713787i \(-0.746979\pi\)
−0.700363 + 0.713787i \(0.746979\pi\)
\(128\) −11.5392 −1.01993
\(129\) 8.49693 0.748113
\(130\) 7.41855 0.650650
\(131\) 6.10731 0.533598 0.266799 0.963752i \(-0.414034\pi\)
0.266799 + 0.963752i \(0.414034\pi\)
\(132\) 2.92162 0.254295
\(133\) −1.00000 −0.0867110
\(134\) 2.73820 0.236545
\(135\) −3.70928 −0.319244
\(136\) 0.447480 0.0383711
\(137\) 18.9939 1.62275 0.811377 0.584523i \(-0.198718\pi\)
0.811377 + 0.584523i \(0.198718\pi\)
\(138\) 16.4969 1.40431
\(139\) 0.894960 0.0759095 0.0379548 0.999279i \(-0.487916\pi\)
0.0379548 + 0.999279i \(0.487916\pi\)
\(140\) −10.0494 −0.849333
\(141\) 6.20620 0.522657
\(142\) −8.38962 −0.704041
\(143\) −0.993857 −0.0831105
\(144\) −2.07838 −0.173198
\(145\) 19.9155 1.65389
\(146\) 3.07838 0.254768
\(147\) −1.00000 −0.0824786
\(148\) −28.9360 −2.37852
\(149\) 20.9360 1.71514 0.857572 0.514364i \(-0.171972\pi\)
0.857572 + 0.514364i \(0.171972\pi\)
\(150\) −19.0072 −1.55193
\(151\) 13.9421 1.13460 0.567298 0.823513i \(-0.307989\pi\)
0.567298 + 0.823513i \(0.307989\pi\)
\(152\) 1.53919 0.124845
\(153\) 0.290725 0.0235037
\(154\) 2.34017 0.188577
\(155\) 31.5174 2.53154
\(156\) −2.49693 −0.199914
\(157\) −2.31351 −0.184638 −0.0923191 0.995729i \(-0.529428\pi\)
−0.0923191 + 0.995729i \(0.529428\pi\)
\(158\) −22.8371 −1.81682
\(159\) −4.78765 −0.379686
\(160\) −28.1483 −2.22532
\(161\) 7.60197 0.599119
\(162\) 2.17009 0.170498
\(163\) −17.6598 −1.38322 −0.691612 0.722269i \(-0.743099\pi\)
−0.691612 + 0.722269i \(0.743099\pi\)
\(164\) −10.1834 −0.795191
\(165\) 4.00000 0.311400
\(166\) 18.9444 1.47037
\(167\) 3.05172 0.236149 0.118074 0.993005i \(-0.462328\pi\)
0.118074 + 0.993005i \(0.462328\pi\)
\(168\) 1.53919 0.118751
\(169\) −12.1506 −0.934662
\(170\) 2.34017 0.179483
\(171\) 1.00000 0.0764719
\(172\) −23.0205 −1.75530
\(173\) 9.60197 0.730024 0.365012 0.931003i \(-0.381065\pi\)
0.365012 + 0.931003i \(0.381065\pi\)
\(174\) −11.6514 −0.883292
\(175\) −8.75872 −0.662097
\(176\) 2.24128 0.168943
\(177\) −4.00000 −0.300658
\(178\) −8.15676 −0.611375
\(179\) −0.814315 −0.0608648 −0.0304324 0.999537i \(-0.509688\pi\)
−0.0304324 + 0.999537i \(0.509688\pi\)
\(180\) 10.0494 0.749042
\(181\) 20.1568 1.49824 0.749120 0.662434i \(-0.230477\pi\)
0.749120 + 0.662434i \(0.230477\pi\)
\(182\) −2.00000 −0.148250
\(183\) 2.68035 0.198137
\(184\) −11.7009 −0.862599
\(185\) −39.6163 −2.91265
\(186\) −18.4391 −1.35202
\(187\) −0.313511 −0.0229262
\(188\) −16.8143 −1.22631
\(189\) 1.00000 0.0727393
\(190\) 8.04945 0.583968
\(191\) 5.44521 0.394002 0.197001 0.980403i \(-0.436880\pi\)
0.197001 + 0.980403i \(0.436880\pi\)
\(192\) 12.3112 0.888487
\(193\) 1.68649 0.121396 0.0606981 0.998156i \(-0.480667\pi\)
0.0606981 + 0.998156i \(0.480667\pi\)
\(194\) −29.3340 −2.10606
\(195\) −3.41855 −0.244808
\(196\) 2.70928 0.193520
\(197\) −10.3668 −0.738606 −0.369303 0.929309i \(-0.620404\pi\)
−0.369303 + 0.929309i \(0.620404\pi\)
\(198\) −2.34017 −0.166309
\(199\) −2.42469 −0.171882 −0.0859410 0.996300i \(-0.527390\pi\)
−0.0859410 + 0.996300i \(0.527390\pi\)
\(200\) 13.4813 0.953274
\(201\) −1.26180 −0.0890002
\(202\) −5.31124 −0.373698
\(203\) −5.36910 −0.376837
\(204\) −0.787653 −0.0551467
\(205\) −13.9421 −0.973761
\(206\) 42.3545 2.95098
\(207\) −7.60197 −0.528373
\(208\) −1.91548 −0.132815
\(209\) −1.07838 −0.0745929
\(210\) 8.04945 0.555465
\(211\) 19.5174 1.34364 0.671818 0.740716i \(-0.265514\pi\)
0.671818 + 0.740716i \(0.265514\pi\)
\(212\) 12.9711 0.890857
\(213\) 3.86603 0.264896
\(214\) 33.9649 2.32179
\(215\) −31.5174 −2.14947
\(216\) −1.53919 −0.104729
\(217\) −8.49693 −0.576809
\(218\) 30.5958 2.07221
\(219\) −1.41855 −0.0958568
\(220\) −10.8371 −0.730637
\(221\) 0.267938 0.0180235
\(222\) 23.1773 1.55556
\(223\) 19.0205 1.27371 0.636854 0.770984i \(-0.280235\pi\)
0.636854 + 0.770984i \(0.280235\pi\)
\(224\) 7.58864 0.507037
\(225\) 8.75872 0.583915
\(226\) 40.6453 2.70368
\(227\) 11.7321 0.778684 0.389342 0.921093i \(-0.372702\pi\)
0.389342 + 0.921093i \(0.372702\pi\)
\(228\) −2.70928 −0.179426
\(229\) −27.4596 −1.81458 −0.907290 0.420505i \(-0.861853\pi\)
−0.907290 + 0.420505i \(0.861853\pi\)
\(230\) −61.1917 −4.03486
\(231\) −1.07838 −0.0709520
