Properties

Label 400.4.n.e.143.3
Level $400$
Weight $4$
Character 400.143
Analytic conductor $23.601$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,4,Mod(143,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.143");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 400.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.6007640023\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.3
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 400.143
Dual form 400.4.n.e.207.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.53553 - 3.53553i) q^{3} +(14.1421 + 14.1421i) q^{7} +2.00000i q^{9} -43.3013i q^{11} +(-12.2474 - 12.2474i) q^{13} +(42.8661 - 42.8661i) q^{17} +129.904 q^{19} +100.000 q^{21} +(-63.6396 + 63.6396i) q^{23} +(102.530 + 102.530i) q^{27} +66.0000i q^{29} +86.6025i q^{31} +(-153.093 - 153.093i) q^{33} +(293.939 - 293.939i) q^{37} -86.6025 q^{39} +453.000 q^{41} +(155.563 - 155.563i) q^{43} +(-275.772 - 275.772i) q^{47} +57.0000i q^{49} -303.109i q^{51} +(-232.702 - 232.702i) q^{53} +(459.279 - 459.279i) q^{57} -779.423 q^{59} +668.000 q^{61} +(-28.2843 + 28.2843i) q^{63} +(-194.454 - 194.454i) q^{67} +450.000i q^{69} +1125.83i q^{71} +(-508.269 - 508.269i) q^{73} +(612.372 - 612.372i) q^{77} +692.820 q^{79} +671.000 q^{81} +(10.6066 - 10.6066i) q^{83} +(233.345 + 233.345i) q^{87} -549.000i q^{89} -346.410i q^{91} +(306.186 + 306.186i) q^{93} +(-73.4847 + 73.4847i) q^{97} +86.6025 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 800 q^{21} + 3624 q^{41} + 5344 q^{61} + 5368 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.53553 3.53553i 0.680414 0.680414i −0.279680 0.960093i \(-0.590228\pi\)
0.960093 + 0.279680i \(0.0902282\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 14.1421 + 14.1421i 0.763604 + 0.763604i 0.976972 0.213368i \(-0.0684434\pi\)
−0.213368 + 0.976972i \(0.568443\pi\)
\(8\) 0 0
\(9\) 2.00000i 0.0740741i
\(10\) 0 0
\(11\) 43.3013i 1.18689i −0.804873 0.593447i \(-0.797767\pi\)
0.804873 0.593447i \(-0.202233\pi\)
\(12\) 0 0
\(13\) −12.2474 12.2474i −0.261295 0.261295i 0.564285 0.825580i \(-0.309152\pi\)
−0.825580 + 0.564285i \(0.809152\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 42.8661 42.8661i 0.611562 0.611562i −0.331791 0.943353i \(-0.607653\pi\)
0.943353 + 0.331791i \(0.107653\pi\)
\(18\) 0 0
\(19\) 129.904 1.56853 0.784263 0.620429i \(-0.213042\pi\)
0.784263 + 0.620429i \(0.213042\pi\)
\(20\) 0 0
\(21\) 100.000 1.03913
\(22\) 0 0
\(23\) −63.6396 + 63.6396i −0.576947 + 0.576947i −0.934061 0.357114i \(-0.883761\pi\)
0.357114 + 0.934061i \(0.383761\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 102.530 + 102.530i 0.730815 + 0.730815i
\(28\) 0 0
\(29\) 66.0000i 0.422617i 0.977419 + 0.211308i \(0.0677725\pi\)
−0.977419 + 0.211308i \(0.932228\pi\)
\(30\) 0 0
\(31\) 86.6025i 0.501751i 0.968019 + 0.250875i \(0.0807184\pi\)
−0.968019 + 0.250875i \(0.919282\pi\)
\(32\) 0 0
\(33\) −153.093 153.093i −0.807578 0.807578i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 293.939 293.939i 1.30603 1.30603i 0.381780 0.924253i \(-0.375311\pi\)
0.924253 0.381780i \(-0.124689\pi\)
\(38\) 0 0
\(39\) −86.6025 −0.355577
\(40\) 0 0
\(41\) 453.000 1.72553 0.862765 0.505605i \(-0.168731\pi\)
0.862765 + 0.505605i \(0.168731\pi\)
\(42\) 0 0
\(43\) 155.563 155.563i 0.551703 0.551703i −0.375229 0.926932i \(-0.622436\pi\)
0.926932 + 0.375229i \(0.122436\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −275.772 275.772i −0.855860 0.855860i 0.134987 0.990847i \(-0.456901\pi\)
−0.990847 + 0.134987i \(0.956901\pi\)
\(48\) 0 0
\(49\) 57.0000i 0.166181i
\(50\) 0 0
\(51\) 303.109i 0.832230i
\(52\) 0 0
\(53\) −232.702 232.702i −0.603095 0.603095i 0.338038 0.941132i \(-0.390237\pi\)
−0.941132 + 0.338038i \(0.890237\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 459.279 459.279i 1.06725 1.06725i
\(58\) 0 0
\(59\) −779.423 −1.71987 −0.859934 0.510405i \(-0.829495\pi\)
−0.859934 + 0.510405i \(0.829495\pi\)
\(60\) 0 0
\(61\) 668.000 1.40211 0.701054 0.713108i \(-0.252713\pi\)
0.701054 + 0.713108i \(0.252713\pi\)
\(62\) 0 0
\(63\) −28.2843 + 28.2843i −0.0565632 + 0.0565632i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −194.454 194.454i −0.354573 0.354573i 0.507235 0.861808i \(-0.330668\pi\)
−0.861808 + 0.507235i \(0.830668\pi\)
\(68\) 0 0
\(69\) 450.000i 0.785125i
\(70\) 0 0
\(71\) 1125.83i 1.88186i 0.338606 + 0.940928i \(0.390045\pi\)
−0.338606 + 0.940928i \(0.609955\pi\)
\(72\) 0 0
\(73\) −508.269 508.269i −0.814910 0.814910i 0.170456 0.985365i \(-0.445476\pi\)
−0.985365 + 0.170456i \(0.945476\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 612.372 612.372i 0.906316 0.906316i
