Properties

Label 425.4.d.b.101.4
Level $425$
Weight $4$
Character 425.101
Analytic conductor $25.076$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,4,Mod(101,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.101");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.0758117524\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-19}, \sqrt{-1131})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 575x^{2} + 77284 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.4
Root \(14.6357i\) of defining polynomial
Character \(\chi\) \(=\) 425.101
Dual form 425.4.d.b.101.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +4.35890i q^{3} -7.00000 q^{4} -4.35890i q^{6} +32.0713i q^{7} +15.0000 q^{8} +8.00000 q^{9} -1.55903i q^{11} -30.5123i q^{12} +69.7956 q^{13} -32.0713i q^{14} +41.0000 q^{16} +(45.3978 + 53.4045i) q^{17} -8.00000 q^{18} +76.7956 q^{19} -139.796 q^{21} +1.55903i q^{22} -73.4968i q^{23} +65.3835i q^{24} -69.7956 q^{26} +152.561i q^{27} -224.499i q^{28} +134.521i q^{29} -54.4703i q^{31} -161.000 q^{32} +6.79563 q^{33} +(-45.3978 - 53.4045i) q^{34} -56.0000 q^{36} -112.695i q^{37} -76.7956 q^{38} +304.232i q^{39} +316.036i q^{41} +139.796 q^{42} +148.000 q^{43} +10.9132i q^{44} +73.4968i q^{46} +224.000 q^{47} +178.715i q^{48} -685.569 q^{49} +(-232.785 + 197.884i) q^{51} -488.569 q^{52} +670.569 q^{53} -152.561i q^{54} +481.070i q^{56} +334.744i q^{57} -134.521i q^{58} -334.365 q^{59} +675.725i q^{61} +54.4703i q^{62} +256.571i q^{63} -167.000 q^{64} -6.79563 q^{66} -1033.57 q^{67} +(-317.785 - 373.831i) q^{68} +320.365 q^{69} -761.248i q^{71} +120.000 q^{72} -791.188i q^{73} +112.695i q^{74} -537.569 q^{76} +50.0000 q^{77} -304.232i q^{78} -50.7796i q^{79} -449.000 q^{81} -316.036i q^{82} -608.796 q^{83} +978.569 q^{84} -148.000 q^{86} -586.365 q^{87} -23.3854i q^{88} -47.5694 q^{89} +2238.44i q^{91} +514.478i q^{92} +237.431 q^{93} -224.000 q^{94} -701.783i q^{96} -165.574i q^{97} +685.569 q^{98} -12.4722i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 28 q^{4} + 60 q^{8} + 32 q^{9} - 14 q^{13} + 164 q^{16} + 35 q^{17} - 32 q^{18} + 14 q^{19} - 266 q^{21} + 14 q^{26} - 644 q^{32} - 266 q^{33} - 35 q^{34} - 224 q^{36} - 14 q^{38} + 266 q^{42}+ \cdots + 690 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) 4.35890i 0.838870i 0.907785 + 0.419435i \(0.137772\pi\)
−0.907785 + 0.419435i \(0.862228\pi\)
\(4\) −7.00000 −0.875000
\(5\) 0 0
\(6\) 4.35890i 0.296586i
\(7\) 32.0713i 1.73169i 0.500314 + 0.865844i \(0.333218\pi\)
−0.500314 + 0.865844i \(0.666782\pi\)
\(8\) 15.0000 0.662913
\(9\) 8.00000 0.296296
\(10\) 0 0
