Properties

Label 400.4.n.g.143.7
Level $400$
Weight $4$
Character 400.143
Analytic conductor $23.601$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,4,Mod(143,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.143");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 400.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.6007640023\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.11007531417600000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} + 48x^{8} - 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.7
Root \(-1.56290 + 0.418778i\) of defining polynomial
Character \(\chi\) \(=\) 400.143
Dual form 400.4.n.g.207.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.59346 - 6.59346i) q^{3} +(-17.4296 - 17.4296i) q^{7} -59.9473i q^{9} -1.16990i q^{11} +(32.6384 + 32.6384i) q^{13} +(90.9319 - 90.9319i) q^{17} -131.499 q^{19} -229.842 q^{21} +(-98.9577 + 98.9577i) q^{23} +(-217.237 - 217.237i) q^{27} -167.842i q^{29} -60.1965i q^{31} +(-7.71371 - 7.71371i) q^{33} +(-193.445 + 193.445i) q^{37} +430.399 q^{39} +28.7893 q^{41} +(76.6031 - 76.6031i) q^{43} +(-176.926 - 176.926i) q^{47} +264.579i q^{49} -1199.11i q^{51} +(327.372 + 327.372i) q^{53} +(-867.033 + 867.033i) q^{57} -141.846 q^{59} +369.315 q^{61} +(-1044.86 + 1044.86i) q^{63} +(67.8385 + 67.8385i) q^{67} +1304.95i q^{69} +46.7346i q^{71} +(-141.641 - 141.641i) q^{73} +(-20.3909 + 20.3909i) q^{77} +1032.70 q^{79} -1246.10 q^{81} +(498.417 - 498.417i) q^{83} +(-1106.66 - 1106.66i) q^{87} -1534.00i q^{89} -1137.74i q^{91} +(-396.903 - 396.903i) q^{93} +(1.20296 - 1.20296i) q^{97} -70.1327 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 1856 q^{21} - 1968 q^{41} - 1984 q^{61} - 9616 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 6.59346 6.59346i 1.26891 1.26891i 0.322260 0.946651i \(-0.395557\pi\)
0.946651 0.322260i \(-0.104443\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −17.4296 17.4296i −0.941107 0.941107i 0.0572523 0.998360i \(-0.481766\pi\)
−0.998360 + 0.0572523i \(0.981766\pi\)
\(8\) 0 0
\(9\) 59.9473i 2.22027i
\(10\) 0 0
\(11\) 1.16990i 0.0320672i −0.999871 0.0160336i \(-0.994896\pi\)
0.999871 0.0160336i \(-0.00510388\pi\)
\(12\) 0 0
\(13\) 32.6384 + 32.6384i 0.696327 + 0.696327i 0.963616 0.267289i \(-0.0861279\pi\)
−0.267289 + 0.963616i \(0.586128\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 90.9319 90.9319i 1.29731 1.29731i 0.367142 0.930165i \(-0.380336\pi\)
0.930165 0.367142i \(-0.119664\pi\)
\(18\) 0 0
\(19\) −131.499 −1.58779 −0.793893 0.608057i \(-0.791949\pi\)
−0.793893 + 0.608057i \(0.791949\pi\)
\(20\) 0 0
\(21\) −229.842 −2.38836
\(22\) 0 0
\(23\) −98.9577 + 98.9577i −0.897135 + 0.897135i −0.995182 0.0980467i \(-0.968741\pi\)
0.0980467 + 0.995182i \(0.468741\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −217.237 217.237i −1.54842 1.54842i
\(28\) 0 0
\(29\) 167.842i 1.07474i −0.843346 0.537370i \(-0.819418\pi\)
0.843346 0.537370i \(-0.180582\pi\)
\(30\) 0 0
\(31\) 60.1965i 0.348761i −0.984678 0.174381i \(-0.944208\pi\)
0.984678 0.174381i \(-0.0557923\pi\)
\(32\) 0 0
\(33\) −7.71371 7.71371i −0.0406905 0.0406905i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −193.445 + 193.445i −0.859519 + 0.859519i −0.991281 0.131763i \(-0.957936\pi\)
0.131763 + 0.991281i \(0.457936\pi\)
\(38\) 0 0
\(39\) 430.399 1.76715
\(40\) 0 0
\(41\) 28.7893 0.109662 0.0548309 0.998496i \(-0.482538\pi\)
0.0548309 + 0.998496i \(0.482538\pi\)
\(42\) 0 0
\(43\) 76.6031 76.6031i 0.271671 0.271671i −0.558102 0.829773i \(-0.688470\pi\)
0.829773 + 0.558102i \(0.188470\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −176.926 176.926i −0.549091 0.549091i 0.377087 0.926178i \(-0.376926\pi\)
−0.926178 + 0.377087i \(0.876926\pi\)
\(48\) 0 0
\(49\) 264.579i 0.771366i
\(50\) 0 0
\(51\) 1199.11i 3.29233i
\(52\) 0 0
\(53\) 327.372 + 327.372i 0.848453 + 0.848453i 0.989940 0.141487i \(-0.0451883\pi\)
−0.141487 + 0.989940i \(0.545188\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −867.033 + 867.033i −2.01476 + 2.01476i
\(58\) 0 0
\(59\) −141.846 −0.312996 −0.156498 0.987678i \(-0.550020\pi\)
−0.156498 + 0.987678i \(0.550020\pi\)
\(60\) 0 0
\(61\) 369.315 0.775180 0.387590 0.921832i \(-0.373308\pi\)
0.387590 + 0.921832i \(0.373308\pi\)
\(62\) 0 0
\(63\) −1044.86 + 1044.86i −2.08951 + 2.08951i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 67.8385 + 67.8385i 0.123698 + 0.123698i 0.766246 0.642548i \(-0.222122\pi\)
−0.642548 + 0.766246i \(0.722122\pi\)
\(68\) 0 0
\(69\) 1304.95i 2.27677i
\(70\) 0 0
\(71\) 46.7346i 0.0781179i 0.999237 + 0.0390590i \(0.0124360\pi\)
−0.999237 + 0.0390590i \(0.987564\pi\)
\(72\) 0 0
\(73\) −141.641 141.641i −0.227093 0.227093i 0.584384 0.811477i \(-0.301336\pi\)