\(232\) 8.26406 0.542562
\(233\) −5.10504 −0.334442 −0.167221 0.985919i \(-0.553479\pi\)
−0.167221 + 0.985919i \(0.553479\pi\)
\(234\) 2.00000 0.130744
\(235\) −23.0205 −1.50169
\(236\) 10.8371 0.705435
\(237\) 10.5236 0.683581
\(238\) −0.630898 −0.0408950
\(239\) −10.6537 −0.689130 −0.344565 0.938763i \(-0.611973\pi\)
−0.344565 + 0.938763i \(0.611973\pi\)
\(240\) 7.70928 0.497632
\(241\) −13.5174 −0.870735 −0.435368 0.900253i \(-0.643382\pi\)
−0.435368 + 0.900253i \(0.643382\pi\)
\(242\) −21.3474 −1.37226
\(243\) −1.00000 −0.0641500
\(244\) −7.26180 −0.464889
\(245\) 3.70928 0.236977
\(246\) 8.15676 0.520056
\(247\) 0.921622 0.0586414
\(248\) 13.0784 0.830478
\(249\) −8.72979 −0.553228
\(250\) 30.2557 1.91354
\(251\) −18.2062 −1.14917 −0.574583 0.818447i \(-0.694836\pi\)
−0.574583 + 0.818447i \(0.694836\pi\)
\(252\) −2.70928 −0.170668
\(253\) 8.19779 0.515391
\(254\) −34.2557 −2.14939
\(255\) −1.07838 −0.0675306
\(256\) −0.418551 −0.0261594
\(257\) 12.3402 0.769759 0.384879 0.922967i \(-0.374243\pi\)
0.384879 + 0.922967i \(0.374243\pi\)
\(258\) 18.4391 1.14797
\(259\) 10.6803 0.663644
\(260\) 9.26180 0.574392
\(261\) 5.36910 0.332339
\(262\) 13.2534 0.818797
\(263\) 7.50307 0.462659 0.231330 0.972875i \(-0.425692\pi\)
0.231330 + 0.972875i \(0.425692\pi\)
\(264\) 1.65983 0.102155
\(265\) 17.7587 1.09091
\(266\) −2.17009 −0.133057
\(267\) 3.75872 0.230030
\(268\) 3.41855 0.208821
\(269\) −4.34017 −0.264625 −0.132313 0.991208i \(-0.542240\pi\)
−0.132313 + 0.991208i \(0.542240\pi\)
\(270\) −8.04945 −0.489874
\(271\) 26.0410 1.58188 0.790940 0.611893i \(-0.209592\pi\)
0.790940 + 0.611893i \(0.209592\pi\)
\(272\) −0.604236 −0.0366372
\(273\) 0.921622 0.0557791
\(274\) 41.2183 2.49009
\(275\) −9.44521 −0.569568
\(276\) 20.5958 1.23972
\(277\) 6.59583 0.396305 0.198152 0.980171i \(-0.436506\pi\)
0.198152 + 0.980171i \(0.436506\pi\)
\(278\) 1.94214 0.116482
\(279\) 8.49693 0.508698
\(280\) −5.70928 −0.341194
\(281\) −11.6248 −0.693475 −0.346737 0.937962i \(-0.612710\pi\)
−0.346737 + 0.937962i \(0.612710\pi\)
\(282\) 13.4680 0.802008
\(283\) −17.9421 −1.06655 −0.533275 0.845942i \(-0.679039\pi\)
−0.533275 + 0.845942i \(0.679039\pi\)
\(284\) −10.4741 −0.621526
\(285\) −3.70928 −0.219719
\(286\) −2.15676 −0.127532
\(287\) 3.75872 0.221870
\(288\) −7.58864 −0.447165
\(289\) −16.9155 −0.995028
\(290\) 43.2183 2.53787
\(291\) 13.5174 0.792407
\(292\) 3.84324 0.224909
\(293\) −23.7587 −1.38800 −0.694000 0.719975i \(-0.744153\pi\)
−0.694000 + 0.719975i \(0.744153\pi\)
\(294\) −2.17009 −0.126562
\(295\) 14.8371 0.863849
\(296\) −16.4391 −0.955502
\(297\) 1.07838 0.0625738
\(298\) 45.4329 2.63186
\(299\) −7.00614 −0.405176
\(300\) −23.7298 −1.37004
\(301\) 8.49693 0.489755
\(302\) 30.2557 1.74102
\(303\) 2.44748 0.140604
\(304\) −2.07838 −0.119203
\(305\) −9.94214 −0.569285
\(306\) 0.630898 0.0360660
\(307\) −24.0144 −1.37057 −0.685286 0.728274i \(-0.740323\pi\)
−0.685286 + 0.728274i \(0.740323\pi\)
\(308\) 2.92162 0.166475
\(309\) −19.5174 −1.11031
\(310\) 68.3956 3.88461
\(311\) 22.9854 1.30339 0.651693 0.758483i \(-0.274059\pi\)
0.651693 + 0.758483i \(0.274059\pi\)
\(312\) −1.41855 −0.0803096
\(313\) 0.523590 0.0295951 0.0147975 0.999891i \(-0.495290\pi\)
0.0147975 + 0.999891i \(0.495290\pi\)
\(314\) −5.02052 −0.283324
\(315\) −3.70928 −0.208994
\(316\) −28.5113 −1.60389
\(317\) −17.1012 −0.960497 −0.480249 0.877132i \(-0.659454\pi\)
−0.480249 + 0.877132i \(0.659454\pi\)
\(318\) −10.3896 −0.582621
\(319\) −5.78992 −0.324173
\(320\) −45.6658 −2.55280
\(321\) −15.6514 −0.873577
\(322\) 16.4969 0.919338
\(323\) 0.290725 0.0161764
\(324\) 2.70928 0.150515
\(325\) 8.07223 0.447767
\(326\) −38.3234 −2.12253
\(327\) −14.0989 −0.779671
\(328\) −5.78539 −0.319444
\(329\) 6.20620 0.342159
\(330\) 8.68035 0.477837
\(331\) 25.1461 1.38215 0.691077 0.722781i \(-0.257137\pi\)
0.691077 + 0.722781i \(0.257137\pi\)
\(332\) 23.6514 1.29804
\(333\) −10.6803 −0.585279
\(334\) 6.62249 0.362366
\(335\) 4.68035 0.255715
\(336\) −2.07838 −0.113385
\(337\) −11.5753 −0.630547 −0.315274 0.949001i \(-0.602096\pi\)
−0.315274 + 0.949001i \(0.602096\pi\)
\(338\) −26.3679 −1.43422
\(339\) −18.7298 −1.01726
\(340\) 2.92162 0.158447
