Properties

Label 4000.2.f.d
Level $4000$
Weight $2$
Character orbit 4000.f
Analytic conductor $31.940$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(3249,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.3249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{19} + 6 x^{18} - 5 x^{17} - 3 x^{16} + 20 x^{15} - 28 x^{14} + 24 x^{13} + 16 x^{12} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 1000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{9} q^{3} + \beta_{5} q^{7} + (\beta_{10} - \beta_{7} + \beta_1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{9} q^{3} + \beta_{5} q^{7} + (\beta_{10} - \beta_{7} + \beta_1) q^{9} + \beta_{6} q^{11} + ( - \beta_{18} + \beta_{16} + \beta_{13} + \cdots - 1) q^{13}+ \cdots + (\beta_{17} - 2 \beta_{15} + \cdots - 3 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q + 4 q^{3} + 12 q^{9} - 6 q^{13} - 8 q^{27} - 24 q^{31} - 18 q^{37} + 4 q^{39} + 22 q^{41} - 60 q^{43} - 6 q^{49} - 10 q^{53} - 40 q^{67} - 48 q^{71} - 24 q^{77} + 48 q^{79} - 28 q^{81} + 40 q^{83} + 22 q^{89} - 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 3 x^{19} + 6 x^{18} - 5 x^{17} - 3 x^{16} + 20 x^{15} - 28 x^{14} + 24 x^{13} + 16 x^{12} + \cdots + 1024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{19} + 11 \nu^{18} - 32 \nu^{17} + 43 \nu^{16} + 23 \nu^{15} - 90 \nu^{14} + 200 \nu^{13} + \cdots + 10752 ) / 3072 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{19} - 11 \nu^{18} + 6 \nu^{17} - 5 \nu^{16} - 19 \nu^{15} + 20 \nu^{14} - 44 \nu^{13} + \cdots - 2048 ) / 1536 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 5 \nu^{19} + 7 \nu^{18} - 30 \nu^{17} + 25 \nu^{16} - \nu^{15} - 100 \nu^{14} + 124 \nu^{13} + \cdots + 7168 ) / 1536 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 17 \nu^{19} - 61 \nu^{18} + 80 \nu^{17} + 3 \nu^{16} - 145 \nu^{15} + 278 \nu^{14} - 256 \nu^{13} + \cdots - 9728 ) / 3072 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 25 \nu^{19} + 53 \nu^{18} - 40 \nu^{17} - 3 \nu^{16} + 185 \nu^{15} - 238 \nu^{14} + 152 \nu^{13} + \cdots + 8704 ) / 3072 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 11 \nu^{19} + 11 \nu^{18} - 12 \nu^{17} - 17 \nu^{16} + 47 \nu^{15} - 62 \nu^{14} - 24 \nu^{13} + \cdots + 2560 ) / 1024 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 25 \nu^{19} + 41 \nu^{18} - 132 \nu^{17} + 69 \nu^{16} + 101 \nu^{15} - 394 \nu^{14} + \cdots + 32256 ) / 3072 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 9 \nu^{19} - 18 \nu^{18} + 25 \nu^{17} + 11 \nu^{16} - 52 \nu^{15} + 119 \nu^{14} - 30 \nu^{13} + \cdots + 1024 ) / 768 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 21 \nu^{19} + 23 \nu^{18} - 46 \nu^{17} - 31 \nu^{16} + 95 \nu^{15} - 188 \nu^{14} + 52 \nu^{13} + \cdots + 3072 ) / 1536 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 17 \nu^{19} + 39 \nu^{18} - 70 \nu^{17} + 17 \nu^{16} + 111 \nu^{15} - 268 \nu^{14} + 256 \nu^{13} + \cdots + 10752 ) / 1536 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 19 \nu^{19} - 33 \nu^{18} + 86 \nu^{17} - 43 \nu^{16} - 57 \nu^{15} + 272 \nu^{14} - 368 \nu^{13} + \cdots - 19968 ) / 1536 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 41 \nu^{19} - 61 \nu^{18} + 168 \nu^{17} - 21 \nu^{16} - 193 \nu^{15} + 590 \nu^{14} - 528 \nu^{13} + \cdots - 26112 ) / 3072 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 7 \nu^{19} - 25 \nu^{18} + 58 \nu^{17} - 35 \nu^{16} - 49 \nu^{15} + 192 \nu^{14} - 220 \nu^{13} + \cdots - 8448 ) / 768 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 15 \nu^{19} - 39 \nu^{18} + 60 \nu^{17} + 5 \nu^{16} - 107 \nu^{15} + 262 \nu^{14} - 176 \nu^{13} + \cdots - 4608 ) / 1024 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 51 \nu^{19} - 123 \nu^{18} + 212 \nu^{17} - 23 \nu^{16} - 335 \nu^{15} + 886 \nu^{14} - 696 \nu^{13} + \cdots - 24064 ) / 3072 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 25 \nu^{19} - 73 \nu^{18} + 100 \nu^{17} - 29 \nu^{16} - 181 \nu^{15} + 450 \nu^{14} - 400 \nu^{13} + \cdots - 13824 ) / 1536 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 65 \nu^{19} - 121 \nu^{18} + 148 \nu^{17} + 187 \nu^{16} - 405 \nu^{15} + 762 \nu^{14} + 32 \nu^{13} + \cdots + 13824 ) / 3072 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 51 \nu^{19} - 91 \nu^{18} + 164 \nu^{17} - 7 \nu^{16} - 271 \nu^{15} + 646 \nu^{14} - 488 \nu^{13} + \cdots - 21504 ) / 1536 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 103 \nu^{19} - 311 \nu^{18} + 444 \nu^{17} - 203 \nu^{16} - 811 \nu^{15} + 1814 \nu^{14} + \cdots - 77312 ) / 3072 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{11} - \beta_{7} - \beta_{3} + \beta_{2} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{18} - \beta_{16} + \beta_{15} - \beta_{12} + \beta_{11} - 3\beta_{10} - \beta_{9} + \beta_{7} - \beta_{4} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - \beta_{18} + \beta_{16} + \beta_{15} - 2 \beta_{14} - \beta_{12} + \beta_{10} - \beta_{9} + 2 \beta_{8} + \cdots - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2 \beta_{18} + 2 \beta_{17} - 2 \beta_{14} + \beta_{11} + 4 \beta_{9} - 2 \beta_{8} + \beta_{7} + \cdots + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 2 \beta_{19} + 3 \beta_{18} - 2 \beta_{17} + \beta_{16} + 3 \beta_{15} - 2 \beta_{14} - 2 \beta_{13} + \cdots + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 3 \beta_{18} - 3 \beta_{16} + \beta_{15} + 2 \beta_{14} - 5 \beta_{12} + 2 \beta_{11} + \beta_{10} + \cdots - 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 4 \beta_{19} + 2 \beta_{17} - 2 \beta_{16} - 6 \beta_{15} - 2 \beta_{14} - 4 \beta_{13} + 6 \beta_{12} + \cdots - 10 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 2 \beta_{19} + 3 \beta_{18} + 2 \beta_{17} + \beta_{16} - \beta_{15} - 2 \beta_{14} + 6 \beta_{13} + \cdots - 26 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 11 \beta_{18} + 19 \beta_{16} - 9 \beta_{15} - 2 \beta_{14} + 8 \beta_{13} + 9 \beta_{12} - 4 \beta_{11} + \cdots + 18 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 6 \beta_{18} - 10 \beta_{17} + 4 \beta_{16} - 4 \beta_{15} + 10 \beta_{14} + 8 \beta_{13} + 4 \beta_{12} + \cdots - 26 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 18 \beta_{19} - 5 \beta_{18} - 14 \beta_{17} - 19 \beta_{16} + 7 \beta_{15} + 18 \beta_{14} - 6 \beta_{13} + \cdots - 18 ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 21 \beta_{18} - 3 \beta_{16} + 17 \beta_{15} + 2 \beta_{14} + 8 \beta_{13} + 19 \beta_{12} + \cdots + 42 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 12 \beta_{19} - 16 \beta_{18} + 42 \beta_{17} + 6 \beta_{16} - 46 \beta_{15} - 10 \beta_{14} + 52 \beta_{13} + \cdots - 34 ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 50 \beta_{19} - 41 \beta_{18} - 30 \beta_{17} + 69 \beta_{16} + 43 \beta_{15} + 46 \beta_{14} + \cdots + 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 16 \beta_{19} + 49 \beta_{18} - 48 \beta_{17} + 7 \beta_{16} + 43 \beta_{15} + 70 \beta_{14} + \cdots - 86 ) / 4 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( - 16 \beta_{19} + 90 \beta_{18} + 94 \beta_{17} - 68 \beta_{16} + 4 \beta_{15} + 66 \beta_{14} + \cdots + 126 ) / 4 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( - 118 \beta_{19} + 223 \beta_{18} + 26 \beta_{17} - 311 \beta_{16} + 43 \beta_{15} - 54 \beta_{14} + \cdots + 102 ) / 4 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( - 64 \beta_{19} + 23 \beta_{18} + 128 \beta_{17} + 113 \beta_{16} - 235 \beta_{15} + 106 \beta_{14} + \cdots + 770 ) / 4 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( 44 \beta_{19} + 216 \beta_{18} - 110 \beta_{17} - 90 \beta_{16} - 430 \beta_{15} - 18 \beta_{14} + \cdots + 678 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3249.1
1.16607 + 0.800179i
1.16607 0.800179i
−0.689292 1.23486i
−0.689292 + 1.23486i
0.627237 + 1.26751i
0.627237 1.26751i
0.368522 1.36535i
0.368522 + 1.36535i
−1.29304 + 0.572751i
−1.29304 0.572751i
0.220862 1.39686i
0.220862 + 1.39686i