−0.811477 + 0.584384i \(0.801336\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −20.3909 + 20.3909i −0.0301787 + 0.0301787i
\(78\) 0 0
\(79\) 1032.70 1.47073 0.735364 0.677673i \(-0.237011\pi\)
0.735364 + 0.677673i \(0.237011\pi\)
\(80\) 0 0
\(81\) −1246.10 −1.70933
\(82\) 0 0
\(83\) 498.417 498.417i 0.659137 0.659137i −0.296039 0.955176i \(-0.595666\pi\)
0.955176 + 0.296039i \(0.0956659\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1106.66 1106.66i −1.36375 1.36375i
\(88\) 0 0
\(89\) 1534.00i 1.82701i −0.406831 0.913503i \(-0.633366\pi\)
0.406831 0.913503i \(-0.366634\pi\)
\(90\) 0 0
\(91\) 1137.74i 1.31064i
\(92\) 0 0
\(93\) −396.903 396.903i −0.442547 0.442547i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.20296 1.20296i 0.00125920 0.00125920i −0.706477 0.707736i \(-0.749717\pi\)
0.707736 + 0.706477i \(0.249717\pi\)
\(98\) 0 0
\(99\) −70.1327 −0.0711979
\(100\) 0 0
\(101\) −473.842 −0.466822 −0.233411 0.972378i \(-0.574989\pi\)
−0.233411 + 0.972378i \(0.574989\pi\)
\(102\) 0 0
\(103\) 104.230 104.230i 0.0997096 0.0997096i −0.655492 0.755202i \(-0.727539\pi\)
0.755202 + 0.655492i \(0.227539\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −170.692 170.692i −0.154218 0.154218i 0.625781 0.779999i \(-0.284781\pi\)
−0.779999 + 0.625781i \(0.784781\pi\)
\(108\) 0 0
\(109\) 1587.84i 1.39530i −0.716439 0.697649i \(-0.754229\pi\)
0.716439 0.697649i \(-0.245771\pi\)
\(110\) 0 0
\(111\) 2550.94i 2.18131i
\(112\) 0 0
\(113\) 844.278 + 844.278i 0.702858 + 0.702858i 0.965023 0.262165i \(-0.0844364\pi\)
−0.262165 + 0.965023i \(0.584436\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1956.58 1956.58i 1.54604 1.54604i
\(118\) 0 0
\(119\) −3169.80 −2.44181
\(120\) 0 0
\(121\) 1329.63 0.998972
\(122\) 0 0
\(123\) 189.821 189.821i 0.139151 0.139151i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 310.395 + 310.395i 0.216875 + 0.216875i 0.807180 0.590305i \(-0.200993\pi\)
−0.590305 + 0.807180i \(0.700993\pi\)
\(128\) 0 0
\(129\) 1010.16i 0.689453i
\(130\) 0 0
\(131\) 911.848i 0.608157i −0.952647 0.304078i \(-0.901652\pi\)
0.952647 0.304078i \(-0.0983484\pi\)
\(132\) 0 0
\(133\) 2291.97 + 2291.97i 1.49428 + 1.49428i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1101.13 1101.13i 0.686686 0.686686i −0.274812 0.961498i \(-0.588616\pi\)
0.961498 + 0.274812i \(0.0886156\pi\)
\(138\) 0 0
\(139\) −1380.67 −0.842497 −0.421248 0.906945i \(-0.638408\pi\)
−0.421248 + 0.906945i \(0.638408\pi\)
\(140\) 0 0
\(141\) −2333.10 −1.39349
\(142\) 0 0
\(143\) 38.1838 38.1838i 0.0223293 0.0223293i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1744.49 + 1744.49i 0.978795 + 0.978795i
\(148\) 0 0
\(149\) 1992.16i 1.09533i 0.836698 + 0.547664i \(0.184483\pi\)
−0.836698 + 0.547664i \(0.815517\pi\)
\(150\) 0 0
\(151\) 895.775i 0.482762i 0.970430 + 0.241381i \(0.0776004\pi\)
−0.970430 + 0.241381i \(0.922400\pi\)
\(152\) 0 0
\(153\) −5451.12 5451.12i −2.88037 2.88037i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −643.742 + 643.742i −0.327237 + 0.327237i −0.851535 0.524298i \(-0.824328\pi\)
0.524298 + 0.851535i \(0.324328\pi\)
\(158\) 0 0
\(159\) 4317.03 2.15322
\(160\) 0 0
\(161\) 3449.58 1.68860
\(162\) 0 0
\(163\) 1583.26 1583.26i 0.760798 0.760798i −0.215668 0.976467i \(-0.569193\pi\)
0.976467 + 0.215668i \(0.0691930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2151.02 + 2151.02i 0.996712 + 0.996712i 0.999995 0.00328303i \(-0.00104502\pi\)
−0.00328303 + 0.999995i \(0.501045\pi\)
\(168\) 0 0
\(169\) 66.4747i 0.0302570i
\(170\) 0 0
\(171\) 7883.02i 3.52532i
\(172\) 0 0
\(173\) 860.888 + 860.888i 0.378336 + 0.378336i 0.870502 0.492166i \(-0.163795\pi\)
−0.492166 + 0.870502i \(0.663795\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −935.254 + 935.254i −0.397164 + 0.397164i
\(178\) 0 0
\(179\) 2272.98 0.949109 0.474554 0.880226i \(-0.342609\pi\)
0.474554 + 0.880226i \(0.342609\pi\)
\(180\) 0 0
\(181\) 3155.16 1.29570 0.647848 0.761770i \(-0.275669\pi\)
0.647848 + 0.761770i \(0.275669\pi\)
\(182\) 0 0
\(183\) 2435.06 2435.06i 0.983635 0.983635i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −106.382 106.382i −0.0416010 0.0416010i
\(188\) 0 0
\(189\) 7572.68i 2.91445i
\(190\) 0 0
\(191\) 5175.82i 1.96078i −0.197065 0.980390i \(-0.563141\pi\)
0.197065 0.980390i \(-0.436859\pi\)
\(192\) 0 0
\(193\) −1269.44 1269.44i −0.473452 0.473452i 0.429578 0.903030i \(-0.358662\pi\)
−0.903030 + 0.429578i \(0.858662\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1242.10 + 1242.10i −0.449220 + 0.449220i −0.895095 0.445875i \(-0.852892\pi\)
0.445875 + 0.895095i \(0.352892\pi\)
\(198\) 0 0