\(78\) 0 0
\(79\) 692.820 0.986688 0.493344 0.869834i \(-0.335774\pi\)
0.493344 + 0.869834i \(0.335774\pi\)
\(80\) 0 0
\(81\) 671.000 0.920439
\(82\) 0 0
\(83\) 10.6066 10.6066i 0.0140268 0.0140268i −0.700059 0.714085i \(-0.746843\pi\)
0.714085 + 0.700059i \(0.246843\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 233.345 + 233.345i 0.287554 + 0.287554i
\(88\) 0 0
\(89\) 549.000i 0.653864i −0.945048 0.326932i \(-0.893985\pi\)
0.945048 0.326932i \(-0.106015\pi\)
\(90\) 0 0
\(91\) 346.410i 0.399051i
\(92\) 0 0
\(93\) 306.186 + 306.186i 0.341398 + 0.341398i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −73.4847 + 73.4847i −0.0769200 + 0.0769200i −0.744520 0.667600i \(-0.767322\pi\)
0.667600 + 0.744520i \(0.267322\pi\)
\(98\) 0 0
\(99\) 86.6025 0.0879180
\(100\) 0 0
\(101\) −48.0000 −0.0472889 −0.0236444 0.999720i \(-0.507527\pi\)
−0.0236444 + 0.999720i \(0.507527\pi\)
\(102\) 0 0
\(103\) −813.173 + 813.173i −0.777906 + 0.777906i −0.979474 0.201569i \(-0.935396\pi\)
0.201569 + 0.979474i \(0.435396\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 201.525 + 201.525i 0.182077 + 0.182077i 0.792260 0.610183i \(-0.208904\pi\)
−0.610183 + 0.792260i \(0.708904\pi\)
\(108\) 0 0
\(109\) 904.000i 0.794381i 0.917736 + 0.397190i \(0.130015\pi\)
−0.917736 + 0.397190i \(0.869985\pi\)
\(110\) 0 0
\(111\) 2078.46i 1.77729i
\(112\) 0 0
\(113\) −728.723 728.723i −0.606659 0.606659i 0.335412 0.942072i \(-0.391124\pi\)
−0.942072 + 0.335412i \(0.891124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 24.4949 24.4949i 0.0193552 0.0193552i
\(118\) 0 0
\(119\) 1212.44 0.933981
\(120\) 0 0
\(121\) −544.000 −0.408715
\(122\) 0 0
\(123\) 1601.60 1601.60i 1.17407 1.17407i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1279.86 + 1279.86i 0.894248 + 0.894248i 0.994920 0.100672i \(-0.0320992\pi\)
−0.100672 + 0.994920i \(0.532099\pi\)
\(128\) 0 0
\(129\) 1100.00i 0.750772i
\(130\) 0 0
\(131\) 86.6025i 0.0577595i −0.999583 0.0288798i \(-0.990806\pi\)
0.999583 0.0288798i \(-0.00919399\pi\)
\(132\) 0 0
\(133\) 1837.12 + 1837.12i 1.19773 + 1.19773i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1953.47 + 1953.47i −1.21822 + 1.21822i −0.249964 + 0.968255i \(0.580419\pi\)
−0.968255 + 0.249964i \(0.919581\pi\)
\(138\) 0 0
\(139\) 129.904 0.0792683 0.0396342 0.999214i \(-0.487381\pi\)
0.0396342 + 0.999214i \(0.487381\pi\)
\(140\) 0 0
\(141\) −1950.00 −1.16468
\(142\) 0 0
\(143\) −530.330 + 530.330i −0.310129 + 0.310129i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 201.525 + 201.525i 0.113072 + 0.113072i
\(148\) 0 0
\(149\) 114.000i 0.0626795i 0.999509 + 0.0313397i \(0.00997738\pi\)
−0.999509 + 0.0313397i \(0.990023\pi\)
\(150\) 0 0
\(151\) 2251.67i 1.21350i 0.794894 + 0.606748i \(0.207526\pi\)
−0.794894 + 0.606748i \(0.792474\pi\)
\(152\) 0 0
\(153\) 85.7321 + 85.7321i 0.0453009 + 0.0453009i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −477.650 + 477.650i −0.242807 + 0.242807i −0.818010 0.575204i \(-0.804923\pi\)
0.575204 + 0.818010i \(0.304923\pi\)
\(158\) 0 0
\(159\) −1645.45 −0.820708
\(160\) 0 0
\(161\) −1800.00 −0.881117
\(162\) 0 0
\(163\) −2202.64 + 2202.64i −1.05843 + 1.05843i −0.0602452 + 0.998184i \(0.519188\pi\)
−0.998184 + 0.0602452i \(0.980812\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2269.81 2269.81i −1.05176 1.05176i −0.998585 0.0531714i \(-0.983067\pi\)
−0.0531714 0.998585i \(-0.516933\pi\)
\(168\) 0 0
\(169\) 1897.00i 0.863450i
\(170\) 0 0
\(171\) 259.808i 0.116187i
\(172\) 0 0
\(173\) 1371.71 + 1371.71i 0.602830 + 0.602830i 0.941062 0.338233i \(-0.109829\pi\)
−0.338233 + 0.941062i \(0.609829\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2755.68 + 2755.68i −1.17022 + 1.17022i
\(178\) 0 0
\(179\) 1602.15 0.668995 0.334497 0.942397i \(-0.391433\pi\)
0.334497 + 0.942397i \(0.391433\pi\)
\(180\) 0 0
\(181\) −3358.00 −1.37900 −0.689498 0.724288i \(-0.742169\pi\)
−0.689498 + 0.724288i \(0.742169\pi\)
\(182\) 0 0
\(183\) 2361.74 2361.74i 0.954014 0.954014i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1856.16 1856.16i −0.725858 0.725858i
\(188\) 0 0
\(189\) 2900.00i 1.11611i
\(190\) 0 0
\(191\) 259.808i 0.0984242i 0.998788 + 0.0492121i \(0.0156710\pi\)
−0.998788 + 0.0492121i \(0.984329\pi\)
\(192\) 0 0
\(193\) 324.557 + 324.557i 0.121047 + 0.121047i 0.765036 0.643988i \(-0.222721\pi\)
−0.643988 + 0.765036i \(0.722721\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1922.85 + 1922.85i −0.695418 + 0.695418i −0.963419 0.268001i \(-0.913637\pi\)
0.268001 + 0.963419i \(0.413637\pi\)
\(198\) 0 0
\(199\) −4503.33 −1.60418 −0.802092 0.597200i \(-0.796280\pi\)
−0.802092 + 0.597200i \(0.796280\pi\)
\(200\) 0 0