−1.39810 0.212863i
−1.39810 + 0.212863i
1.32522 0.493756i
1.32522 + 0.493756i
1.20549 0.739452i
1.20549 + 0.739452i
−0.0329621 + 1.41383i
−0.0329621 1.41383i
0 −2.62662 0 0 0 0.269237i 0 3.89913 0
3249.2 0 −2.62662 0 0 0 0.269237i 0 3.89913 0
3249.3 0 −2.52102 0 0 0 0.987050i 0 3.35556 0
3249.4 0 −2.52102 0 0 0 0.987050i 0 3.35556 0
3249.5 0 −1.69676 0 0 0 4.40040i 0 −0.120998 0
3249.6 0 −1.69676 0 0 0 4.40040i 0 −0.120998 0
3249.7 0 −0.513027 0 0 0 1.12889i 0 −2.73680 0
3249.8 0 −0.513027 0 0 0 1.12889i 0 −2.73680 0
3249.9 0 0.207209 0 0 0 2.73181i 0 −2.95706 0
3249.10 0 0.207209 0 0 0 2.73181i 0 −2.95706 0
3249.11 0 0.939252 0 0 0 1.90117i 0 −2.11781 0
3249.12 0 0.939252 0 0 0 1.90117i 0 −2.11781 0
3249.13 0 1.21236 0 0 0 4.63239i 0 −1.53019 0
3249.14 0 1.21236 0 0 0 4.63239i 0 −1.53019 0
3249.15 0 1.83526 0 0 0 1.31564i 0 0.368171 0
3249.16 0 1.83526 0 0 0 1.31564i 0 0.368171 0
3249.17 0 2.07677 0 0 0 2.55636i 0 1.31298 0
3249.18 0 2.07677 0 0 0 2.55636i 0 1.31298 0
3249.19 0 3.08659 0 0 0 3.24242i 0 6.52702 0
3249.20 0 3.08659 0 0 0 3.24242i 0 6.52702 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3249.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4000.2.f.d 20
4.b odd 2 1 1000.2.f.d 20
5.b even 2 1 4000.2.f.c 20
5.c odd 4 2 4000.2.d.c 40
8.b even 2 1 4000.2.f.c 20
8.d odd 2 1 1000.2.f.c 20
20.d odd 2 1 1000.2.f.c 20
20.e even 4 2 1000.2.d.c 40
40.e odd 2 1 1000.2.f.d 20
40.f even 2 1 inner 4000.2.f.d 20
40.i odd 4 2 4000.2.d.c 40
40.k even 4 2 1000.2.d.c 40
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1000.2.d.c 40 20.e even 4 2
1000.2.d.c 40 40.k even 4 2
1000.2.f.c 20 8.d odd 2 1
1000.2.f.c 20 20.d odd 2 1
1000.2.f.d 20 4.b odd 2 1
1000.2.f.d 20 40.e odd 2 1
4000.2.d.c 40 5.c odd 4 2
4000.2.d.c 40 40.i odd 4 2
4000.2.f.c 20 5.b even 2 1
4000.2.f.c 20 8.b even 2 1
4000.2.f.d 20 1.a even 1 1 trivial
4000.2.f.d 20 40.f even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{10} - 2T_{3}^{9} - 16T_{3}^{8} + 32T_{3}^{7} + 77T_{3}^{6} - 168T_{3}^{5} - 94T_{3}^{4} + 292T_{3}^{3} - 61T_{3}^{2} - 76T_{3} + 16 \) acting on \(S_{2}^{\mathrm{new}}(4000, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( (T^{10} - 2 T^{9} + \cdots + 16)^{2} \) Copy content Toggle raw display
$5$ \( T^{20} \) Copy content Toggle raw display
$7$ \( T^{20} + 73 T^{18} + \cdots + 119961 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 242921025 \) Copy content Toggle raw display
$13$ \( (T^{10} + 3 T^{9} + \cdots - 74475)^{2} \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 93273522176 \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 14131585001 \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 198733991936 \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 188118041760000 \) Copy content Toggle raw display
$31$ \( (T^{10} + 12 T^{9} + \cdots - 13424)^{2} \) Copy content Toggle raw display
$37$ \( (T^{10} + 9 T^{9} + \cdots - 97344)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} - 11 T^{9} + \cdots + 4900275)^{2} \) Copy content Toggle raw display
$43$ \( (T^{10} + 30 T^{9} + \cdots - 22343616)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 155998693721081 \) Copy content Toggle raw display
$53$ \( (T^{10} + 5 T^{9} + \cdots - 21379)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 58948955361 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 29661335302400 \) Copy content Toggle raw display
$67$ \( (T^{10} + 20 T^{9} + \cdots + 292107024)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} + 24 T^{9} + \cdots - 2766384)^{2} \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 12\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( (T^{10} - 24 T^{9} + \cdots - 2000)^{2} \) Copy content Toggle raw display
$83$ \( (T^{10} - 20 T^{9} + \cdots - 44548096)^{2} \) Copy content Toggle raw display
$89$ \( (T^{10} - 11 T^{9} + \cdots + 24825600)^{2} \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 20198622433536 \) Copy content Toggle raw display
show more
show less