\(199\) −2811.82 −1.00163 −0.500815 0.865554i \(-0.666966\pi\)
−0.500815 + 0.865554i \(0.666966\pi\)
\(200\) 0 0
\(201\) 894.580 0.313924
\(202\) 0 0
\(203\) −2925.41 + 2925.41i −1.01145 + 1.01145i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5932.25 + 5932.25i 1.99188 + 1.99188i
\(208\) 0 0
\(209\) 153.841i 0.0509159i
\(210\) 0 0
\(211\) 394.650i 0.128762i 0.997925 + 0.0643811i \(0.0205073\pi\)
−0.997925 + 0.0643811i \(0.979493\pi\)
\(212\) 0 0
\(213\) 308.142 + 308.142i 0.0991247 + 0.0991247i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1049.20 + 1049.20i −0.328222 + 0.328222i
\(218\) 0 0
\(219\) −1867.80 −0.576322
\(220\) 0 0
\(221\) 5935.73 1.80670
\(222\) 0 0
\(223\) 2751.79 2751.79i 0.826337 0.826337i −0.160671 0.987008i \(-0.551366\pi\)
0.987008 + 0.160671i \(0.0513657\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3015.51 + 3015.51i 0.881703 + 0.881703i 0.993708 0.112005i \(-0.0357272\pi\)
−0.112005 + 0.993708i \(0.535727\pi\)
\(228\) 0 0
\(229\) 1700.95i 0.490837i −0.969417 0.245418i \(-0.921075\pi\)
0.969417 0.245418i \(-0.0789253\pi\)
\(230\) 0 0
\(231\) 268.893i 0.0765882i
\(232\) 0 0
\(233\) 3464.22 + 3464.22i 0.974028 + 0.974028i 0.999671 0.0256428i \(-0.00816325\pi\)
−0.0256428 + 0.999671i \(0.508163\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6809.04 6809.04i 1.86622 1.86622i
\(238\) 0 0
\(239\) −2487.89 −0.673341 −0.336670 0.941623i \(-0.609301\pi\)
−0.336670 + 0.941623i \(0.609301\pi\)
\(240\) 0 0
\(241\) −1219.79 −0.326031 −0.163016 0.986624i \(-0.552122\pi\)
−0.163016 + 0.986624i \(0.552122\pi\)
\(242\) 0 0
\(243\) −2350.74 + 2350.74i −0.620577 + 0.620577i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4291.91 4291.91i −1.10562 1.10562i
\(248\) 0 0
\(249\) 6572.58i 1.67277i
\(250\) 0 0
\(251\) 5887.04i 1.48042i 0.672373 + 0.740212i \(0.265275\pi\)
−0.672373 + 0.740212i \(0.734725\pi\)
\(252\) 0 0
\(253\) 115.771 + 115.771i 0.0287686 + 0.0287686i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4191.85 + 4191.85i −1.01743 + 1.01743i −0.0175881 + 0.999845i \(0.505599\pi\)
−0.999845 + 0.0175881i \(0.994401\pi\)
\(258\) 0 0
\(259\) 6743.33 1.61780
\(260\) 0 0
\(261\) −10061.7 −2.38622
\(262\) 0 0
\(263\) 2969.43 2969.43i 0.696210 0.696210i −0.267381 0.963591i \(-0.586158\pi\)
0.963591 + 0.267381i \(0.0861582\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −10114.4 10114.4i −2.31831 2.31831i
\(268\) 0 0
\(269\) 2180.00i 0.494116i 0.969001 + 0.247058i \(0.0794638\pi\)
−0.969001 + 0.247058i \(0.920536\pi\)
\(270\) 0 0
\(271\) 2376.34i 0.532666i −0.963881 0.266333i \(-0.914188\pi\)
0.963881 0.266333i \(-0.0858121\pi\)
\(272\) 0 0
\(273\) −7501.67 7501.67i −1.66308 1.66308i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4845.71 4845.71i 1.05108 1.05108i 0.0524618 0.998623i \(-0.483293\pi\)
0.998623 0.0524618i \(-0.0167068\pi\)
\(278\) 0 0
\(279\) −3608.62 −0.774345
\(280\) 0 0
\(281\) −4898.52 −1.03993 −0.519967 0.854186i \(-0.674056\pi\)
−0.519967 + 0.854186i \(0.674056\pi\)
\(282\) 0 0
\(283\) 1790.83 1790.83i 0.376163 0.376163i −0.493553 0.869716i \(-0.664302\pi\)
0.869716 + 0.493553i \(0.164302\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −501.785 501.785i −0.103204 0.103204i
\(288\) 0 0
\(289\) 11624.2i 2.36601i
\(290\) 0 0
\(291\) 15.8633i 0.00319562i
\(292\) 0 0
\(293\) 3456.25 + 3456.25i 0.689135 + 0.689135i 0.962041 0.272906i \(-0.0879848\pi\)
−0.272906 + 0.962041i \(0.587985\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −254.146 + 254.146i −0.0496534 + 0.0496534i
\(298\) 0 0
\(299\) −6459.63 −1.24940
\(300\) 0 0
\(301\) −2670.31 −0.511343
\(302\) 0 0
\(303\) −3124.26 + 3124.26i −0.592356 + 0.592356i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3755.56 + 3755.56i 0.698179 + 0.698179i 0.964018 0.265839i \(-0.0856488\pi\)
−0.265839 + 0.964018i \(0.585649\pi\)
\(308\) 0 0
\(309\) 1374.47i 0.253045i
\(310\) 0 0
\(311\) 2866.12i 0.522581i −0.965260 0.261291i \(-0.915852\pi\)
0.965260 0.261291i \(-0.0841481\pi\)
\(312\) 0 0
\(313\) 3070.75 + 3070.75i 0.554534 + 0.554534i 0.927746 0.373212i \(-0.121744\pi\)
−0.373212 + 0.927746i \(0.621744\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3355.28 3355.28i 0.594484 0.594484i −0.344355 0.938840i \(-0.611902\pi\)
0.938840 + 0.344355i \(0.111902\pi\)
\(318\) 0 0
\(319\) −196.359 −0.0344639
\(320\) 0 0
\(321\) −2250.89 −0.391379
\(322\) 0 0
\(323\) −11957.5 + 11957.5i −2.05985 + 2.05985i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −10469.4 10469.4i −1.77051 1.77051i
\(328\) 0 0
\(329\) 6167.47i 1.03351i
\(330\) 0 0
\(331\) 7909.93i 1.31350i −0.754108 0.656751i \(-0.771930\pi\)
0.754108 0.656751i \(-0.228070\pi\)
\(332\) 0 0