\(201\) −1375.00 −0.482513
\(202\) 0 0
\(203\) −933.381 + 933.381i −0.322712 + 0.322712i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −127.279 127.279i −0.0427368 0.0427368i
\(208\) 0 0
\(209\) 5625.00i 1.86167i
\(210\) 0 0
\(211\) 2035.16i 0.664010i 0.943278 + 0.332005i \(0.107725\pi\)
−0.943278 + 0.332005i \(0.892275\pi\)
\(212\) 0 0
\(213\) 3980.42 + 3980.42i 1.28044 + 1.28044i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1224.74 + 1224.74i −0.383139 + 0.383139i
\(218\) 0 0
\(219\) −3594.01 −1.10895
\(220\) 0 0
\(221\) −1050.00 −0.319596
\(222\) 0 0
\(223\) 3238.55 3238.55i 0.972508 0.972508i −0.0271241 0.999632i \(-0.508635\pi\)
0.999632 + 0.0271241i \(0.00863492\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3903.23 + 3903.23i 1.14126 + 1.14126i 0.988220 + 0.153042i \(0.0489070\pi\)
0.153042 + 0.988220i \(0.451093\pi\)
\(228\) 0 0
\(229\) 3716.00i 1.07232i 0.844118 + 0.536158i \(0.180125\pi\)
−0.844118 + 0.536158i \(0.819875\pi\)
\(230\) 0 0
\(231\) 4330.13i 1.23334i
\(232\) 0 0
\(233\) −4482.57 4482.57i −1.26035 1.26035i −0.950921 0.309434i \(-0.899860\pi\)
−0.309434 0.950921i \(-0.600140\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2449.49 2449.49i 0.671356 0.671356i
\(238\) 0 0
\(239\) 3204.29 0.867232 0.433616 0.901098i \(-0.357237\pi\)
0.433616 + 0.901098i \(0.357237\pi\)
\(240\) 0 0
\(241\) −947.000 −0.253119 −0.126559 0.991959i \(-0.540393\pi\)
−0.126559 + 0.991959i \(0.540393\pi\)
\(242\) 0 0
\(243\) −395.980 + 395.980i −0.104535 + 0.104535i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1590.99 1590.99i −0.409847 0.409847i
\(248\) 0 0
\(249\) 75.0000i 0.0190881i
\(250\) 0 0
\(251\) 1342.34i 0.337561i 0.985654 + 0.168780i \(0.0539828\pi\)
−0.985654 + 0.168780i \(0.946017\pi\)
\(252\) 0 0
\(253\) 2755.68 + 2755.68i 0.684774 + 0.684774i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3159.84 + 3159.84i −0.766948 + 0.766948i −0.977568 0.210620i \(-0.932452\pi\)
0.210620 + 0.977568i \(0.432452\pi\)
\(258\) 0 0
\(259\) 8313.84 1.99458
\(260\) 0 0
\(261\) −132.000 −0.0313050
\(262\) 0 0
\(263\) −3585.03 + 3585.03i −0.840542 + 0.840542i −0.988929 0.148387i \(-0.952592\pi\)
0.148387 + 0.988929i \(0.452592\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1941.01 1941.01i −0.444898 0.444898i
\(268\) 0 0
\(269\) 1656.00i 0.375346i −0.982232 0.187673i \(-0.939905\pi\)
0.982232 0.187673i \(-0.0600945\pi\)
\(270\) 0 0
\(271\) 2165.06i 0.485307i −0.970113 0.242654i \(-0.921982\pi\)
0.970113 0.242654i \(-0.0780178\pi\)
\(272\) 0 0
\(273\) −1224.74 1224.74i −0.271520 0.271520i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3319.06 3319.06i 0.719938 0.719938i −0.248654 0.968592i \(-0.579988\pi\)
0.968592 + 0.248654i \(0.0799882\pi\)
\(278\) 0 0
\(279\) −173.205 −0.0371667
\(280\) 0 0
\(281\) 7158.00 1.51961 0.759805 0.650151i \(-0.225294\pi\)
0.759805 + 0.650151i \(0.225294\pi\)
\(282\) 0 0
\(283\) −3164.30 + 3164.30i −0.664658 + 0.664658i −0.956474 0.291816i \(-0.905740\pi\)
0.291816 + 0.956474i \(0.405740\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6406.39 + 6406.39i 1.31762 + 1.31762i
\(288\) 0 0
\(289\) 1238.00i 0.251985i
\(290\) 0 0
\(291\) 519.615i 0.104675i
\(292\) 0 0
\(293\) −2963.88 2963.88i −0.590962 0.590962i 0.346929 0.937891i \(-0.387224\pi\)
−0.937891 + 0.346929i \(0.887224\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4439.70 4439.70i 0.867399 0.867399i
\(298\) 0 0
\(299\) 1558.85 0.301506
\(300\) 0 0
\(301\) 4400.00 0.842564
\(302\) 0 0
\(303\) −169.706 + 169.706i −0.0321760 + 0.0321760i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 109.602 + 109.602i 0.0203755 + 0.0203755i 0.717221 0.696846i \(-0.245414\pi\)
−0.696846 + 0.717221i \(0.745414\pi\)
\(308\) 0 0
\(309\) 5750.00i 1.05860i
\(310\) 0 0
\(311\) 692.820i 0.126322i −0.998003 0.0631612i \(-0.979882\pi\)
0.998003 0.0631612i \(-0.0201182\pi\)
\(312\) 0 0
\(313\) −2816.91 2816.91i −0.508694 0.508694i 0.405431 0.914126i \(-0.367121\pi\)
−0.914126 + 0.405431i \(0.867121\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4041.66 4041.66i 0.716095 0.716095i −0.251708 0.967803i \(-0.580992\pi\)
0.967803 + 0.251708i \(0.0809923\pi\)
\(318\) 0 0
\(319\) 2857.88 0.501601
\(320\) 0 0
\(321\) 1425.00 0.247775
\(322\) 0 0
\(323\) 5568.47 5568.47i 0.959250 0.959250i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3196.12 + 3196.12i 0.540508 + 0.540508i
\(328\) 0 0
\(329\) 7800.00i 1.30708i
\(330\) 0 0
\(331\) 2641.38i 0.438620i 0.975655 + 0.219310i \(0.0703806\pi\)
−0.975655 + 0.219310i \(0.929619\pi\)
\(332\) 0 0
\(333\) 587.878 + 587.878i 0.0967432 + 0.0967432i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3459.90 3459.90i 0.559267 0.559267i −0.369832 0.929099i \(-0.620585\pi\)