\(11\) 1.55903i 0.0427331i −0.999772 0.0213665i \(-0.993198\pi\)
0.999772 0.0213665i \(-0.00680170\pi\)
\(12\) 30.5123i 0.734012i
\(13\) 69.7956 1.48906 0.744532 0.667587i \(-0.232673\pi\)
0.744532 + 0.667587i \(0.232673\pi\)
\(14\) 32.0713i 0.612244i
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) 45.3978 + 53.4045i 0.647682 + 0.761911i
\(18\) −8.00000 −0.104757
\(19\) 76.7956 0.927270 0.463635 0.886026i \(-0.346545\pi\)
0.463635 + 0.886026i \(0.346545\pi\)
\(20\) 0 0
\(21\) −139.796 −1.45266
\(22\) 1.55903i 0.0151084i
\(23\) 73.4968i 0.666310i −0.942872 0.333155i \(-0.891887\pi\)
0.942872 0.333155i \(-0.108113\pi\)
\(24\) 65.3835i 0.556098i
\(25\) 0 0
\(26\) −69.7956 −0.526463
\(27\) 152.561i 1.08742i
\(28\) 224.499i 1.51523i
\(29\) 134.521i 0.861379i 0.902500 + 0.430690i \(0.141730\pi\)
−0.902500 + 0.430690i \(0.858270\pi\)
\(30\) 0 0
\(31\) 54.4703i 0.315586i −0.987472 0.157793i \(-0.949562\pi\)
0.987472 0.157793i \(-0.0504378\pi\)
\(32\) −161.000 −0.889408
\(33\) 6.79563 0.0358475
\(34\) −45.3978 53.4045i −0.228990 0.269376i
\(35\) 0 0
\(36\) −56.0000 −0.259259
\(37\) 112.695i 0.500728i −0.968152 0.250364i \(-0.919450\pi\)
0.968152 0.250364i \(-0.0805503\pi\)
\(38\) −76.7956 −0.327839
\(39\) 304.232i 1.24913i
\(40\) 0 0
\(41\) 316.036i 1.20382i 0.798565 + 0.601909i \(0.205593\pi\)
−0.798565 + 0.601909i \(0.794407\pi\)
\(42\) 139.796 0.513594
\(43\) 148.000 0.524879 0.262439 0.964948i \(-0.415473\pi\)
0.262439 + 0.964948i \(0.415473\pi\)
\(44\) 10.9132i 0.0373914i
\(45\) 0 0
\(46\) 73.4968i 0.235576i
\(47\) 224.000 0.695186 0.347593 0.937645i \(-0.386999\pi\)
0.347593 + 0.937645i \(0.386999\pi\)
\(48\) 178.715i 0.537401i
\(49\) −685.569 −1.99874
\(50\) 0 0
\(51\) −232.785 + 197.884i −0.639145 + 0.543321i
\(52\) −488.569 −1.30293
\(53\) 670.569 1.73792 0.868960 0.494882i \(-0.164789\pi\)
0.868960 + 0.494882i \(0.164789\pi\)
\(54\) 152.561i 0.384463i
\(55\) 0 0
\(56\) 481.070i 1.14796i
\(57\) 334.744i 0.777859i
\(58\) 134.521i 0.304543i
\(59\) −334.365 −0.737807 −0.368904 0.929468i \(-0.620267\pi\)
−0.368904 + 0.929468i \(0.620267\pi\)
\(60\) 0 0
\(61\) 675.725i 1.41832i 0.705046 + 0.709162i \(0.250926\pi\)
−0.705046 + 0.709162i \(0.749074\pi\)
\(62\) 54.4703i 0.111576i
\(63\) 256.571i 0.513093i
\(64\) −167.000 −0.326172
\(65\) 0 0
\(66\) −6.79563 −0.0126740
\(67\) −1033.57 −1.88464 −0.942318 0.334719i \(-0.891359\pi\)
−0.942318 + 0.334719i \(0.891359\pi\)
\(68\) −317.785 373.831i −0.566721 0.666672i
\(69\) 320.365 0.558948
\(70\) 0 0
\(71\) 761.248i 1.27244i −0.771506 0.636222i \(-0.780496\pi\)
0.771506 0.636222i \(-0.219504\pi\)