\(333\) 11596.5 + 11596.5i 1.90836 + 1.90836i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2979.68 + 2979.68i −0.481642 + 0.481642i −0.905656 0.424014i \(-0.860621\pi\)
0.424014 + 0.905656i \(0.360621\pi\)
\(338\) 0 0
\(339\) 11133.4 1.78373
\(340\) 0 0
\(341\) −70.4241 −0.0111838
\(342\) 0 0
\(343\) −1366.85 + 1366.85i −0.215169 + 0.215169i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2971.02 + 2971.02i 0.459633 + 0.459633i 0.898535 0.438902i \(-0.144632\pi\)
−0.438902 + 0.898535i \(0.644632\pi\)
\(348\) 0 0
\(349\) 5351.31i 0.820771i 0.911912 + 0.410386i \(0.134606\pi\)
−0.911912 + 0.410386i \(0.865394\pi\)
\(350\) 0 0
\(351\) 14180.5i 2.15641i
\(352\) 0 0
\(353\) −1506.52 1506.52i −0.227150 0.227150i 0.584351 0.811501i \(-0.301349\pi\)
−0.811501 + 0.584351i \(0.801349\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −20900.0 + 20900.0i −3.09844 + 3.09844i
\(358\) 0 0
\(359\) −10529.1 −1.54792 −0.773960 0.633234i \(-0.781727\pi\)
−0.773960 + 0.633234i \(0.781727\pi\)
\(360\) 0 0
\(361\) 10433.0 1.52107
\(362\) 0 0
\(363\) 8766.87 8766.87i 1.26761 1.26761i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −438.136 438.136i −0.0623175 0.0623175i 0.675261 0.737579i \(-0.264031\pi\)
−0.737579 + 0.675261i \(0.764031\pi\)
\(368\) 0 0
\(369\) 1725.84i 0.243479i
\(370\) 0 0
\(371\) 11411.9i 1.59697i
\(372\) 0 0
\(373\) −7090.32 7090.32i −0.984244 0.984244i 0.0156341 0.999878i \(-0.495023\pi\)
−0.999878 + 0.0156341i \(0.995023\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5478.09 5478.09i 0.748371 0.748371i
\(378\) 0 0
\(379\) 5073.01 0.687554 0.343777 0.939051i \(-0.388294\pi\)
0.343777 + 0.939051i \(0.388294\pi\)
\(380\) 0 0
\(381\) 4093.15 0.550390
\(382\) 0 0
\(383\) −3284.88 + 3284.88i −0.438250 + 0.438250i −0.891423 0.453173i \(-0.850292\pi\)
0.453173 + 0.891423i \(0.350292\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4592.15 4592.15i −0.603184 0.603184i
\(388\) 0 0
\(389\) 5470.95i 0.713080i 0.934280 + 0.356540i \(0.116044\pi\)
−0.934280 + 0.356540i \(0.883956\pi\)
\(390\) 0 0
\(391\) 17996.8i 2.32772i
\(392\) 0 0
\(393\) −6012.23 6012.23i −0.771697 0.771697i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9163.71 + 9163.71i −1.15847 + 1.15847i −0.173667 + 0.984804i \(0.555562\pi\)
−0.984804 + 0.173667i \(0.944438\pi\)
\(398\) 0 0
\(399\) 30224.0 3.79221
\(400\) 0 0
\(401\) −7823.26 −0.974252 −0.487126 0.873332i \(-0.661955\pi\)
−0.487126 + 0.873332i \(0.661955\pi\)
\(402\) 0 0
\(403\) 1964.71 1964.71i 0.242852 0.242852i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 226.312 + 226.312i 0.0275624 + 0.0275624i
\(408\) 0 0
\(409\) 13142.9i 1.58893i 0.607307 + 0.794467i \(0.292250\pi\)
−0.607307 + 0.794467i \(0.707750\pi\)
\(410\) 0 0
\(411\) 14520.5i 1.74269i
\(412\) 0 0
\(413\) 2472.31 + 2472.31i 0.294562 + 0.294562i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −9103.40 + 9103.40i −1.06905 + 1.06905i
\(418\) 0 0
\(419\) −2754.53 −0.321164 −0.160582 0.987023i \(-0.551337\pi\)
−0.160582 + 0.987023i \(0.551337\pi\)
\(420\) 0 0
\(421\) −11368.2 −1.31604 −0.658019 0.753001i \(-0.728606\pi\)
−0.658019 + 0.753001i \(0.728606\pi\)
\(422\) 0 0
\(423\) −10606.2 + 10606.2i −1.21913 + 1.21913i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6437.00 6437.00i −0.729528 0.729528i
\(428\) 0 0
\(429\) 503.526i 0.0566677i
\(430\) 0 0
\(431\) 924.819i 0.103357i 0.998664 + 0.0516786i \(0.0164571\pi\)
−0.998664 + 0.0516786i \(0.983543\pi\)
\(432\) 0 0
\(433\) 586.803 + 586.803i 0.0651269 + 0.0651269i 0.738920 0.673793i \(-0.235336\pi\)
−0.673793 + 0.738920i \(0.735336\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13012.8 13012.8i 1.42446 1.42446i
\(438\) 0 0
\(439\) 7929.82 0.862117 0.431059 0.902324i \(-0.358140\pi\)
0.431059 + 0.902324i \(0.358140\pi\)
\(440\) 0 0
\(441\) 15860.8 1.71264
\(442\) 0 0
\(443\) −5109.87 + 5109.87i −0.548030 + 0.548030i −0.925871 0.377841i \(-0.876667\pi\)
0.377841 + 0.925871i \(0.376667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 13135.2 + 13135.2i 1.38987 + 1.38987i
\(448\) 0 0
\(449\) 201.051i 0.0211318i −0.999944 0.0105659i \(-0.996637\pi\)
0.999944 0.0105659i \(-0.00336330\pi\)
\(450\) 0 0
\(451\) 33.6808i 0.00351655i
\(452\) 0 0
\(453\) 5906.25 + 5906.25i 0.612583 + 0.612583i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −767.997 + 767.997i −0.0786114 + 0.0786114i −0.745319 0.666708i \(-0.767703\pi\)
0.666708 + 0.745319i \(0.267703\pi\)
\(458\) 0 0
\(459\) −39507.5 −4.01754
\(460\) 0 0
\(461\) −10233.1 −1.03385 −0.516925 0.856030i \(-0.672924\pi\)
−0.516925 + 0.856030i \(0.672924\pi\)
\(462\) 0 0
\(463\) −1507.13 + 1507.13i −0.151279 + 0.151279i −0.778689 0.627410i \(-0.784115\pi\)