\(341\) −9.16290 −0.496199
\(342\) 2.17009 0.117345
\(343\) −1.00000 −0.0539949
\(344\) −13.0784 −0.705139
\(345\) 28.1978 1.51812
\(346\) 20.8371 1.12021
\(347\) −32.0144 −1.71862 −0.859311 0.511454i \(-0.829107\pi\)
−0.859311 + 0.511454i \(0.829107\pi\)
\(348\) −14.5464 −0.779768
\(349\) −2.36683 −0.126694 −0.0633469 0.997992i \(-0.520177\pi\)
−0.0633469 + 0.997992i \(0.520177\pi\)
\(350\) −19.0072 −1.01598
\(351\) −0.921622 −0.0491926
\(352\) 8.18342 0.436178
\(353\) 15.4413 0.821859 0.410930 0.911667i \(-0.365204\pi\)
0.410930 + 0.911667i \(0.365204\pi\)
\(354\) −8.68035 −0.461355
\(355\) −14.3402 −0.761097
\(356\) −10.1834 −0.539720
\(357\) 0.290725 0.0153868
\(358\) −1.76713 −0.0933959
\(359\) 23.4329 1.23674 0.618371 0.785886i \(-0.287793\pi\)
0.618371 + 0.785886i \(0.287793\pi\)
\(360\) 5.70928 0.300905
\(361\) 1.00000 0.0526316
\(362\) 43.7419 2.29902
\(363\) 9.83710 0.516314
\(364\) −2.49693 −0.130875
\(365\) 5.26180 0.275415
\(366\) 5.81658 0.304038
\(367\) −31.3028 −1.63399 −0.816997 0.576642i \(-0.804363\pi\)
−0.816997 + 0.576642i \(0.804363\pi\)
\(368\) 15.7998 0.823620
\(369\) −3.75872 −0.195671
\(370\) −85.9709 −4.46941
\(371\) −4.78765 −0.248563
\(372\) −23.0205 −1.19356
\(373\) −23.6742 −1.22580 −0.612902 0.790159i \(-0.709998\pi\)
−0.612902 + 0.790159i \(0.709998\pi\)
\(374\) −0.680346 −0.0351799
\(375\) −13.9421 −0.719969
\(376\) −9.55252 −0.492634
\(377\) 4.94828 0.254850
\(378\) 2.17009 0.111617
\(379\) −7.41855 −0.381065 −0.190533 0.981681i \(-0.561022\pi\)
−0.190533 + 0.981681i \(0.561022\pi\)
\(380\) 10.0494 0.515526
\(381\) 15.7854 0.808710
\(382\) 11.8166 0.604589
\(383\) −7.10504 −0.363051 −0.181525 0.983386i \(-0.558103\pi\)
−0.181525 + 0.983386i \(0.558103\pi\)
\(384\) 11.5392 0.588857
\(385\) 4.00000 0.203859
\(386\) 3.65983 0.186280
\(387\) −8.49693 −0.431923
\(388\) −36.6225 −1.85923
\(389\) 16.2557 0.824194 0.412097 0.911140i \(-0.364796\pi\)
0.412097 + 0.911140i \(0.364796\pi\)
\(390\) −7.41855 −0.375653
\(391\) −2.21008 −0.111769
\(392\) 1.53919 0.0777408
\(393\) −6.10731 −0.308073
\(394\) −22.4969 −1.13338
\(395\) −39.0349 −1.96406
\(396\) −2.92162 −0.146817
\(397\) 26.5113 1.33056 0.665282 0.746592i \(-0.268311\pi\)
0.665282 + 0.746592i \(0.268311\pi\)
\(398\) −5.26180 −0.263750
\(399\) 1.00000 0.0500626
\(400\) −18.2039 −0.910197
\(401\) −6.04945 −0.302095 −0.151048 0.988527i \(-0.548265\pi\)
−0.151048 + 0.988527i \(0.548265\pi\)
\(402\) −2.73820 −0.136569
\(403\) 7.83096 0.390088
\(404\) −6.63090 −0.329899
\(405\) 3.70928 0.184315
\(406\) −11.6514 −0.578250
\(407\) 11.5174 0.570899
\(408\) −0.447480 −0.0221536
\(409\) 37.1194 1.83544 0.917718 0.397231i \(-0.130029\pi\)
0.917718 + 0.397231i \(0.130029\pi\)
\(410\) −30.2557 −1.49422
\(411\) −18.9939 −0.936898
\(412\) 52.8781 2.60512
\(413\) −4.00000 −0.196827
\(414\) −16.4969 −0.810780
\(415\) 32.3812 1.58953
\(416\) −6.99386 −0.342902
\(417\) −0.894960 −0.0438264
\(418\) −2.34017 −0.114462
\(419\) −23.3523 −1.14083 −0.570417 0.821355i \(-0.693218\pi\)
−0.570417 + 0.821355i \(0.693218\pi\)
\(420\) 10.0494 0.490363
\(421\) 7.57531 0.369198 0.184599 0.982814i \(-0.440901\pi\)
0.184599 + 0.982814i \(0.440901\pi\)
\(422\) 42.3545 2.06179
\(423\) −6.20620 −0.301756
\(424\) 7.36910 0.357875
\(425\) 2.54638 0.123517
\(426\) 8.38962 0.406478
\(427\) 2.68035 0.129711
\(428\) 42.4040 2.04967
\(429\) 0.993857 0.0479839
\(430\) −68.3956 −3.29833
\(431\) −5.90707 −0.284533 −0.142267 0.989828i \(-0.545439\pi\)
−0.142267 + 0.989828i \(0.545439\pi\)
\(432\) 2.07838 0.0999960
\(433\) −7.47641 −0.359293 −0.179647 0.983731i \(-0.557495\pi\)
−0.179647 + 0.983731i \(0.557495\pi\)
\(434\) −18.4391 −0.885104
\(435\) −19.9155 −0.954874
\(436\) 38.1978 1.82934
\(437\) −7.60197 −0.363651
\(438\) −3.07838 −0.147091
\(439\) −9.49079 −0.452970 −0.226485 0.974015i \(-0.572724\pi\)
−0.226485 + 0.974015i \(0.572724\pi\)
\(440\) −6.15676 −0.293512
\(441\) 1.00000 0.0476190
\(442\) 0.581449 0.0276567
\(443\) −25.1773 −1.19621 −0.598104 0.801418i \(-0.704079\pi\)
−0.598104 + 0.801418i \(0.704079\pi\)
\(444\) 28.9360 1.37324
\(445\) −13.9421 −0.660921
\(446\) 41.2762 1.95448
\(447\) −20.9360 −0.990239
\(448\) 12.3112 0.581652