0.929099 + 0.369832i \(0.120585\pi\)
\(338\) 0 0
\(339\) −5152.85 −0.825559
\(340\) 0 0
\(341\) 3750.00 0.595525
\(342\) 0 0
\(343\) 4044.65 4044.65i 0.636707 0.636707i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7138.24 7138.24i −1.10433 1.10433i −0.993882 0.110443i \(-0.964773\pi\)
−0.110443 0.993882i \(-0.535227\pi\)
\(348\) 0 0
\(349\) 9436.00i 1.44727i 0.690182 + 0.723635i \(0.257530\pi\)
−0.690182 + 0.723635i \(0.742470\pi\)
\(350\) 0 0
\(351\) 2511.47i 0.381916i
\(352\) 0 0
\(353\) −8205.79 8205.79i −1.23725 1.23725i −0.961119 0.276133i \(-0.910947\pi\)
−0.276133 0.961119i \(-0.589053\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4286.61 4286.61i 0.635494 0.635494i
\(358\) 0 0
\(359\) −8487.05 −1.24771 −0.623857 0.781539i \(-0.714435\pi\)
−0.623857 + 0.781539i \(0.714435\pi\)
\(360\) 0 0
\(361\) 10016.0 1.46027
\(362\) 0 0
\(363\) −1923.33 + 1923.33i −0.278096 + 0.278096i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2559.73 2559.73i −0.364078 0.364078i 0.501234 0.865312i \(-0.332880\pi\)
−0.865312 + 0.501234i \(0.832880\pi\)
\(368\) 0 0
\(369\) 906.000i 0.127817i
\(370\) 0 0
\(371\) 6581.79i 0.921050i
\(372\) 0 0
\(373\) 3123.10 + 3123.10i 0.433533 + 0.433533i 0.889829 0.456295i \(-0.150824\pi\)
−0.456295 + 0.889829i \(0.650824\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 808.332 808.332i 0.110428 0.110428i
\(378\) 0 0
\(379\) −10175.8 −1.37914 −0.689572 0.724217i \(-0.742201\pi\)
−0.689572 + 0.724217i \(0.742201\pi\)
\(380\) 0 0
\(381\) 9050.00 1.21692
\(382\) 0 0
\(383\) −5218.45 + 5218.45i −0.696215 + 0.696215i −0.963592 0.267377i \(-0.913843\pi\)
0.267377 + 0.963592i \(0.413843\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 311.127 + 311.127i 0.0408669 + 0.0408669i
\(388\) 0 0
\(389\) 5226.00i 0.681154i −0.940217 0.340577i \(-0.889378\pi\)
0.940217 0.340577i \(-0.110622\pi\)
\(390\) 0 0
\(391\) 5455.96i 0.705677i
\(392\) 0 0
\(393\) −306.186 306.186i −0.0393004 0.0393004i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7593.42 7593.42i 0.959957 0.959957i −0.0392720 0.999229i \(-0.512504\pi\)
0.999229 + 0.0392720i \(0.0125039\pi\)
\(398\) 0 0
\(399\) 12990.4 1.62991
\(400\) 0 0
\(401\) 27.0000 0.00336238 0.00168119 0.999999i \(-0.499465\pi\)
0.00168119 + 0.999999i \(0.499465\pi\)
\(402\) 0 0
\(403\) 1060.66 1060.66i 0.131105 0.131105i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12727.9 12727.9i −1.55012 1.55012i
\(408\) 0 0
\(409\) 4079.00i 0.493138i 0.969125 + 0.246569i \(0.0793032\pi\)
−0.969125 + 0.246569i \(0.920697\pi\)
\(410\) 0 0
\(411\) 13813.1i 1.65779i
\(412\) 0 0
\(413\) −11022.7 11022.7i −1.31330 1.31330i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 459.279 459.279i 0.0539353 0.0539353i
\(418\) 0 0
\(419\) −4633.24 −0.540211 −0.270105 0.962831i \(-0.587059\pi\)
−0.270105 + 0.962831i \(0.587059\pi\)
\(420\) 0 0
\(421\) −9112.00 −1.05485 −0.527425 0.849602i \(-0.676842\pi\)
−0.527425 + 0.849602i \(0.676842\pi\)
\(422\) 0 0
\(423\) 551.543 551.543i 0.0633971 0.0633971i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 9446.95 + 9446.95i 1.07066 + 1.07066i
\(428\) 0 0
\(429\) 3750.00i 0.422032i
\(430\) 0 0
\(431\) 15068.8i 1.68408i 0.539411 + 0.842042i \(0.318647\pi\)
−0.539411 + 0.842042i \(0.681353\pi\)
\(432\) 0 0
\(433\) 6778.96 + 6778.96i 0.752370 + 0.752370i 0.974921 0.222551i \(-0.0714384\pi\)
−0.222551 + 0.974921i \(0.571438\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8267.03 + 8267.03i −0.904956 + 0.904956i
\(438\) 0 0
\(439\) −3723.91 −0.404858 −0.202429 0.979297i \(-0.564883\pi\)
−0.202429 + 0.979297i \(0.564883\pi\)
\(440\) 0 0
\(441\) −114.000 −0.0123097
\(442\) 0 0
\(443\) 5526.04 5526.04i 0.592664 0.592664i −0.345686 0.938350i \(-0.612354\pi\)
0.938350 + 0.345686i \(0.112354\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 403.051 + 403.051i 0.0426480 + 0.0426480i
\(448\) 0 0
\(449\) 6261.00i 0.658073i −0.944317 0.329037i \(-0.893276\pi\)
0.944317 0.329037i \(-0.106724\pi\)
\(450\) 0 0
\(451\) 19615.5i 2.04802i
\(452\) 0 0
\(453\) 7960.84 + 7960.84i 0.825680 + 0.825680i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5113.31 5113.31i 0.523393 0.523393i −0.395202 0.918594i \(-0.629325\pi\)
0.918594 + 0.395202i \(0.129325\pi\)
\(458\) 0 0
\(459\) 8790.16 0.893877
\(460\) 0 0
\(461\) 9732.00 0.983220 0.491610 0.870815i \(-0.336409\pi\)
0.491610 + 0.870815i \(0.336409\pi\)
\(462\) 0 0
\(463\) −7311.48 + 7311.48i −0.733895 + 0.733895i −0.971389 0.237494i \(-0.923674\pi\)
0.237494 + 0.971389i \(0.423674\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6066.98 + 6066.98i 0.601170 + 0.601170i 0.940623 0.339453i \(-0.110242\pi\)
