Properties

Label 4140.2.t
Level $4140$
Weight $2$
Character orbit 4140.t
Rep. character $\chi_{4140}(1243,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $660$
Sturm bound $1728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.t (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Sturm bound: \(1728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4140, [\chi])\).

Total New Old
Modular forms 1760 660 1100
Cusp forms 1696 660 1036
Eisenstein series 64 0 64

Decomposition of \(S_{2}^{\mathrm{new}}(4140, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(4140, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4140, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1380, [\chi])\)\(^{\oplus 2}\)