\(449\) −32.4040 −1.52924 −0.764620 0.644482i \(-0.777073\pi\)
−0.764620 + 0.644482i \(0.777073\pi\)
\(450\) 19.0072 0.896007
\(451\) 4.05332 0.190864
\(452\) 50.7442 2.38680
\(453\) −13.9421 −0.655059
\(454\) 25.4596 1.19488
\(455\) −3.41855 −0.160264
\(456\) −1.53919 −0.0720791
\(457\) 8.86830 0.414841 0.207421 0.978252i \(-0.433493\pi\)
0.207421 + 0.978252i \(0.433493\pi\)
\(458\) −59.5897 −2.78444
\(459\) −0.290725 −0.0135699
\(460\) −76.3956 −3.56196
\(461\) 8.70313 0.405345 0.202673 0.979247i \(-0.435037\pi\)
0.202673 + 0.979247i \(0.435037\pi\)
\(462\) −2.34017 −0.108875
\(463\) −6.21008 −0.288607 −0.144303 0.989533i \(-0.546094\pi\)
−0.144303 + 0.989533i \(0.546094\pi\)
\(464\) −11.1590 −0.518045
\(465\) −31.5174 −1.46159
\(466\) −11.0784 −0.513196
\(467\) 16.4619 0.761764 0.380882 0.924624i \(-0.375620\pi\)
0.380882 + 0.924624i \(0.375620\pi\)
\(468\) 2.49693 0.115421
\(469\) −1.26180 −0.0582643
\(470\) −49.9565 −2.30432
\(471\) 2.31351 0.106601
\(472\) 6.15676 0.283388
\(473\) 9.16290 0.421311
\(474\) 22.8371 1.04894
\(475\) 8.75872 0.401878
\(476\) −0.787653 −0.0361020
\(477\) 4.78765 0.219212
\(478\) −23.1194 −1.05746
\(479\) 16.5320 0.755366 0.377683 0.925935i \(-0.376721\pi\)
0.377683 + 0.925935i \(0.376721\pi\)
\(480\) 28.1483 1.28479
\(481\) −9.84324 −0.448813
\(482\) −29.3340 −1.33613
\(483\) −7.60197 −0.345902
\(484\) −26.6514 −1.21143
\(485\) −50.1399 −2.27674
\(486\) −2.17009 −0.0984371
\(487\) −25.6742 −1.16341 −0.581705 0.813400i \(-0.697614\pi\)
−0.581705 + 0.813400i \(0.697614\pi\)
\(488\) −4.12556 −0.186755
\(489\) 17.6598 0.798605
\(490\) 8.04945 0.363637
\(491\) 27.3340 1.23357 0.616784 0.787133i \(-0.288435\pi\)
0.616784 + 0.787133i \(0.288435\pi\)
\(492\) 10.1834 0.459104
\(493\) 1.56093 0.0703008
\(494\) 2.00000 0.0899843
\(495\) −4.00000 −0.179787
\(496\) −17.6598 −0.792950
\(497\) 3.86603 0.173415
\(498\) −18.9444 −0.848919
\(499\) −10.0410 −0.449499 −0.224749 0.974417i \(-0.572156\pi\)
−0.224749 + 0.974417i \(0.572156\pi\)
\(500\) 37.7731 1.68926
\(501\) −3.05172 −0.136341
\(502\) −39.5090 −1.76337
\(503\) 36.8287 1.64211 0.821055 0.570849i \(-0.193386\pi\)
0.821055 + 0.570849i \(0.193386\pi\)
\(504\) −1.53919 −0.0685609
\(505\) −9.07838 −0.403983
\(506\) 17.7899 0.790858
\(507\) 12.1506 0.539628
\(508\) −42.7670 −1.89748
\(509\) −14.1301 −0.626305 −0.313153 0.949703i \(-0.601385\pi\)
−0.313153 + 0.949703i \(0.601385\pi\)
\(510\) −2.34017 −0.103625
\(511\) −1.41855 −0.0627530
\(512\) 22.1701 0.979789
\(513\) −1.00000 −0.0441511
\(514\) 26.7792 1.18118
\(515\) 72.3956 3.19013
\(516\) 23.0205 1.01342
\(517\) 6.69263 0.294342
\(518\) 23.1773 1.01835
\(519\) −9.60197 −0.421480
\(520\) 5.26180 0.230745
\(521\) 28.1711 1.23420 0.617100 0.786885i \(-0.288307\pi\)
0.617100 + 0.786885i \(0.288307\pi\)
\(522\) 11.6514 0.509969
\(523\) −32.1834 −1.40728 −0.703641 0.710555i \(-0.748444\pi\)
−0.703641 + 0.710555i \(0.748444\pi\)
\(524\) 16.5464 0.722832
\(525\) 8.75872 0.382262
\(526\) 16.2823 0.709943
\(527\) 2.47027 0.107606
\(528\) −2.24128 −0.0975390
\(529\) 34.7899 1.51261
\(530\) 38.5380 1.67398
\(531\) 4.00000 0.173585
\(532\) −2.70928 −0.117462
\(533\) −3.46412 −0.150048
\(534\) 8.15676 0.352977
\(535\) 58.0554 2.50995
\(536\) 1.94214 0.0838877
\(537\) 0.814315 0.0351403
\(538\) −9.41855 −0.406063
\(539\) −1.07838 −0.0464490
\(540\) −10.0494 −0.432459
\(541\) −41.0349 −1.76423 −0.882114 0.471036i \(-0.843880\pi\)
−0.882114 + 0.471036i \(0.843880\pi\)
\(542\) 56.5113 2.42737
\(543\) −20.1568 −0.865009
\(544\) −2.20620 −0.0945902
\(545\) 52.2967 2.24014
\(546\) 2.00000 0.0855921
\(547\) 9.67420 0.413639 0.206820 0.978379i \(-0.433689\pi\)
0.206820 + 0.978379i \(0.433689\pi\)
\(548\) 51.4596 2.19824
\(549\) −2.68035 −0.114394
\(550\) −20.4969 −0.873992
\(551\) 5.36910 0.228731
\(552\) 11.7009 0.498022
\(553\) 10.5236 0.447509
\(554\) 14.3135 0.608123
\(555\) 39.6163 1.68162
\(556\) 2.42469 0.102830
\(557\) −40.1399 −1.70078 −0.850392 0.526150i \(-0.823635\pi\)
−0.850392 + 0.526150i \(0.823635\pi\)
\(558\) 18.4391 0.780588
\(559\) −7.83096 −0.331214
\(560\) 7.70928 0.325776
\(561\) 0.313511 0.0132364
\(562\) −25.2267 −1.06413
\(563\) 44.0989 1.85855 0.929273 0.369393i \(-0.120434\pi\)