0.627410 + 0.778689i \(0.284115\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7687.25 + 7687.25i 0.761721 + 0.761721i 0.976633 0.214912i \(-0.0689466\pi\)
−0.214912 + 0.976633i \(0.568947\pi\)
\(468\) 0 0
\(469\) 2364.79i 0.232827i
\(470\) 0 0
\(471\) 8488.96i 0.830469i
\(472\) 0 0
\(473\) −89.6183 89.6183i −0.00871174 0.00871174i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 19625.1 19625.1i 1.88380 1.88380i
\(478\) 0 0
\(479\) −17640.5 −1.68270 −0.841352 0.540487i \(-0.818240\pi\)
−0.841352 + 0.540487i \(0.818240\pi\)
\(480\) 0 0
\(481\) −12627.5 −1.19701
\(482\) 0 0
\(483\) 22744.6 22744.6i 2.14268 2.14268i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −10374.7 10374.7i −0.965349 0.965349i 0.0340709 0.999419i \(-0.489153\pi\)
−0.999419 + 0.0340709i \(0.989153\pi\)
\(488\) 0 0
\(489\) 20878.3i 1.93077i
\(490\) 0 0
\(491\) 11766.0i 1.08145i 0.841200 + 0.540724i \(0.181850\pi\)
−0.841200 + 0.540724i \(0.818150\pi\)
\(492\) 0 0
\(493\) −15262.2 15262.2i −1.39427 1.39427i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 814.563 814.563i 0.0735174 0.0735174i
\(498\) 0 0
\(499\) 7654.08 0.686661 0.343331 0.939215i \(-0.388445\pi\)
0.343331 + 0.939215i \(0.388445\pi\)
\(500\) 0 0
\(501\) 28365.3 2.52948
\(502\) 0 0
\(503\) −8907.38 + 8907.38i −0.789584 + 0.789584i −0.981426 0.191842i \(-0.938554\pi\)
0.191842 + 0.981426i \(0.438554\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −438.298 438.298i −0.0383935 0.0383935i
\(508\) 0 0
\(509\) 12672.2i 1.10351i −0.834007 0.551754i \(-0.813959\pi\)
0.834007 0.551754i \(-0.186041\pi\)
\(510\) 0 0
\(511\) 4937.47i 0.427438i
\(512\) 0 0
\(513\) 28566.4 + 28566.4i 2.45855 + 2.45855i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −206.986 + 206.986i −0.0176078 + 0.0176078i
\(518\) 0 0
\(519\) 11352.5 0.960150
\(520\) 0 0
\(521\) −13205.5 −1.11045 −0.555225 0.831701i \(-0.687368\pi\)
−0.555225 + 0.831701i \(0.687368\pi\)
\(522\) 0 0
\(523\) 11937.7 11937.7i 0.998088 0.998088i −0.00191034 0.999998i \(-0.500608\pi\)
0.999998 + 0.00191034i \(0.000608082\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5473.78 5473.78i −0.452451 0.452451i
\(528\) 0 0
\(529\) 7418.26i 0.609703i
\(530\) 0 0
\(531\) 8503.27i 0.694935i
\(532\) 0 0
\(533\) 939.636 + 939.636i 0.0763606 + 0.0763606i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 14986.8 14986.8i 1.20433 1.20433i
\(538\) 0 0
\(539\) 309.532 0.0247356
\(540\) 0 0
\(541\) 12291.6 0.976814 0.488407 0.872616i \(-0.337578\pi\)
0.488407 + 0.872616i \(0.337578\pi\)
\(542\) 0 0
\(543\) 20803.4 20803.4i 1.64412 1.64412i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4788.11 + 4788.11i 0.374268 + 0.374268i 0.869029 0.494761i \(-0.164744\pi\)
−0.494761 + 0.869029i \(0.664744\pi\)
\(548\) 0 0
\(549\) 22139.5i 1.72111i
\(550\) 0 0
\(551\) 22071.1i 1.70646i
\(552\) 0 0
\(553\) −17999.4 17999.4i −1.38411 1.38411i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3849.08 3849.08i 0.292802 0.292802i −0.545384 0.838186i \(-0.683616\pi\)
0.838186 + 0.545384i \(0.183616\pi\)
\(558\) 0 0
\(559\) 5000.40 0.378344
\(560\) 0 0
\(561\) −1402.84 −0.105576
\(562\) 0 0
\(563\) −8314.72 + 8314.72i −0.622422 + 0.622422i −0.946150 0.323728i \(-0.895064\pi\)
0.323728 + 0.946150i \(0.395064\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 21719.0 + 21719.0i 1.60867 + 1.60867i
\(568\) 0 0
\(569\) 22679.9i 1.67099i 0.549499 + 0.835495i \(0.314819\pi\)
−0.549499 + 0.835495i \(0.685181\pi\)
\(570\) 0 0
\(571\) 4725.35i 0.346322i 0.984894 + 0.173161i \(0.0553980\pi\)
−0.984894 + 0.173161i \(0.944602\pi\)
\(572\) 0 0
\(573\) −34126.5 34126.5i −2.48806 2.48806i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 15787.1 15787.1i 1.13904 1.13904i 0.150413 0.988623i \(-0.451940\pi\)
0.988623 0.150413i \(-0.0480603\pi\)
\(578\) 0 0
\(579\) −16740.0 −1.20154
\(580\) 0 0
\(581\) −17374.4 −1.24064
\(582\) 0 0
\(583\) 382.994 382.994i 0.0272075 0.0272075i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11559.0 + 11559.0i 0.812760 + 0.812760i 0.985047 0.172287i \(-0.0551156\pi\)
−0.172287 + 0.985047i \(0.555116\pi\)
\(588\) 0 0
\(589\) 7915.78i 0.553759i
\(590\) 0 0
\(591\) 16379.5i 1.14004i
\(592\) 0 0
\(593\) 8435.85 + 8435.85i 0.584180 + 0.584180i 0.936049 0.351869i \(-0.114454\pi\)
−0.351869 + 0.936049i \(0.614454\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −18539.6 + 18539.6i −1.27098 + 1.27098i
\(598\) 0 0
\(599\) −17552.9 −1.19732 −0.598659 0.801004i \(-0.704299\pi\)
−0.598659 + 0.801004i \(0.704299\pi\)
\(600\) 0 0
\(601\) −592.834 −0.0402366 −0.0201183 0.999798i \(-0.506404\pi\)
−0.0201183 + 0.999798i \(0.506404\pi\)
\(602\) 0 0