−0.339453 + 0.940623i \(0.610242\pi\)
\(468\) 0 0
\(469\) 5500.00i 0.541506i
\(470\) 0 0
\(471\) 3377.50i 0.330418i
\(472\) 0 0
\(473\) −6736.10 6736.10i −0.654812 0.654812i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 465.403 465.403i 0.0446737 0.0446737i
\(478\) 0 0
\(479\) −2511.47 −0.239566 −0.119783 0.992800i \(-0.538220\pi\)
−0.119783 + 0.992800i \(0.538220\pi\)
\(480\) 0 0
\(481\) −7200.00 −0.682519
\(482\) 0 0
\(483\) −6363.96 + 6363.96i −0.599524 + 0.599524i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5932.63 + 5932.63i 0.552018 + 0.552018i 0.927023 0.375005i \(-0.122359\pi\)
−0.375005 + 0.927023i \(0.622359\pi\)
\(488\) 0 0
\(489\) 15575.0i 1.44034i
\(490\) 0 0
\(491\) 18619.5i 1.71138i −0.517487 0.855691i \(-0.673133\pi\)
0.517487 0.855691i \(-0.326867\pi\)
\(492\) 0 0
\(493\) 2829.16 + 2829.16i 0.258456 + 0.258456i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15921.7 + 15921.7i −1.43699 + 1.43699i
\(498\) 0 0
\(499\) 7880.83 0.707003 0.353501 0.935434i \(-0.384991\pi\)
0.353501 + 0.935434i \(0.384991\pi\)
\(500\) 0 0
\(501\) −16050.0 −1.43126
\(502\) 0 0
\(503\) 10776.3 10776.3i 0.955252 0.955252i −0.0437887 0.999041i \(-0.513943\pi\)
0.999041 + 0.0437887i \(0.0139428\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6706.91 6706.91i −0.587503 0.587503i
\(508\) 0 0
\(509\) 17754.0i 1.54604i −0.634384 0.773018i \(-0.718746\pi\)
0.634384 0.773018i \(-0.281254\pi\)
\(510\) 0 0
\(511\) 14376.0i 1.24454i
\(512\) 0 0
\(513\) 13319.1 + 13319.1i 1.14630 + 1.14630i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −11941.3 + 11941.3i −1.01581 + 1.01581i
\(518\) 0 0
\(519\) 9699.48 0.820347
\(520\) 0 0
\(521\) −11163.0 −0.938695 −0.469347 0.883014i \(-0.655511\pi\)
−0.469347 + 0.883014i \(0.655511\pi\)
\(522\) 0 0
\(523\) 9188.85 9188.85i 0.768261 0.768261i −0.209539 0.977800i \(-0.567196\pi\)
0.977800 + 0.209539i \(0.0671964\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3712.31 + 3712.31i 0.306852 + 0.306852i
\(528\) 0 0
\(529\) 4067.00i 0.334265i
\(530\) 0 0
\(531\) 1558.85i 0.127398i
\(532\) 0 0
\(533\) −5548.09 5548.09i −0.450872 0.450872i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5664.45 5664.45i 0.455193 0.455193i
\(538\) 0 0
\(539\) 2468.17 0.197239
\(540\) 0 0
\(541\) −9128.00 −0.725404 −0.362702 0.931905i \(-0.618146\pi\)
−0.362702 + 0.931905i \(0.618146\pi\)
\(542\) 0 0
\(543\) −11872.3 + 11872.3i −0.938288 + 0.938288i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3857.27 + 3857.27i 0.301508 + 0.301508i 0.841604 0.540096i \(-0.181612\pi\)
−0.540096 + 0.841604i \(0.681612\pi\)
\(548\) 0 0
\(549\) 1336.00i 0.103860i
\(550\) 0 0
\(551\) 8573.65i 0.662885i
\(552\) 0 0
\(553\) 9797.96 + 9797.96i 0.753439 + 0.753439i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9320.31 + 9320.31i −0.709002 + 0.709002i −0.966325 0.257323i \(-0.917159\pi\)
0.257323 + 0.966325i \(0.417159\pi\)
\(558\) 0 0
\(559\) −3810.51 −0.288314
\(560\) 0 0
\(561\) −13125.0 −0.987768
\(562\) 0 0
\(563\) 212.132 212.132i 0.0158798 0.0158798i −0.699122 0.715002i \(-0.746426\pi\)
0.715002 + 0.699122i \(0.246426\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9489.37 + 9489.37i 0.702850 + 0.702850i
\(568\) 0 0
\(569\) 20031.0i 1.47582i −0.674898 0.737911i \(-0.735812\pi\)
0.674898 0.737911i \(-0.264188\pi\)
\(570\) 0 0
\(571\) 14982.2i 1.09805i 0.835806 + 0.549026i \(0.185001\pi\)
−0.835806 + 0.549026i \(0.814999\pi\)
\(572\) 0 0
\(573\) 918.559 + 918.559i 0.0669692 + 0.0669692i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7134.14 + 7134.14i −0.514728 + 0.514728i −0.915971 0.401243i \(-0.868578\pi\)
0.401243 + 0.915971i \(0.368578\pi\)
\(578\) 0 0
\(579\) 2294.97 0.164725
\(580\) 0 0
\(581\) 300.000 0.0214219
\(582\) 0 0
\(583\) −10076.3 + 10076.3i −0.715809 + 0.715809i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6310.93 + 6310.93i 0.443748 + 0.443748i 0.893269 0.449522i \(-0.148406\pi\)
−0.449522 + 0.893269i \(0.648406\pi\)
\(588\) 0 0
\(589\) 11250.0i 0.787009i
\(590\) 0 0
\(591\) 13596.6i 0.946344i
\(592\) 0 0
\(593\) 9240.70 + 9240.70i 0.639916 + 0.639916i 0.950535 0.310619i \(-0.100536\pi\)
−0.310619 + 0.950535i \(0.600536\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −15921.7 + 15921.7i −1.09151 + 1.09151i
\(598\) 0 0
\(599\) −3983.72 −0.271737 −0.135868 0.990727i \(-0.543382\pi\)
−0.135868 + 0.990727i \(0.543382\pi\)
\(600\) 0 0
\(601\) −2027.00 −0.137576 −0.0687879 0.997631i \(-0.521913\pi\)
−0.0687879 + 0.997631i \(0.521913\pi\)
\(602\) 0 0