0.929273 + 0.369393i \(0.120434\pi\)
\(564\) 16.8143 0.708010
\(565\) 69.4740 2.92279
\(566\) −38.9360 −1.63660
\(567\) −1.00000 −0.0419961
\(568\) −5.95055 −0.249680
\(569\) −13.4147 −0.562372 −0.281186 0.959653i \(-0.590728\pi\)
−0.281186 + 0.959653i \(0.590728\pi\)
\(570\) −8.04945 −0.337154
\(571\) −27.8310 −1.16469 −0.582345 0.812942i \(-0.697865\pi\)
−0.582345 + 0.812942i \(0.697865\pi\)
\(572\) −2.69263 −0.112585
\(573\) −5.44521 −0.227477
\(574\) 8.15676 0.340456
\(575\) −66.5835 −2.77673
\(576\) −12.3112 −0.512968
\(577\) −34.1978 −1.42367 −0.711836 0.702345i \(-0.752136\pi\)
−0.711836 + 0.702345i \(0.752136\pi\)
\(578\) −36.7081 −1.52685
\(579\) −1.68649 −0.0700881
\(580\) 53.9565 2.24042
\(581\) −8.72979 −0.362173
\(582\) 29.3340 1.21593
\(583\) −5.16290 −0.213825
\(584\) 2.18342 0.0903505
\(585\) 3.41855 0.141340
\(586\) −51.5585 −2.12986
\(587\) 33.1422 1.36793 0.683963 0.729517i \(-0.260255\pi\)
0.683963 + 0.729517i \(0.260255\pi\)
\(588\) −2.70928 −0.111729
\(589\) 8.49693 0.350110
\(590\) 32.1978 1.32556
\(591\) 10.3668 0.426435
\(592\) 22.1978 0.912324
\(593\) 29.7503 1.22170 0.610849 0.791747i \(-0.290828\pi\)
0.610849 + 0.791747i \(0.290828\pi\)
\(594\) 2.34017 0.0960185
\(595\) −1.07838 −0.0442092
\(596\) 56.7214 2.32340
\(597\) 2.42469 0.0992361
\(598\) −15.2039 −0.621735
\(599\) 2.19183 0.0895557 0.0447778 0.998997i \(-0.485742\pi\)
0.0447778 + 0.998997i \(0.485742\pi\)
\(600\) −13.4813 −0.550373
\(601\) 31.9877 1.30481 0.652403 0.757872i \(-0.273761\pi\)
0.652403 + 0.757872i \(0.273761\pi\)
\(602\) 18.4391 0.751520
\(603\) 1.26180 0.0513843
\(604\) 37.7731 1.53697
\(605\) −36.4885 −1.48347
\(606\) 5.31124 0.215755
\(607\) −27.5174 −1.11690 −0.558449 0.829539i \(-0.688603\pi\)
−0.558449 + 0.829539i \(0.688603\pi\)
\(608\) −7.58864 −0.307760
\(609\) 5.36910 0.217567
\(610\) −21.5753 −0.873559
\(611\) −5.71978 −0.231397
\(612\) 0.787653 0.0318390
\(613\) 6.59583 0.266403 0.133201 0.991089i \(-0.457474\pi\)
0.133201 + 0.991089i \(0.457474\pi\)
\(614\) −52.1133 −2.10312
\(615\) 13.9421 0.562201
\(616\) 1.65983 0.0668763
\(617\) −3.47641 −0.139955 −0.0699775 0.997549i \(-0.522293\pi\)
−0.0699775 + 0.997549i \(0.522293\pi\)
\(618\) −42.3545 −1.70375
\(619\) 26.9893 1.08479 0.542396 0.840123i \(-0.317517\pi\)
0.542396 + 0.840123i \(0.317517\pi\)
\(620\) 85.3894 3.42932
\(621\) 7.60197 0.305056
\(622\) 49.8804 2.00002
\(623\) 3.75872 0.150590
\(624\) 1.91548 0.0766805
\(625\) 7.92162 0.316865
\(626\) 1.13624 0.0454131
\(627\) 1.07838 0.0430663
\(628\) −6.26794 −0.250118
\(629\) −3.10504 −0.123806
\(630\) −8.04945 −0.320698
\(631\) −10.3402 −0.411636 −0.205818 0.978590i \(-0.565985\pi\)
−0.205818 + 0.978590i \(0.565985\pi\)
\(632\) −16.1978 −0.644314
\(633\) −19.5174 −0.775749
\(634\) −37.1110 −1.47387
\(635\) −58.5523 −2.32358
\(636\) −12.9711 −0.514336
\(637\) 0.921622 0.0365160
\(638\) −12.5646 −0.497438
\(639\) −3.86603 −0.152938
\(640\) −42.8020 −1.69190
\(641\) 35.1955 1.39014 0.695070 0.718942i \(-0.255373\pi\)
0.695070 + 0.718942i \(0.255373\pi\)
\(642\) −33.9649 −1.34049
\(643\) 12.4657 0.491600 0.245800 0.969321i \(-0.420949\pi\)
0.245800 + 0.969321i \(0.420949\pi\)
\(644\) 20.5958 0.811589
\(645\) 31.5174 1.24100
\(646\) 0.630898 0.0248223
\(647\) −11.8804 −0.467067 −0.233533 0.972349i \(-0.575029\pi\)
−0.233533 + 0.972349i \(0.575029\pi\)
\(648\) 1.53919 0.0604650
\(649\) −4.31351 −0.169320
\(650\) 17.5174 0.687091
\(651\) 8.49693 0.333021
\(652\) −47.8453 −1.87377
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) −30.5958 −1.19639
\(655\) 22.6537 0.885153
\(656\) 7.81205 0.305009
\(657\) 1.41855 0.0553429
\(658\) 13.4680 0.525037
\(659\) 12.5464 0.488737 0.244369 0.969682i \(-0.421419\pi\)
0.244369 + 0.969682i \(0.421419\pi\)
\(660\) 10.8371 0.421834
\(661\) 11.6430 0.452860 0.226430 0.974027i \(-0.427294\pi\)
0.226430 + 0.974027i \(0.427294\pi\)
\(662\) 54.5692 2.12089
\(663\) −0.267938 −0.0104059
\(664\) 13.4368 0.521449
\(665\) −3.70928 −0.143840
\(666\) −23.1773 −0.898101
\(667\) −40.8157 −1.58039
\(668\) 8.26794 0.319896
\(669\) −19.0205 −0.735376
\(670\) 10.1568 0.392390
\(671\) 2.89043 0.111584
\(672\) −7.58864 −0.292738