\(603\) 4066.74 4066.74i 0.274644 0.274644i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4939.94 + 4939.94i 0.330323 + 0.330323i 0.852709 0.522386i \(-0.174958\pi\)
−0.522386 + 0.852709i \(0.674958\pi\)
\(608\) 0 0
\(609\) 38577.1i 2.56687i
\(610\) 0 0
\(611\) 11549.1i 0.764693i
\(612\) 0 0
\(613\) 20209.0 + 20209.0i 1.33154 + 1.33154i 0.903996 + 0.427541i \(0.140620\pi\)
0.427541 + 0.903996i \(0.359380\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1312.19 + 1312.19i −0.0856186 + 0.0856186i −0.748619 0.663000i \(-0.769283\pi\)
0.663000 + 0.748619i \(0.269283\pi\)
\(618\) 0 0
\(619\) 18868.7 1.22520 0.612599 0.790394i \(-0.290124\pi\)
0.612599 + 0.790394i \(0.290124\pi\)
\(620\) 0 0
\(621\) 42994.5 2.77828
\(622\) 0 0
\(623\) −26736.9 + 26736.9i −1.71941 + 1.71941i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1014.35 + 1014.35i 0.0646078 + 0.0646078i
\(628\) 0 0
\(629\) 35180.7i 2.23012i
\(630\) 0 0
\(631\) 11365.7i 0.717057i −0.933519 0.358529i \(-0.883279\pi\)
0.933519 0.358529i \(-0.116721\pi\)
\(632\) 0 0
\(633\) 2602.11 + 2602.11i 0.163388 + 0.163388i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −8635.41 + 8635.41i −0.537123 + 0.537123i
\(638\) 0 0
\(639\) 2801.61 0.173443
\(640\) 0 0
\(641\) 19324.2 1.19073 0.595366 0.803454i \(-0.297007\pi\)
0.595366 + 0.803454i \(0.297007\pi\)
\(642\) 0 0
\(643\) −10220.8 + 10220.8i −0.626858 + 0.626858i −0.947276 0.320418i \(-0.896177\pi\)
0.320418 + 0.947276i \(0.396177\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12395.5 + 12395.5i 0.753196 + 0.753196i 0.975074 0.221879i \(-0.0712189\pi\)
−0.221879 + 0.975074i \(0.571219\pi\)
\(648\) 0 0
\(649\) 165.946i 0.0100369i
\(650\) 0 0
\(651\) 13835.7i 0.832969i
\(652\) 0 0
\(653\) −6708.87 6708.87i −0.402050 0.402050i 0.476905 0.878955i \(-0.341759\pi\)
−0.878955 + 0.476905i \(0.841759\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −8490.98 + 8490.98i −0.504208 + 0.504208i
\(658\) 0 0
\(659\) 15423.1 0.911682 0.455841 0.890061i \(-0.349339\pi\)
0.455841 + 0.890061i \(0.349339\pi\)
\(660\) 0 0
\(661\) −26793.1 −1.57660 −0.788299 0.615293i \(-0.789038\pi\)
−0.788299 + 0.615293i \(0.789038\pi\)
\(662\) 0 0
\(663\) 39137.0 39137.0i 2.29254 2.29254i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16609.3 + 16609.3i 0.964188 + 0.964188i
\(668\) 0 0
\(669\) 36287.6i 2.09710i
\(670\) 0 0
\(671\) 432.064i 0.0248579i
\(672\) 0 0
\(673\) −15270.8 15270.8i −0.874662 0.874662i 0.118314 0.992976i \(-0.462251\pi\)
−0.992976 + 0.118314i \(0.962251\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9246.91 + 9246.91i −0.524945 + 0.524945i −0.919061 0.394116i \(-0.871051\pi\)
0.394116 + 0.919061i \(0.371051\pi\)
\(678\) 0 0
\(679\) −41.9341 −0.00237008
\(680\) 0 0
\(681\) 39765.3 2.23761
\(682\) 0 0
\(683\) −6073.88 + 6073.88i −0.340279 + 0.340279i −0.856472 0.516193i \(-0.827349\pi\)
0.516193 + 0.856472i \(0.327349\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11215.1 11215.1i −0.622828 0.622828i
\(688\) 0 0
\(689\) 21369.8i 1.18160i
\(690\) 0 0
\(691\) 7454.55i 0.410397i 0.978720 + 0.205198i \(0.0657840\pi\)
−0.978720 + 0.205198i \(0.934216\pi\)
\(692\) 0 0
\(693\) 1222.38 + 1222.38i 0.0670049 + 0.0670049i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2617.87 2617.87i 0.142265 0.142265i
\(698\) 0 0
\(699\) 45682.4 2.47191
\(700\) 0 0
\(701\) 15565.3 0.838651 0.419325 0.907836i \(-0.362267\pi\)
0.419325 + 0.907836i \(0.362267\pi\)
\(702\) 0 0
\(703\) 25437.9 25437.9i 1.36473 1.36473i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8258.85 + 8258.85i 0.439330 + 0.439330i
\(708\) 0 0
\(709\) 25227.6i 1.33631i −0.744024 0.668153i \(-0.767085\pi\)
0.744024 0.668153i \(-0.232915\pi\)
\(710\) 0 0
\(711\) 61907.4i 3.26541i
\(712\) 0 0
\(713\) 5956.90 + 5956.90i 0.312886 + 0.312886i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −16403.8 + 16403.8i −0.854410 + 0.854410i
\(718\) 0 0
\(719\) −35468.2 −1.83970 −0.919848 0.392275i \(-0.871688\pi\)
−0.919848 + 0.392275i \(0.871688\pi\)
\(720\) 0 0
\(721\) −3633.37 −0.187675
\(722\) 0 0
\(723\) −8042.62 + 8042.62i −0.413705 + 0.413705i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −24949.4 24949.4i −1.27280 1.27280i −0.944615 0.328182i \(-0.893564\pi\)
−0.328182 0.944615i \(-0.606436\pi\)
\(728\) 0 0
\(729\) 2645.78i 0.134420i
\(730\) 0 0
\(731\) 13931.3i 0.704882i
\(732\) 0 0
\(733\) −6598.27 6598.27i −0.332486 0.332486i 0.521044 0.853530i \(-0.325543\pi\)
−0.853530 + 0.521044i \(0.825543\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 79.3645 79.3645i 0.00396666 0.00396666i
\(738\) 0 0
\(739\) −978.265 −0.0486956 −0.0243478 0.999704i \(-0.507751\pi\)
−0.0243478 + 0.999704i \(0.507751\pi\)
\(740\) 0 0
\(741\) −56597.1 −2.80586