\(72\) 120.000 0.196419
\(73\) 791.188i 1.26851i −0.773122 0.634257i \(-0.781306\pi\)
0.773122 0.634257i \(-0.218694\pi\)
\(74\) 112.695i 0.177034i
\(75\) 0 0
\(76\) −537.569 −0.811361
\(77\) 50.0000 0.0740004
\(78\) 304.232i 0.441635i
\(79\) 50.7796i 0.0723184i −0.999346 0.0361592i \(-0.988488\pi\)
0.999346 0.0361592i \(-0.0115123\pi\)
\(80\) 0 0
\(81\) −449.000 −0.615912
\(82\) 316.036i 0.425614i
\(83\) −608.796 −0.805108 −0.402554 0.915396i \(-0.631878\pi\)
−0.402554 + 0.915396i \(0.631878\pi\)
\(84\) 978.569 1.27108
\(85\) 0 0
\(86\) −148.000 −0.185573
\(87\) −586.365 −0.722585
\(88\) 23.3854i 0.0283283i
\(89\) −47.5694 −0.0566556 −0.0283278 0.999599i \(-0.509018\pi\)
−0.0283278 + 0.999599i \(0.509018\pi\)
\(90\) 0 0
\(91\) 2238.44i 2.57859i
\(92\) 514.478i 0.583022i
\(93\) 237.431 0.264736
\(94\) −224.000 −0.245785
\(95\) 0 0
\(96\) 701.783i 0.746098i
\(97\) 165.574i 0.173315i −0.996238 0.0866574i \(-0.972381\pi\)
0.996238 0.0866574i \(-0.0276186\pi\)
\(98\) 685.569 0.706663
\(99\) 12.4722i 0.0126617i
\(100\) 0 0
\(101\) −336.204 −0.331224 −0.165612 0.986191i \(-0.552960\pi\)
−0.165612 + 0.986191i \(0.552960\pi\)
\(102\) 232.785 197.884i 0.225972 0.192093i
\(103\) 82.3651 0.0787929 0.0393965 0.999224i \(-0.487456\pi\)
0.0393965 + 0.999224i \(0.487456\pi\)
\(104\) 1046.93 0.987119
\(105\) 0 0
\(106\) −670.569 −0.614448
\(107\) 1621.61i 1.46511i 0.680709 + 0.732554i \(0.261672\pi\)
−0.680709 + 0.732554i \(0.738328\pi\)
\(108\) 1067.93i 0.951497i
\(109\) 1064.14i 0.935106i −0.883965 0.467553i \(-0.845136\pi\)
0.883965 0.467553i \(-0.154864\pi\)
\(110\) 0 0
\(111\) 491.226 0.420046
\(112\) 1314.92i 1.10936i
\(113\) 1858.58i 1.54726i 0.633638 + 0.773629i \(0.281561\pi\)
−0.633638 + 0.773629i \(0.718439\pi\)
\(114\) 334.744i 0.275015i
\(115\) 0 0
\(116\) 941.650i 0.753707i
\(117\) 558.365 0.441204
\(118\) 334.365 0.260854
\(119\) −1712.75 + 1455.97i −1.31939 + 1.12158i
\(120\) 0 0
\(121\) 1328.57 0.998174
\(122\) 675.725i 0.501453i
\(123\) −1377.57 −1.00985
\(124\) 381.292i 0.276137i
\(125\) 0 0
\(126\) 256.571i 0.181406i
\(127\) 199.139 0.139140 0.0695698 0.997577i \(-0.477837\pi\)
0.0695698 + 0.997577i \(0.477837\pi\)
\(128\) 1455.00 1.00473
\(129\) 645.117i 0.440305i
\(130\) 0 0
\(131\) 2103.34i 1.40282i −0.712756 0.701412i \(-0.752553\pi\)
0.712756 0.701412i \(-0.247447\pi\)
\(132\) −47.5694 −0.0313666
\(133\) 2462.94i 1.60574i
\(134\) 1033.57 0.666319
\(135\) 0 0
\(136\) 680.967 + 801.067i 0.429356 + 0.505080i
\(137\) 1684.14 1.05026 0.525130 0.851022i \(-0.324017\pi\)
0.525130 + 0.851022i \(0.324017\pi\)
\(138\) −320.365 −0.197618