\(673\) 41.3484 1.59386 0.796932 0.604069i \(-0.206455\pi\)
0.796932 + 0.604069i \(0.206455\pi\)
\(674\) −25.1194 −0.967564
\(675\) −8.75872 −0.337123
\(676\) −32.9194 −1.26613
\(677\) −19.1773 −0.737043 −0.368521 0.929619i \(-0.620136\pi\)
−0.368521 + 0.929619i \(0.620136\pi\)
\(678\) −40.6453 −1.56097
\(679\) 13.5174 0.518752
\(680\) 1.65983 0.0636515
\(681\) −11.7321 −0.449574
\(682\) −19.8843 −0.761409
\(683\) −22.2907 −0.852931 −0.426465 0.904504i \(-0.640241\pi\)
−0.426465 + 0.904504i \(0.640241\pi\)
\(684\) 2.70928 0.103592
\(685\) 70.4534 2.69189
\(686\) −2.17009 −0.0828543
\(687\) 27.4596 1.04765
\(688\) 17.6598 0.673275
\(689\) 4.41241 0.168099
\(690\) 61.1917 2.32953
\(691\) −30.0410 −1.14281 −0.571407 0.820666i \(-0.693602\pi\)
−0.571407 + 0.820666i \(0.693602\pi\)
\(692\) 26.0144 0.988918
\(693\) 1.07838 0.0409642
\(694\) −69.4740 −2.63720
\(695\) 3.31965 0.125922
\(696\) −8.26406 −0.313248
\(697\) −1.09275 −0.0413910
\(698\) −5.13624 −0.194409
\(699\) 5.10504 0.193090
\(700\) −23.7298 −0.896902
\(701\) −1.20394 −0.0454721 −0.0227360 0.999742i \(-0.507238\pi\)
−0.0227360 + 0.999742i \(0.507238\pi\)
\(702\) −2.00000 −0.0754851
\(703\) −10.6803 −0.402817
\(704\) 13.2762 0.500365
\(705\) 23.0205 0.867003
\(706\) 33.5090 1.26113
\(707\) 2.44748 0.0920470
\(708\) −10.8371 −0.407283
\(709\) −33.2351 −1.24817 −0.624086 0.781356i \(-0.714528\pi\)
−0.624086 + 0.781356i \(0.714528\pi\)
\(710\) −31.1194 −1.16789
\(711\) −10.5236 −0.394665
\(712\) −5.78539 −0.216816
\(713\) −64.5934 −2.41904
\(714\) 0.630898 0.0236107
\(715\) −3.68649 −0.137867
\(716\) −2.20620 −0.0824497
\(717\) 10.6537 0.397869
\(718\) 50.8515 1.89776
\(719\) 10.2062 0.380627 0.190314 0.981723i \(-0.439050\pi\)
0.190314 + 0.981723i \(0.439050\pi\)
\(720\) −7.70928 −0.287308
\(721\) −19.5174 −0.726868
\(722\) 2.17009 0.0807623
\(723\) 13.5174 0.502719
\(724\) 54.6102 2.02957
\(725\) 47.0265 1.74652
\(726\) 21.3474 0.792275
\(727\) −26.8371 −0.995333 −0.497666 0.867368i \(-0.665810\pi\)
−0.497666 + 0.867368i \(0.665810\pi\)
\(728\) −1.41855 −0.0525750
\(729\) 1.00000 0.0370370
\(730\) 11.4186 0.422620
\(731\) −2.47027 −0.0913661
\(732\) 7.26180 0.268404
\(733\) 2.46573 0.0910739 0.0455369 0.998963i \(-0.485500\pi\)
0.0455369 + 0.998963i \(0.485500\pi\)
\(734\) −67.9299 −2.50734
\(735\) −3.70928 −0.136819
\(736\) 57.6886 2.12643
\(737\) −1.36069 −0.0501217
\(738\) −8.15676 −0.300254
\(739\) 0.863763 0.0317741 0.0158870 0.999874i \(-0.494943\pi\)
0.0158870 + 0.999874i \(0.494943\pi\)
\(740\) −107.332 −3.94559
\(741\) −0.921622 −0.0338566
\(742\) −10.3896 −0.381415
\(743\) −36.1171 −1.32501 −0.662505 0.749058i \(-0.730507\pi\)
−0.662505 + 0.749058i \(0.730507\pi\)
\(744\) −13.0784 −0.479477
\(745\) 77.6574 2.84515
\(746\) −51.3751 −1.88097
\(747\) 8.72979 0.319406
\(748\) −0.849388 −0.0310567
\(749\) −15.6514 −0.571890
\(750\) −30.2557 −1.10478
\(751\) −33.8264 −1.23434 −0.617172 0.786828i \(-0.711722\pi\)
−0.617172 + 0.786828i \(0.711722\pi\)
\(752\) 12.8988 0.470372
\(753\) 18.2062 0.663471
\(754\) 10.7382 0.391062
\(755\) 51.7152 1.88211
\(756\) 2.70928 0.0985354
\(757\) −13.6865 −0.497444 −0.248722 0.968575i \(-0.580011\pi\)
−0.248722 + 0.968575i \(0.580011\pi\)
\(758\) −16.0989 −0.584738
\(759\) −8.19779 −0.297561
\(760\) 5.70928 0.207097
\(761\) −7.86150 −0.284979 −0.142490 0.989796i \(-0.545511\pi\)
−0.142490 + 0.989796i \(0.545511\pi\)
\(762\) 34.2557 1.24095
\(763\) −14.0989 −0.510414
\(764\) 14.7526 0.533730
\(765\) 1.07838 0.0389888
\(766\) −15.4186 −0.557095
\(767\) 3.68649 0.133111
\(768\) 0.418551 0.0151031
\(769\) 2.31351 0.0834273 0.0417137 0.999130i \(-0.486718\pi\)
0.0417137 + 0.999130i \(0.486718\pi\)
\(770\) 8.68035 0.312818
\(771\) −12.3402 −0.444420
\(772\) 4.56916 0.164448
\(773\) −32.9216 −1.18411 −0.592054 0.805898i \(-0.701683\pi\)
−0.592054 + 0.805898i \(0.701683\pi\)
\(774\) −18.4391 −0.662779
\(775\) 74.4222 2.67333
\(776\) −20.8059 −0.746888
\(777\) −10.6803 −0.383155
\(778\) 35.2762 1.26471
\(779\) −3.75872 −0.134670
\(780\) −9.26180 −0.331625
\(781\) 4.16904 0.149180
\(782\) −4.79606 −0.171507
\(783\) −5.36910 −0.191876
\(784\) −2.07838 −0.0742278
\(785\) −8.58145 −0.306285
\(786\) −13.2534 −0.472733