\(603\) 388.909 388.909i 0.0262647 0.0262647i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −20223.3 20223.3i −1.35228 1.35228i −0.883101 0.469184i \(-0.844548\pi\)
−0.469184 0.883101i \(-0.655452\pi\)
\(608\) 0 0
\(609\) 6600.00i 0.439155i
\(610\) 0 0
\(611\) 6755.00i 0.447263i
\(612\) 0 0
\(613\) 4984.71 + 4984.71i 0.328435 + 0.328435i 0.851991 0.523556i \(-0.175395\pi\)
−0.523556 + 0.851991i \(0.675395\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2596.46 + 2596.46i −0.169416 + 0.169416i −0.786723 0.617307i \(-0.788224\pi\)
0.617307 + 0.786723i \(0.288224\pi\)
\(618\) 0 0
\(619\) −8400.45 −0.545464 −0.272732 0.962090i \(-0.587927\pi\)
−0.272732 + 0.962090i \(0.587927\pi\)
\(620\) 0 0
\(621\) −13050.0 −0.843283
\(622\) 0 0
\(623\) 7764.03 7764.03i 0.499293 0.499293i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −19887.4 19887.4i −1.26671 1.26671i
\(628\) 0 0
\(629\) 25200.0i 1.59744i
\(630\) 0 0
\(631\) 11344.9i 0.715744i −0.933771 0.357872i \(-0.883502\pi\)
0.933771 0.357872i \(-0.116498\pi\)
\(632\) 0 0
\(633\) 7195.38 + 7195.38i 0.451802 + 0.451802i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 698.105 698.105i 0.0434222 0.0434222i
\(638\) 0 0
\(639\) −2251.67 −0.139397
\(640\) 0 0
\(641\) −23322.0 −1.43707 −0.718536 0.695489i \(-0.755188\pi\)
−0.718536 + 0.695489i \(0.755188\pi\)
\(642\) 0 0
\(643\) 9008.54 9008.54i 0.552507 0.552507i −0.374656 0.927164i \(-0.622239\pi\)
0.927164 + 0.374656i \(0.122239\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2969.85 2969.85i −0.180459 0.180459i 0.611097 0.791556i \(-0.290729\pi\)
−0.791556 + 0.611097i \(0.790729\pi\)
\(648\) 0 0
\(649\) 33750.0i 2.04130i
\(650\) 0 0
\(651\) 8660.25i 0.521386i
\(652\) 0 0
\(653\) −23172.2 23172.2i −1.38866 1.38866i −0.828136 0.560528i \(-0.810598\pi\)
−0.560528 0.828136i \(-0.689402\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1016.54 1016.54i 0.0603637 0.0603637i
\(658\) 0 0
\(659\) −15372.0 −0.908659 −0.454329 0.890834i \(-0.650121\pi\)
−0.454329 + 0.890834i \(0.650121\pi\)
\(660\) 0 0
\(661\) −2882.00 −0.169587 −0.0847933 0.996399i \(-0.527023\pi\)
−0.0847933 + 0.996399i \(0.527023\pi\)
\(662\) 0 0
\(663\) −3712.31 + 3712.31i −0.217457 + 0.217457i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4200.21 4200.21i −0.243828 0.243828i
\(668\) 0 0
\(669\) 22900.0i 1.32342i
\(670\) 0 0
\(671\) 28925.2i 1.66415i
\(672\) 0 0
\(673\) 16264.6 + 16264.6i 0.931582 + 0.931582i 0.997805 0.0662228i \(-0.0210948\pi\)
−0.0662228 + 0.997805i \(0.521095\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10777.8 + 10777.8i −0.611850 + 0.611850i −0.943428 0.331578i \(-0.892419\pi\)
0.331578 + 0.943428i \(0.392419\pi\)
\(678\) 0 0
\(679\) −2078.46 −0.117473
\(680\) 0 0
\(681\) 27600.0 1.55306
\(682\) 0 0
\(683\) −19972.2 + 19972.2i −1.11891 + 1.11891i −0.127009 + 0.991902i \(0.540538\pi\)
−0.991902 + 0.127009i \(0.959462\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 13138.0 + 13138.0i 0.729618 + 0.729618i
\(688\) 0 0
\(689\) 5700.00i 0.315171i
\(690\) 0 0
\(691\) 18229.8i 1.00361i 0.864980 + 0.501806i \(0.167331\pi\)
−0.864980 + 0.501806i \(0.832669\pi\)
\(692\) 0 0
\(693\) 1224.74 + 1224.74i 0.0671345 + 0.0671345i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 19418.3 19418.3i 1.05527 1.05527i
\(698\) 0 0
\(699\) −31696.5 −1.71513
\(700\) 0 0
\(701\) 25998.0 1.40076 0.700379 0.713771i \(-0.253014\pi\)
0.700379 + 0.713771i \(0.253014\pi\)
\(702\) 0 0
\(703\) 38183.8 38183.8i 2.04855 2.04855i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −678.823 678.823i −0.0361100 0.0361100i
\(708\) 0 0
\(709\) 18004.0i 0.953673i −0.878992 0.476837i \(-0.841783\pi\)
0.878992 0.476837i \(-0.158217\pi\)
\(710\) 0 0
\(711\) 1385.64i 0.0730880i
\(712\) 0 0
\(713\) −5511.35 5511.35i −0.289484 0.289484i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11328.9 11328.9i 0.590077 0.590077i
\(718\) 0 0
\(719\) 2424.87 0.125775 0.0628876 0.998021i \(-0.479969\pi\)
0.0628876 + 0.998021i \(0.479969\pi\)
\(720\) 0 0
\(721\) −23000.0 −1.18802
\(722\) 0 0
\(723\) −3348.15 + 3348.15i −0.172226 + 0.172226i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 5225.52 + 5225.52i 0.266580 + 0.266580i 0.827721 0.561140i \(-0.189637\pi\)
−0.561140 + 0.827721i \(0.689637\pi\)
\(728\) 0 0
\(729\) 20917.0i 1.06269i
\(730\) 0 0
\(731\) 13336.8i 0.674800i
\(732\) 0 0
\(733\) −8511.98 8511.98i −0.428918 0.428918i 0.459342 0.888260i \(-0.348085\pi\)
−0.888260 + 0.459342i \(0.848085\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8420.12 + 8420.12i −0.420840 + 0.420840i
\(738\) 0 0
\(739\) 17753.5 0.883726 0.441863 0.897082i \(-0.354318\pi\)
0.441863 + 0.897082i \(0.354318\pi\)
\(740\) 0 0
\(741\) −11250.0 −0.557732
\(742\) 0 0
