Properties

Label 40.17.e.a
Level $40$
Weight $17$
Character orbit 40.e
Self dual yes
Analytic conductor $64.930$
Analytic rank $0$
Dimension $1$
CM discriminant -40
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [40,17,Mod(19,40)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(40, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 17, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("40.19");
 
S:= CuspForms(chi, 17);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 17 \)
Character orbit: \([\chi]\) \(=\) 40.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.9298175427\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 256 q^{2} + 65536 q^{4} - 390625 q^{5} + 10611838 q^{7} - 16777216 q^{8} + 43046721 q^{9} + 100000000 q^{10} + 80145602 q^{11} + 469878718 q^{13} - 2716630528 q^{14} + 4294967296 q^{16} - 11019960576 q^{18}+ \cdots + 34\!\cdots\!42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/40\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0
−256.000 0 65536.0 −390625. 0 1.06118e7 −1.67772e7 4.30467e7 1.00000e8
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by \(\Q(\sqrt{-10}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 40.17.e.a 1
5.b even 2 1 40.17.e.b yes 1
8.d odd 2 1 40.17.e.b yes 1
40.e odd 2 1 CM 40.17.e.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.17.e.a 1 1.a even 1 1 trivial
40.17.e.a 1 40.e odd 2 1 CM
40.17.e.b yes 1 5.b even 2 1
40.17.e.b yes 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{17}^{\mathrm{new}}(40, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7} - 10611838 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 256 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 390625 \) Copy content Toggle raw display
$7$ \( T - 10611838 \) Copy content Toggle raw display
$11$ \( T - 80145602 \) Copy content Toggle raw display
$13$ \( T - 469878718 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 30997707842 \) Copy content Toggle raw display
$23$ \( T + 14573712002 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T + 6788439115202 \) Copy content Toggle raw display
$41$ \( T + 12880123209598 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T - 46828909712638 \) Copy content Toggle raw display
$53$ \( T + 123883372774082 \) Copy content Toggle raw display
$59$ \( T - 256890818481602 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 5426410922236802 \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less