\(787\) 24.8104 0.884397 0.442198 0.896917i \(-0.354199\pi\)
0.442198 + 0.896917i \(0.354199\pi\)
\(788\) −28.0866 −1.00054
\(789\) −7.50307 −0.267116
\(790\) −84.7091 −3.01381
\(791\) −18.7298 −0.665955
\(792\) −1.65983 −0.0589794
\(793\) −2.47027 −0.0877217
\(794\) 57.5318 2.04173
\(795\) −17.7587 −0.629837
\(796\) −6.56916 −0.232838
\(797\) 2.59583 0.0919488 0.0459744 0.998943i \(-0.485361\pi\)
0.0459744 + 0.998943i \(0.485361\pi\)
\(798\) 2.17009 0.0768202
\(799\) −1.80430 −0.0638314
\(800\) −66.4668 −2.34996
\(801\) −3.75872 −0.132808
\(802\) −13.1278 −0.463560
\(803\) −1.52973 −0.0539831
\(804\) −3.41855 −0.120563
\(805\) 28.1978 0.993842
\(806\) 16.9939 0.598583
\(807\) 4.34017 0.152781
\(808\) −3.76713 −0.132527
\(809\) 38.6803 1.35993 0.679964 0.733245i \(-0.261995\pi\)
0.679964 + 0.733245i \(0.261995\pi\)
\(810\) 8.04945 0.282829
\(811\) −44.9939 −1.57995 −0.789974 0.613140i \(-0.789906\pi\)
−0.789974 + 0.613140i \(0.789906\pi\)
\(812\) −14.5464 −0.510478
\(813\) −26.0410 −0.913299
\(814\) 24.9939 0.876034
\(815\) −65.5052 −2.29455
\(816\) 0.604236 0.0211525
\(817\) −8.49693 −0.297270
\(818\) 80.5523 2.81645
\(819\) −0.921622 −0.0322041
\(820\) −37.7731 −1.31909
\(821\) 3.77310 0.131682 0.0658410 0.997830i \(-0.479027\pi\)
0.0658410 + 0.997830i \(0.479027\pi\)
\(822\) −41.2183 −1.43765
\(823\) −14.6537 −0.510795 −0.255398 0.966836i \(-0.582206\pi\)
−0.255398 + 0.966836i \(0.582206\pi\)
\(824\) 30.0410 1.04653
\(825\) 9.44521 0.328840
\(826\) −8.68035 −0.302028
\(827\) −15.4368 −0.536790 −0.268395 0.963309i \(-0.586493\pi\)
−0.268395 + 0.963309i \(0.586493\pi\)
\(828\) −20.5958 −0.715754
\(829\) 8.57691 0.297889 0.148944 0.988846i \(-0.452412\pi\)
0.148944 + 0.988846i \(0.452412\pi\)
\(830\) 70.2700 2.43911
\(831\) −6.59583 −0.228807
\(832\) −11.3463 −0.393363
\(833\) 0.290725 0.0100730
\(834\) −1.94214 −0.0672508
\(835\) 11.3197 0.391733
\(836\) −2.92162 −0.101046
\(837\) −8.49693 −0.293697
\(838\) −50.6765 −1.75059
\(839\) 31.0349 1.07144 0.535722 0.844395i \(-0.320040\pi\)
0.535722 + 0.844395i \(0.320040\pi\)
\(840\) 5.70928 0.196989
\(841\) −0.172740 −0.00595654
\(842\) 16.4391 0.566528
\(843\) 11.6248 0.400378
\(844\) 52.8781 1.82014
\(845\) −45.0700 −1.55045
\(846\) −13.4680 −0.463039
\(847\) 9.83710 0.338007
\(848\) −9.95055 −0.341703
\(849\) 17.9421 0.615773
\(850\) 5.52586 0.189535
\(851\) 81.1917 2.78321
\(852\) 10.4741 0.358838
\(853\) 11.4140 0.390808 0.195404 0.980723i \(-0.437398\pi\)
0.195404 + 0.980723i \(0.437398\pi\)
\(854\) 5.81658 0.199039
\(855\) 3.70928 0.126855
\(856\) 24.0905 0.823396
\(857\) 22.7936 0.778615 0.389308 0.921108i \(-0.372714\pi\)
0.389308 + 0.921108i \(0.372714\pi\)
\(858\) 2.15676 0.0736304
\(859\) −30.7838 −1.05033 −0.525164 0.851001i \(-0.675996\pi\)
−0.525164 + 0.851001i \(0.675996\pi\)
\(860\) −85.3894 −2.91176
\(861\) −3.75872 −0.128097
\(862\) −12.8188 −0.436612
\(863\) 10.0228 0.341180 0.170590 0.985342i \(-0.445433\pi\)
0.170590 + 0.985342i \(0.445433\pi\)
\(864\) 7.58864 0.258171
\(865\) 35.6163 1.21099
\(866\) −16.2245 −0.551329
\(867\) 16.9155 0.574480
\(868\) −23.0205 −0.781367
\(869\) 11.3484 0.384968
\(870\) −43.2183 −1.46524
\(871\) 1.16290 0.0394033
\(872\) 21.7009 0.734884
\(873\) −13.5174 −0.457496
\(874\) −16.4969 −0.558017
\(875\) −13.9421 −0.471330
\(876\) −3.84324 −0.129851
\(877\) −32.8371 −1.10883 −0.554415 0.832240i \(-0.687058\pi\)
−0.554415 + 0.832240i \(0.687058\pi\)
\(878\) −20.5958 −0.695075
\(879\) 23.7587 0.801362
\(880\) 8.31351 0.280248
\(881\) −45.0700 −1.51845 −0.759223 0.650831i \(-0.774421\pi\)
−0.759223 + 0.650831i \(0.774421\pi\)
\(882\) 2.17009 0.0730706
\(883\) 54.5523 1.83583 0.917916 0.396774i \(-0.129870\pi\)
0.917916 + 0.396774i \(0.129870\pi\)
\(884\) 0.725919 0.0244153
\(885\) −14.8371 −0.498744
\(886\) −54.6369 −1.83556
\(887\) 16.4657 0.552865 0.276433 0.961033i \(-0.410848\pi\)
0.276433 + 0.961033i \(0.410848\pi\)
\(888\) 16.4391 0.551659
\(889\) 15.7854 0.529425
\(890\) −30.2557 −1.01417
\(891\) −1.07838 −0.0361270
\(892\) 51.5318 1.72541
\(893\) −6.20620 −0.207683
\(894\) −45.4329 −1.51950
\(895\) −3.02052 −0.100965
\(896\) 11.5392 0.385497
\(897\) 7.00614 0.233928