\(743\) 1803.12 1803.12i 0.0890311 0.0890311i −0.661189 0.750220i \(-0.729948\pi\)
0.750220 + 0.661189i \(0.229948\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 21.2132 + 21.2132i 0.00103902 + 0.00103902i
\(748\) 0 0
\(749\) 5700.00i 0.278069i
\(750\) 0 0
\(751\) 17926.7i 0.871046i 0.900178 + 0.435523i \(0.143437\pi\)
−0.900178 + 0.435523i \(0.856563\pi\)
\(752\) 0 0
\(753\) 4745.89 + 4745.89i 0.229681 + 0.229681i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −3698.73 + 3698.73i −0.177586 + 0.177586i −0.790303 0.612717i \(-0.790077\pi\)
0.612717 + 0.790303i \(0.290077\pi\)
\(758\) 0 0
\(759\) 19485.6 0.931860
\(760\) 0 0
\(761\) 30807.0 1.46748 0.733740 0.679430i \(-0.237773\pi\)
0.733740 + 0.679430i \(0.237773\pi\)
\(762\) 0 0
\(763\) −12784.5 + 12784.5i −0.606592 + 0.606592i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9545.94 + 9545.94i 0.449392 + 0.449392i
\(768\) 0 0
\(769\) 3319.00i 0.155639i −0.996967 0.0778194i \(-0.975204\pi\)
0.996967 0.0778194i \(-0.0247957\pi\)
\(770\) 0 0
\(771\) 22343.5i 1.04368i
\(772\) 0 0
\(773\) −22915.0 22915.0i −1.06623 1.06623i −0.997645 0.0685828i \(-0.978152\pi\)
−0.0685828 0.997645i \(-0.521848\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 29393.9 29393.9i 1.35714 1.35714i
\(778\) 0 0
\(779\) 58846.4 2.70654
\(780\) 0 0
\(781\) 48750.0 2.23356
\(782\) 0 0
\(783\) −6767.01 + 6767.01i −0.308855 + 0.308855i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4058.79 + 4058.79i 0.183838 + 0.183838i 0.793026 0.609188i \(-0.208505\pi\)
−0.609188 + 0.793026i \(0.708505\pi\)
\(788\) 0 0
\(789\) 25350.0i 1.14383i
\(790\) 0 0
\(791\) 20611.4i 0.926495i
\(792\) 0 0
\(793\) −8181.30 8181.30i −0.366364 0.366364i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20906.4 20906.4i 0.929162 0.929162i −0.0684894 0.997652i \(-0.521818\pi\)
0.997652 + 0.0684894i \(0.0218179\pi\)
\(798\) 0 0
\(799\) −23642.5 −1.04682
\(800\) 0 0
\(801\) 1098.00 0.0484344
\(802\) 0 0
\(803\) −22008.7 + 22008.7i −0.967211 + 0.967211i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −5854.84 5854.84i −0.255391 0.255391i
\(808\) 0 0
\(809\) 7554.00i 0.328287i −0.986436 0.164144i \(-0.947514\pi\)
0.986436 0.164144i \(-0.0524861\pi\)
\(810\) 0 0
\(811\) 35420.4i 1.53364i −0.641864 0.766819i \(-0.721839\pi\)
0.641864 0.766819i \(-0.278161\pi\)
\(812\) 0 0
\(813\) −7654.66 7654.66i −0.330210 0.330210i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 20208.3 20208.3i 0.865359 0.865359i
\(818\) 0 0
\(819\) 692.820 0.0295593
\(820\) 0 0
\(821\) −8562.00 −0.363966 −0.181983 0.983302i \(-0.558252\pi\)
−0.181983 + 0.983302i \(0.558252\pi\)
\(822\) 0 0
\(823\) −26233.7 + 26233.7i −1.11112 + 1.11112i −0.118116 + 0.993000i \(0.537685\pi\)
−0.993000 + 0.118116i \(0.962315\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18084.3 + 18084.3i 0.760400 + 0.760400i 0.976395 0.215994i \(-0.0692992\pi\)
−0.215994 + 0.976395i \(0.569299\pi\)
\(828\) 0 0
\(829\) 15766.0i 0.660526i −0.943889 0.330263i \(-0.892863\pi\)
0.943889 0.330263i \(-0.107137\pi\)
\(830\) 0 0
\(831\) 23469.3i 0.979712i
\(832\) 0 0
\(833\) 2443.37 + 2443.37i 0.101630 + 0.101630i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −8879.40 + 8879.40i −0.366687 + 0.366687i
\(838\) 0 0
\(839\) 4503.33 0.185307 0.0926533 0.995698i \(-0.470465\pi\)
0.0926533 + 0.995698i \(0.470465\pi\)
\(840\) 0 0
\(841\) 20033.0 0.821395
\(842\) 0 0
\(843\) 25307.4 25307.4i 1.03396 1.03396i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −7693.32 7693.32i −0.312096 0.312096i
\(848\) 0 0
\(849\) 22375.0i 0.904485i
\(850\) 0 0
\(851\) 37412.3i 1.50702i
\(852\) 0 0
\(853\) 845.074 + 845.074i 0.0339212 + 0.0339212i 0.723864 0.689943i \(-0.242364\pi\)
−0.689943 + 0.723864i \(0.742364\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14176.4 14176.4i 0.565061 0.565061i −0.365680 0.930741i \(-0.619163\pi\)
0.930741 + 0.365680i \(0.119163\pi\)
\(858\) 0 0
\(859\) 22993.0 0.913283 0.456642 0.889651i \(-0.349052\pi\)
0.456642 + 0.889651i \(0.349052\pi\)
\(860\) 0 0
\(861\) 45300.0 1.79305
\(862\) 0 0
\(863\) 20301.0 20301.0i 0.800759 0.800759i −0.182455 0.983214i \(-0.558404\pi\)
0.983214 + 0.182455i \(0.0584044\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4376.99 + 4376.99i 0.171454 + 0.171454i
\(868\) 0 0
\(869\) 30000.0i 1.17109i
\(870\) 0 0
\(871\) 4763.14i 0.185296i
\(872\) 0 0
\(873\) −146.969 146.969i −0.00569778 0.00569778i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13202.7 13202.7i 0.508353 0.508353i −0.405668 0.914021i \(-0.632961\pi\)
0.914021 + 0.405668i \(0.132961\pi\)
\(878\) 0 0
\(879\) −20957.8 −0.804197
\(880\) 0 0
\(881\) 12258.0 0.468766 0.234383 0.972144i \(-0.424693\pi\)
