Properties

Label 425.4.d.b
Level $425$
Weight $4$
Character orbit 425.d
Analytic conductor $25.076$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,4,Mod(101,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.101");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.0758117524\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-19}, \sqrt{-1131})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 575x^{2} + 77284 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_{2} q^{3} - 7 q^{4} + \beta_{2} q^{6} + ( - 4 \beta_{2} + \beta_1) q^{7} + 15 q^{8} + 8 q^{9} + ( - 3 \beta_{2} - \beta_1) q^{11} + 7 \beta_{2} q^{12} + (2 \beta_{3} + \beta_{2} - \beta_1 - 3) q^{13}+ \cdots + ( - 24 \beta_{2} - 8 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 28 q^{4} + 60 q^{8} + 32 q^{9} - 14 q^{13} + 164 q^{16} + 35 q^{17} - 32 q^{18} + 14 q^{19} - 266 q^{21} + 14 q^{26} - 644 q^{32} - 266 q^{33} - 35 q^{34} - 224 q^{36} - 14 q^{38} + 266 q^{42}+ \cdots + 690 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 575x^{2} + 77284 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} - 297\nu ) / 278 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 278\nu^{2} + 575\nu + 79786 ) / 556 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{3} + \beta_{2} - \beta _1 - 287 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -278\beta_{2} - 297\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
14.6357i
18.9946i
18.9946i
14.6357i
−1.00000 4.35890i −7.00000 0 4.35890i 32.0713i 15.0000 8.00000 0
101.2 −1.00000 4.35890i −7.00000 0 4.35890i 1.55903i 15.0000 8.00000 0
101.3 −1.00000 4.35890i −7.00000 0 4.35890i 1.55903i 15.0000 8.00000 0
101.4 −1.00000 4.35890i −7.00000 0 4.35890i 32.0713i 15.0000 8.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.4.d.b 4
5.b even 2 1 425.4.d.d yes 4
5.c odd 4 2 425.4.c.d 8
17.b even 2 1 inner 425.4.d.b 4
85.c even 2 1 425.4.d.d yes 4
85.g odd 4 2 425.4.c.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
425.4.c.d 8 5.c odd 4 2
425.4.c.d 8 85.g odd 4 2
425.4.d.b 4 1.a even 1 1 trivial
425.4.d.b 4 17.b even 2 1 inner
425.4.d.d yes 4 5.b even 2 1
425.4.d.d yes 4 85.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(425, [\chi])\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{2} + 19 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 19)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 1031 T^{2} + 2500 \) Copy content Toggle raw display
$11$ \( T^{4} + 1031 T^{2} + 2500 \) Copy content Toggle raw display
$13$ \( (T^{2} + 7 T - 5360)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 35 T^{3} + \cdots + 24137569 \) Copy content Toggle raw display
$19$ \( (T^{2} - 7 T - 5360)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 43640 T^{2} + 206554384 \) Copy content Toggle raw display
$29$ \( (T^{2} + 18096)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 86999 T^{2} + 249324100 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 1255993600 \) Copy content Toggle raw display
$41$ \( T^{4} + 106379 T^{2} + 649230400 \) Copy content Toggle raw display
$43$ \( (T - 148)^{4} \) Copy content Toggle raw display
$47$ \( (T - 224)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 315 T - 238434)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 504 T - 280320)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 247844665600 \) Copy content Toggle raw display
$67$ \( (T^{2} + 1041 T + 7680)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 366146010000 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 4517452944 \) Copy content Toggle raw display
$79$ \( T^{4} + 151895 T^{2} + 385022884 \) Copy content Toggle raw display
$83$ \( (T^{2} + 1071 T + 281388)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 931 T - 46550)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 33609155584 \) Copy content Toggle raw display
show more
show less