\(898\) −70.3195 −2.34659
\(899\) 45.6209 1.52154
\(900\) 23.7298 0.790993
\(901\) 1.39189 0.0463705
\(902\) 8.79606 0.292877
\(903\) −8.49693 −0.282760
\(904\) 28.8287 0.958828
\(905\) 74.7670 2.48534
\(906\) −30.2557 −1.00518
\(907\) −23.5708 −0.782655 −0.391327 0.920252i \(-0.627984\pi\)
−0.391327 + 0.920252i \(0.627984\pi\)
\(908\) 31.7854 1.05484
\(909\) −2.44748 −0.0811778
\(910\) −7.41855 −0.245923
\(911\) −0.616522 −0.0204263 −0.0102131 0.999948i \(-0.503251\pi\)
−0.0102131 + 0.999948i \(0.503251\pi\)
\(912\) 2.07838 0.0688220
\(913\) −9.41402 −0.311558
\(914\) 19.2450 0.636567
\(915\) 9.94214 0.328677
\(916\) −74.3956 −2.45810
\(917\) −6.10731 −0.201681
\(918\) −0.630898 −0.0208227
\(919\) 53.6742 1.77055 0.885274 0.465069i \(-0.153971\pi\)
0.885274 + 0.465069i \(0.153971\pi\)
\(920\) −43.4017 −1.43091
\(921\) 24.0144 0.791301
\(922\) 18.8865 0.621995
\(923\) −3.56302 −0.117278
\(924\) −2.92162 −0.0961143
\(925\) −93.5462 −3.07578
\(926\) −13.4764 −0.442862
\(927\) 19.5174 0.641037
\(928\) −40.7442 −1.33749
\(929\) −50.2616 −1.64903 −0.824515 0.565840i \(-0.808552\pi\)
−0.824515 + 0.565840i \(0.808552\pi\)
\(930\) −68.3956 −2.24278
\(931\) 1.00000 0.0327737
\(932\) −13.8310 −0.453048
\(933\) −22.9854 −0.752510
\(934\) 35.7237 1.16891
\(935\) −1.16290 −0.0380308
\(936\) 1.41855 0.0463668
\(937\) 8.63931 0.282234 0.141117 0.989993i \(-0.454931\pi\)
0.141117 + 0.989993i \(0.454931\pi\)
\(938\) −2.73820 −0.0894056
\(939\) −0.523590 −0.0170867
\(940\) −62.3689 −2.03425
\(941\) 30.2122 0.984889 0.492444 0.870344i \(-0.336104\pi\)
0.492444 + 0.870344i \(0.336104\pi\)
\(942\) 5.02052 0.163577
\(943\) 28.5737 0.930488
\(944\) −8.31351 −0.270582
\(945\) 3.70928 0.120663
\(946\) 19.8843 0.646494
\(947\) 27.1727 0.882995 0.441498 0.897262i \(-0.354447\pi\)
0.441498 + 0.897262i \(0.354447\pi\)
\(948\) 28.5113 0.926004
\(949\) 1.30737 0.0424390
\(950\) 19.0072 0.616675
\(951\) 17.1012 0.554543
\(952\) −0.447480 −0.0145029
\(953\) 44.5029 1.44159 0.720795 0.693148i \(-0.243777\pi\)
0.720795 + 0.693148i \(0.243777\pi\)
\(954\) 10.3896 0.336376
\(955\) 20.1978 0.653585
\(956\) −28.8638 −0.933521
\(957\) 5.78992 0.187162
\(958\) 35.8759 1.15910
\(959\) −18.9939 −0.613344
\(960\) 45.6658 1.47386
\(961\) 41.1978 1.32896
\(962\) −21.3607 −0.688696
\(963\) 15.6514 0.504360
\(964\) −36.6225 −1.17953
\(965\) 6.25565 0.201377
\(966\) −16.4969 −0.530780
\(967\) −18.6004 −0.598147 −0.299074 0.954230i \(-0.596678\pi\)
−0.299074 + 0.954230i \(0.596678\pi\)
\(968\) −15.1412 −0.486655
\(969\) −0.290725 −0.00933942
\(970\) −108.808 −3.49361
\(971\) 16.0533 0.515176 0.257588 0.966255i \(-0.417072\pi\)
0.257588 + 0.966255i \(0.417072\pi\)
\(972\) −2.70928 −0.0869000
\(973\) −0.894960 −0.0286911
\(974\) −55.7152 −1.78523
\(975\) −8.07223 −0.258518
\(976\) 5.57077 0.178316
\(977\) −15.8394 −0.506746 −0.253373 0.967369i \(-0.581540\pi\)
−0.253373 + 0.967369i \(0.581540\pi\)
\(978\) 38.3234 1.22545
\(979\) 4.05332 0.129545
\(980\) 10.0494 0.321018
\(981\) 14.0989 0.450143
\(982\) 59.3172 1.89289
\(983\) −23.0349 −0.734699 −0.367350 0.930083i \(-0.619735\pi\)
−0.367350 + 0.930083i \(0.619735\pi\)
\(984\) 5.78539 0.184431
\(985\) −38.4534 −1.22523
\(986\) 3.38735 0.107875
\(987\) −6.20620 −0.197546
\(988\) 2.49693 0.0794379
\(989\) 64.5934 2.05395
\(990\) −8.68035 −0.275880
\(991\) −42.8371 −1.36077 −0.680383 0.732857i \(-0.738186\pi\)
−0.680383 + 0.732857i \(0.738186\pi\)
\(992\) −64.4801 −2.04725
\(993\) −25.1461 −0.797987
\(994\) 8.38962 0.266103
\(995\) −8.99386 −0.285124
\(996\) −23.6514 −0.749424
\(997\) −23.7899 −0.753434 −0.376717 0.926328i \(-0.622947\pi\)
−0.376717 + 0.926328i \(0.622947\pi\)
\(998\) −21.7899 −0.689748
\(999\) 10.6803 0.337911
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.a.d.1.3 3
3.2 odd 2 1197.2.a.l.1.1 3
4.3 odd 2 6384.2.a.bx.1.3 3
5.4 even 2 9975.2.a.z.1.1 3
7.6 odd 2 2793.2.a.x.1.3 3
19.18 odd 2 7581.2.a.n.1.1 3
21.20 even 2 8379.2.a.bp.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.d.1.3 3 1.1 even 1 trivial
1197.2.a.l.1.1 3 3.2 odd 2
2793.2.a.x.1.3 3 7.6 odd 2
6384.2.a.bx.1.3 3 4.3 odd 2
7581.2.a.n.1.1 3 19.18 odd 2
8379.2.a.bp.1.1 3 21.20 even 2
9975.2.a.z.1.1 3 5.4 even 2