\(742\) 0 0
\(743\) −5941.82 + 5941.82i −0.293384 + 0.293384i −0.838415 0.545032i \(-0.816518\pi\)
0.545032 + 0.838415i \(0.316518\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −29878.8 29878.8i −1.46346 1.46346i
\(748\) 0 0
\(749\) 5950.16i 0.290272i
\(750\) 0 0
\(751\) 21538.9i 1.04656i 0.852162 + 0.523278i \(0.175291\pi\)
−0.852162 + 0.523278i \(0.824709\pi\)
\(752\) 0 0
\(753\) 38815.9 + 38815.9i 1.87853 + 1.87853i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −4265.56 + 4265.56i −0.204801 + 0.204801i −0.802053 0.597252i \(-0.796259\pi\)
0.597252 + 0.802053i \(0.296259\pi\)
\(758\) 0 0
\(759\) 1526.66 0.0730097
\(760\) 0 0
\(761\) −6743.11 −0.321206 −0.160603 0.987019i \(-0.551344\pi\)
−0.160603 + 0.987019i \(0.551344\pi\)
\(762\) 0 0
\(763\) −27675.4 + 27675.4i −1.31313 + 1.31313i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4629.61 4629.61i −0.217947 0.217947i
\(768\) 0 0
\(769\) 12774.9i 0.599059i 0.954087 + 0.299530i \(0.0968297\pi\)
−0.954087 + 0.299530i \(0.903170\pi\)
\(770\) 0 0
\(771\) 55277.6i 2.58207i
\(772\) 0 0
\(773\) −18865.0 18865.0i −0.877785 0.877785i 0.115520 0.993305i \(-0.463147\pi\)
−0.993305 + 0.115520i \(0.963147\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 44461.8 44461.8i 2.05284 2.05284i
\(778\) 0 0
\(779\) −3785.77 −0.174120
\(780\) 0 0
\(781\) 54.6750 0.00250502
\(782\) 0 0
\(783\) −36461.5 + 36461.5i −1.66415 + 1.66415i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −24315.1 24315.1i −1.10132 1.10132i −0.994252 0.107068i \(-0.965854\pi\)
−0.107068 0.994252i \(-0.534146\pi\)
\(788\) 0 0
\(789\) 39157.7i 1.76686i
\(790\) 0 0
\(791\) 29430.8i 1.32293i
\(792\) 0 0
\(793\) 12053.8 + 12053.8i 0.539779 + 0.539779i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19005.7 19005.7i 0.844689 0.844689i −0.144776 0.989464i \(-0.546246\pi\)
0.989464 + 0.144776i \(0.0462461\pi\)
\(798\) 0 0
\(799\) −32176.4 −1.42468
\(800\) 0 0
\(801\) −91959.2 −4.05645
\(802\) 0 0
\(803\) −165.706 + 165.706i −0.00728224 + 0.00728224i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 14373.8 + 14373.8i 0.626989 + 0.626989i
\(808\) 0 0
\(809\) 13371.3i 0.581102i −0.956860 0.290551i \(-0.906161\pi\)
0.956860 0.290551i \(-0.0938386\pi\)
\(810\) 0 0
\(811\) 6759.66i 0.292680i 0.989234 + 0.146340i \(0.0467494\pi\)
−0.989234 + 0.146340i \(0.953251\pi\)
\(812\) 0 0
\(813\) −15668.3 15668.3i −0.675906 0.675906i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −10073.2 + 10073.2i −0.431356 + 0.431356i
\(818\) 0 0
\(819\) −68204.7 −2.90997
\(820\) 0 0
\(821\) 18576.0 0.789655 0.394827 0.918755i \(-0.370804\pi\)
0.394827 + 0.918755i \(0.370804\pi\)
\(822\) 0 0
\(823\) 15133.5 15133.5i 0.640974 0.640974i −0.309821 0.950795i \(-0.600269\pi\)
0.950795 + 0.309821i \(0.100269\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5338.40 + 5338.40i 0.224467 + 0.224467i 0.810377 0.585909i \(-0.199263\pi\)
−0.585909 + 0.810377i \(0.699263\pi\)
\(828\) 0 0
\(829\) 19209.5i 0.804794i −0.915465 0.402397i \(-0.868177\pi\)
0.915465 0.402397i \(-0.131823\pi\)
\(830\) 0 0
\(831\) 63900.0i 2.66747i
\(832\) 0 0
\(833\) 24058.6 + 24058.6i 1.00070 + 1.00070i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −13076.9 + 13076.9i −0.540028 + 0.540028i
\(838\) 0 0
\(839\) 39469.1 1.62411 0.812053 0.583584i \(-0.198350\pi\)
0.812053 + 0.583584i \(0.198350\pi\)
\(840\) 0 0
\(841\) −3781.94 −0.155067
\(842\) 0 0
\(843\) −32298.2 + 32298.2i −1.31958 + 1.31958i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −23174.9 23174.9i −0.940140 0.940140i
\(848\) 0 0
\(849\) 23615.6i 0.954634i
\(850\) 0 0
\(851\) 38285.8i 1.54221i
\(852\) 0 0
\(853\) −380.996 380.996i −0.0152932 0.0152932i 0.699419 0.714712i \(-0.253442\pi\)
−0.714712 + 0.699419i \(0.753442\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6593.35 + 6593.35i −0.262806 + 0.262806i −0.826193 0.563387i \(-0.809498\pi\)
0.563387 + 0.826193i \(0.309498\pi\)
\(858\) 0 0
\(859\) 46458.5 1.84534 0.922669 0.385593i \(-0.126003\pi\)
0.922669 + 0.385593i \(0.126003\pi\)
\(860\) 0 0
\(861\) −6617.00 −0.261912
\(862\) 0 0
\(863\) 28617.9 28617.9i 1.12881 1.12881i 0.138442 0.990371i \(-0.455790\pi\)
0.990371 0.138442i \(-0.0442095\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −76643.7 76643.7i −3.00226 3.00226i
\(868\) 0 0
\(869\) 1208.16i 0.0471621i
\(870\) 0 0
\(871\) 4428.27i 0.172269i
\(872\) 0 0
\(873\) −72.1142 72.1142i −0.00279576 0.00279576i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 15237.5 15237.5i 0.586697 0.586697i −0.350038 0.936735i \(-0.613831\pi\)
0.936735 + 0.350038i \(0.113831\pi\)
\(878\) 0 0
\(879\) 45577.3 1.74890
\(880\) 0 0
\(881\) −48427.8 −1.85196 −0.925978 0.377577i \(-0.876757\pi\)