0.234383 + 0.972144i \(0.424693\pi\)
\(882\) 0 0
\(883\) 8460.53 8460.53i 0.322446 0.322446i −0.527259 0.849705i \(-0.676780\pi\)
0.849705 + 0.527259i \(0.176780\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2036.47 + 2036.47i 0.0770889 + 0.0770889i 0.744600 0.667511i \(-0.232640\pi\)
−0.667511 + 0.744600i \(0.732640\pi\)
\(888\) 0 0
\(889\) 36200.0i 1.36570i
\(890\) 0 0
\(891\) 29055.2i 1.09246i
\(892\) 0 0
\(893\) −35823.8 35823.8i −1.34244 1.34244i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5511.35 5511.35i 0.205149 0.205149i
\(898\) 0 0
\(899\) −5715.77 −0.212048
\(900\) 0 0
\(901\) −19950.0 −0.737659
\(902\) 0 0
\(903\) 15556.3 15556.3i 0.573292 0.573292i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 14580.5 + 14580.5i 0.533781 + 0.533781i 0.921695 0.387915i \(-0.126804\pi\)
−0.387915 + 0.921695i \(0.626804\pi\)
\(908\) 0 0
\(909\) 96.0000i 0.00350288i
\(910\) 0 0
\(911\) 18879.4i 0.686609i 0.939224 + 0.343305i \(0.111546\pi\)
−0.939224 + 0.343305i \(0.888454\pi\)
\(912\) 0 0
\(913\) −459.279 459.279i −0.0166483 0.0166483i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1224.74 1224.74i 0.0441054 0.0441054i
\(918\) 0 0
\(919\) −12037.8 −0.432088 −0.216044 0.976384i \(-0.569315\pi\)
−0.216044 + 0.976384i \(0.569315\pi\)
\(920\) 0 0
\(921\) 775.000 0.0277276
\(922\) 0 0
\(923\) 13788.6 13788.6i 0.491719 0.491719i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1626.35 1626.35i −0.0576227 0.0576227i
\(928\) 0 0
\(929\) 7734.00i 0.273137i 0.990631 + 0.136569i \(0.0436074\pi\)
−0.990631 + 0.136569i \(0.956393\pi\)
\(930\) 0 0
\(931\) 7404.52i 0.260659i
\(932\) 0 0
\(933\) −2449.49 2449.49i −0.0859514 0.0859514i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 18842.7 18842.7i 0.656952 0.656952i −0.297706 0.954658i \(-0.596221\pi\)
0.954658 + 0.297706i \(0.0962214\pi\)
\(938\) 0 0
\(939\) −19918.6 −0.692245
\(940\) 0 0
\(941\) 14622.0 0.506550 0.253275 0.967394i \(-0.418492\pi\)
0.253275 + 0.967394i \(0.418492\pi\)
\(942\) 0 0
\(943\) −28828.7 + 28828.7i −0.995539 + 0.995539i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24649.7 24649.7i −0.845838 0.845838i 0.143772 0.989611i \(-0.454077\pi\)
−0.989611 + 0.143772i \(0.954077\pi\)
\(948\) 0 0
\(949\) 12450.0i 0.425863i
\(950\) 0 0
\(951\) 28578.8i 0.974482i
\(952\) 0 0
\(953\) 8334.39 + 8334.39i 0.283292 + 0.283292i 0.834420 0.551128i \(-0.185803\pi\)
−0.551128 + 0.834420i \(0.685803\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 10104.1 10104.1i 0.341296 0.341296i
\(958\) 0 0
\(959\) −55252.4 −1.86047
\(960\) 0 0
\(961\) 22291.0 0.748246
\(962\) 0 0
\(963\) −403.051 + 403.051i −0.0134872 + 0.0134872i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −10366.2 10366.2i −0.344730 0.344730i 0.513412 0.858142i \(-0.328381\pi\)
−0.858142 + 0.513412i \(0.828381\pi\)
\(968\) 0 0
\(969\) 39375.0i 1.30537i
\(970\) 0 0
\(971\) 25331.2i 0.837197i 0.908171 + 0.418598i \(0.137479\pi\)
−0.908171 + 0.418598i \(0.862521\pi\)
\(972\) 0 0
\(973\) 1837.12 + 1837.12i 0.0605296 + 0.0605296i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −30502.3 + 30502.3i −0.998827 + 0.998827i −0.999999 0.00117218i \(-0.999627\pi\)
0.00117218 + 0.999999i \(0.499627\pi\)
\(978\) 0 0
\(979\) −23772.4 −0.776067
\(980\) 0 0
\(981\) −1808.00 −0.0588430
\(982\) 0 0
\(983\) 2969.85 2969.85i 0.0963616 0.0963616i −0.657283 0.753644i \(-0.728294\pi\)
0.753644 + 0.657283i \(0.228294\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −27577.2 27577.2i −0.889352 0.889352i
\(988\) 0 0
\(989\) 19800.0i 0.636606i
\(990\) 0 0
\(991\) 51615.1i 1.65450i 0.561835 + 0.827249i \(0.310096\pi\)
−0.561835 + 0.827249i \(0.689904\pi\)
\(992\) 0 0
\(993\) 9338.68 + 9338.68i 0.298443 + 0.298443i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −23515.1 + 23515.1i −0.746972 + 0.746972i −0.973909 0.226938i \(-0.927129\pi\)
0.226938 + 0.973909i \(0.427129\pi\)
\(998\) 0 0
\(999\) 60275.4 1.90894
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.4.n.e.143.3 yes 8
4.3 odd 2 inner 400.4.n.e.143.2 yes 8
5.2 odd 4 inner 400.4.n.e.207.1 yes 8
5.3 odd 4 inner 400.4.n.e.207.3 yes 8
5.4 even 2 inner 400.4.n.e.143.1 8
20.3 even 4 inner 400.4.n.e.207.2 yes 8
20.7 even 4 inner 400.4.n.e.207.4 yes 8
20.19 odd 2 inner 400.4.n.e.143.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.4.n.e.143.1 8 5.4 even 2 inner
400.4.n.e.143.2 yes 8 4.3 odd 2 inner
400.4.n.e.143.3 yes 8 1.1 even 1 trivial
400.4.n.e.143.4 yes 8 20.19 odd 2 inner
400.4.n.e.207.1 yes 8 5.2 odd 4 inner
400.4.n.e.207.2 yes 8 20.3 even 4 inner
400.4.n.e.207.3 yes 8 5.3 odd 4 inner
400.4.n.e.207.4 yes 8 20.7 even 4 inner