Properties

Label 4000.1.h.a
Level $4000$
Weight $1$
Character orbit 4000.h
Analytic conductor $1.996$
Analytic rank $0$
Dimension $4$
Projective image $A_{5}$
CM/RM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,1,Mod(3999,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.3999");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 4000.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.99626005053\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{5}\)
Projective field: Galois closure of 5.1.1000000.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{3} + q^{7} + (\beta_{2} + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{2} - 1) q^{3} + q^{7} + (\beta_{2} + 1) q^{9} + \beta_{3} q^{11} + ( - \beta_{3} - \beta_1) q^{13} + \beta_{3} q^{17} + (\beta_{3} + \beta_1) q^{19} + ( - \beta_{2} - 1) q^{21} - q^{27} + q^{29} - \beta_1 q^{31} + ( - \beta_{3} - \beta_1) q^{33} + (2 \beta_{3} + \beta_1) q^{39} + q^{41} - q^{43} - \beta_{2} q^{47} + ( - \beta_{3} - \beta_1) q^{51} + \beta_1 q^{53} + ( - 2 \beta_{3} - \beta_1) q^{57} - \beta_1 q^{59} + ( - \beta_{2} - 1) q^{61} + (\beta_{2} + 1) q^{63} + \beta_{2} q^{67} + \beta_{3} q^{71} + \beta_1 q^{73} + \beta_{3} q^{77} - \beta_{3} q^{79} + ( - \beta_{2} - 1) q^{87} + ( - \beta_{3} - \beta_1) q^{91} + \beta_{3} q^{93} + \beta_1 q^{97} + (\beta_{3} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 4 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{3} + 4 q^{7} + 2 q^{9} - 2 q^{21} - 4 q^{27} + 4 q^{29} + 4 q^{41} - 4 q^{43} + 2 q^{47} - 2 q^{61} + 2 q^{63} - 2 q^{67} - 2 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3999.1
0.618034i
0.618034i
1.61803i
1.61803i
0 −1.61803 0 0 0 1.00000 0 1.61803 0
3999.2 0 −1.61803 0 0 0 1.00000 0 1.61803 0
3999.3 0 0.618034 0 0 0 1.00000 0 −0.618034 0
3999.4 0 0.618034 0 0 0 1.00000 0 −0.618034 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4000.1.h.a 4
4.b odd 2 1 4000.1.h.b 4
5.b even 2 1 4000.1.h.b 4
5.c odd 4 1 4000.1.b.a 4
5.c odd 4 1 4000.1.b.b yes 4
20.d odd 2 1 inner 4000.1.h.a 4
20.e even 4 1 4000.1.b.a 4
20.e even 4 1 4000.1.b.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.1.b.a 4 5.c odd 4 1
4000.1.b.a 4 20.e even 4 1
4000.1.b.b yes 4 5.c odd 4 1
4000.1.b.b yes 4 20.e even 4 1
4000.1.h.a 4 1.a even 1 1 trivial
4000.1.h.a 4 20.d odd 2 1 inner
4000.1.h.b 4 4.b odd 2 1
4000.1.h.b 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + T_{3} - 1 \) acting on \(S_{1}^{\mathrm{new}}(4000, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$17$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T - 1)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T - 1)^{4} \) Copy content Toggle raw display
$43$ \( (T + 1)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$59$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$61$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$79$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
show more
show less