−0.925978 + 0.377577i \(0.876757\pi\)
\(882\) 0 0
\(883\) 30054.7 30054.7i 1.14544 1.14544i 0.157998 0.987439i \(-0.449496\pi\)
0.987439 0.157998i \(-0.0505039\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9648.05 + 9648.05i 0.365220 + 0.365220i 0.865730 0.500511i \(-0.166854\pi\)
−0.500511 + 0.865730i \(0.666854\pi\)
\(888\) 0 0
\(889\) 10820.1i 0.408205i
\(890\) 0 0
\(891\) 1457.82i 0.0548136i
\(892\) 0 0
\(893\) 23265.6 + 23265.6i 0.871839 + 0.871839i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −42591.3 + 42591.3i −1.58538 + 1.58538i
\(898\) 0 0
\(899\) −10103.5 −0.374828
\(900\) 0 0
\(901\) 59537.1 2.20141
\(902\) 0 0
\(903\) −17606.6 + 17606.6i −0.648849 + 0.648849i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 15205.8 + 15205.8i 0.556672 + 0.556672i 0.928358 0.371686i \(-0.121220\pi\)
−0.371686 + 0.928358i \(0.621220\pi\)
\(908\) 0 0
\(909\) 28405.6i 1.03647i
\(910\) 0 0
\(911\) 47786.3i 1.73790i 0.494897 + 0.868951i \(0.335206\pi\)
−0.494897 + 0.868951i \(0.664794\pi\)
\(912\) 0 0
\(913\) −583.100 583.100i −0.0211367 0.0211367i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15893.1 + 15893.1i −0.572341 + 0.572341i
\(918\) 0 0
\(919\) −34276.9 −1.23035 −0.615174 0.788391i \(-0.710914\pi\)
−0.615174 + 0.788391i \(0.710914\pi\)
\(920\) 0 0
\(921\) 49524.2 1.77185
\(922\) 0 0
\(923\) −1525.34 + 1525.34i −0.0543956 + 0.0543956i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6248.31 6248.31i −0.221382 0.221382i
\(928\) 0 0
\(929\) 30514.6i 1.07767i −0.842412 0.538833i \(-0.818865\pi\)
0.842412 0.538833i \(-0.181135\pi\)
\(930\) 0 0
\(931\) 34791.8i 1.22477i
\(932\) 0 0
\(933\) −18897.6 18897.6i −0.663109 0.663109i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6725.38 + 6725.38i −0.234481 + 0.234481i −0.814560 0.580079i \(-0.803022\pi\)
0.580079 + 0.814560i \(0.303022\pi\)
\(938\) 0 0
\(939\) 40493.8 1.40731
\(940\) 0 0
\(941\) 32999.8 1.14321 0.571607 0.820528i \(-0.306320\pi\)
0.571607 + 0.820528i \(0.306320\pi\)
\(942\) 0 0
\(943\) −2848.93 + 2848.93i −0.0983815 + 0.0983815i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15569.2 + 15569.2i 0.534245 + 0.534245i 0.921833 0.387588i \(-0.126692\pi\)
−0.387588 + 0.921833i \(0.626692\pi\)
\(948\) 0 0
\(949\) 9245.84i 0.316262i
\(950\) 0 0
\(951\) 44245.8i 1.50870i
\(952\) 0 0
\(953\) 1494.47 + 1494.47i 0.0507980 + 0.0507980i 0.732049 0.681251i \(-0.238564\pi\)
−0.681251 + 0.732049i \(0.738564\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1294.69 + 1294.69i −0.0437317 + 0.0437317i
\(958\) 0 0
\(959\) −38384.4 −1.29249
\(960\) 0 0
\(961\) 26167.4 0.878365
\(962\) 0 0
\(963\) −10232.5 + 10232.5i −0.342407 + 0.342407i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 35907.1 + 35907.1i 1.19410 + 1.19410i 0.975905 + 0.218196i \(0.0700172\pi\)
0.218196 + 0.975905i \(0.429983\pi\)
\(968\) 0 0
\(969\) 157682.i 5.22752i
\(970\) 0 0
\(971\) 8479.77i 0.280256i −0.990133 0.140128i \(-0.955249\pi\)
0.990133 0.140128i \(-0.0447514\pi\)
\(972\) 0 0
\(973\) 24064.5 + 24064.5i 0.792880 + 0.792880i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −39251.4 + 39251.4i −1.28533 + 1.28533i −0.347734 + 0.937593i \(0.613049\pi\)
−0.937593 + 0.347734i \(0.886951\pi\)
\(978\) 0 0
\(979\) −1794.63 −0.0585870
\(980\) 0 0
\(981\) −95186.8 −3.09794
\(982\) 0 0
\(983\) −39743.4 + 39743.4i −1.28954 + 1.28954i −0.354476 + 0.935065i \(0.615341\pi\)
−0.935065 + 0.354476i \(0.884659\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 40664.9 + 40664.9i 1.31143 + 1.31143i
\(988\) 0 0
\(989\) 15160.9i 0.487451i
\(990\) 0 0
\(991\) 42627.2i 1.36639i −0.730234 0.683197i \(-0.760589\pi\)
0.730234 0.683197i \(-0.239411\pi\)
\(992\) 0 0
\(993\) −52153.8 52153.8i −1.66672 1.66672i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −28755.5 + 28755.5i −0.913435 + 0.913435i −0.996541 0.0831060i \(-0.973516\pi\)
0.0831060 + 0.996541i \(0.473516\pi\)
\(998\) 0 0
\(999\) 84046.8 2.66179
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.4.n.g.143.7 yes 16
4.3 odd 2 inner 400.4.n.g.143.2 yes 16
5.2 odd 4 inner 400.4.n.g.207.1 yes 16
5.3 odd 4 inner 400.4.n.g.207.7 yes 16
5.4 even 2 inner 400.4.n.g.143.1 16
20.3 even 4 inner 400.4.n.g.207.2 yes 16
20.7 even 4 inner 400.4.n.g.207.8 yes 16
20.19 odd 2 inner 400.4.n.g.143.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.4.n.g.143.1 16 5.4 even 2 inner
400.4.n.g.143.2 yes 16 4.3 odd 2 inner
400.4.n.g.143.7 yes 16 1.1 even 1 trivial
400.4.n.g.143.8 yes 16 20.19 odd 2 inner
400.4.n.g.207.1 yes 16 5.2 odd 4 inner
400.4.n.g.207.2 yes 16 20.3 even 4 inner
400.4.n.g.207.7 yes 16 5.3 odd 4 inner
400.4.n.g.207.8 yes 16 20.7 even 4 inner