\(139\) 1534.30i 0.936242i −0.883664 0.468121i \(-0.844931\pi\)
0.883664 0.468121i \(-0.155069\pi\)
\(140\) 0 0
\(141\) 976.393i 0.583171i
\(142\) 761.248i 0.449877i
\(143\) 108.813i 0.0636323i
\(144\) 328.000 0.189815
\(145\) 0 0
\(146\) 791.188i 0.448488i
\(147\) 2988.33i 1.67669i
\(148\) 788.865i 0.438137i
\(149\) −1087.43 −0.597891 −0.298946 0.954270i \(-0.596635\pi\)
−0.298946 + 0.954270i \(0.596635\pi\)
\(150\) 0 0
\(151\) −3183.14 −1.71550 −0.857749 0.514069i \(-0.828138\pi\)
−0.857749 + 0.514069i \(0.828138\pi\)
\(152\) 1151.93 0.614699
\(153\) 363.183 + 427.236i 0.191906 + 0.225751i
\(154\) −50.0000 −0.0261631
\(155\) 0 0
\(156\) 2129.62i 1.09299i
\(157\) 726.569 0.369341 0.184671 0.982800i \(-0.440878\pi\)
0.184671 + 0.982800i \(0.440878\pi\)
\(158\) 50.7796i 0.0255684i
\(159\) 2922.94i 1.45789i
\(160\) 0 0
\(161\) 2357.14 1.15384
\(162\) 449.000 0.217758
\(163\) 3090.65i 1.48514i −0.669766 0.742572i \(-0.733606\pi\)
0.669766 0.742572i \(-0.266394\pi\)
\(164\) 2212.25i 1.05334i
\(165\) 0 0
\(166\) 608.796 0.284649
\(167\) 3020.94i 1.39980i −0.714239 0.699902i \(-0.753227\pi\)
0.714239 0.699902i \(-0.246773\pi\)
\(168\) −2096.93 −0.962988
\(169\) 2674.43 1.21731
\(170\) 0 0
\(171\) 614.365 0.274747
\(172\) −1036.00 −0.459269
\(173\) 1159.79i 0.509693i 0.966982 + 0.254846i \(0.0820249\pi\)
−0.966982 + 0.254846i \(0.917975\pi\)
\(174\) 586.365 0.255473
\(175\) 0 0
\(176\) 63.9200i 0.0273759i
\(177\) 1457.46i 0.618925i
\(178\) 47.5694 0.0200308
\(179\) −117.569 −0.0490925 −0.0245462 0.999699i \(-0.507814\pi\)
−0.0245462 + 0.999699i \(0.507814\pi\)
\(180\) 0 0
\(181\) 4686.29i 1.92447i −0.272216 0.962236i \(-0.587756\pi\)
0.272216 0.962236i \(-0.412244\pi\)
\(182\) 2238.44i 0.911671i
\(183\) −2945.42 −1.18979
\(184\) 1102.45i 0.441706i
\(185\) 0 0
\(186\) −237.431 −0.0935981
\(187\) 83.2589 70.7764i 0.0325588 0.0276774i
\(188\) −1568.00 −0.608288
\(189\) −4892.85 −1.88308
\(190\) 0 0
\(191\) 2497.42 0.946109 0.473054 0.881033i \(-0.343151\pi\)
0.473054 + 0.881033i \(0.343151\pi\)
\(192\) 727.936i 0.273616i
\(193\) 146.771i 0.0547399i −0.999625 0.0273700i \(-0.991287\pi\)
0.999625 0.0273700i \(-0.00871322\pi\)
\(194\) 165.574i 0.0612760i
\(195\) 0 0
\(196\) 4798.99 1.74890
\(197\) 4140.32i 1.49739i 0.662916 + 0.748694i \(0.269319\pi\)
−0.662916 + 0.748694i \(0.730681\pi\)
\(198\) 12.4722i 0.00447657i
\(199\) 2846.33i 1.01392i 0.861968 + 0.506962i \(0.169232\pi\)
−0.861968 + 0.506962i \(0.830768\pi\)
\(200\) 0 0
\(201\) 4505.22i 1.58097i
\(202\) 336.204 0.117105
\(203\) −4314.28 −1.49164
\(204\) 1629.49 1385.19i 0.559252 0.475406i
\(205\) 0 0
\(206\) −82.3651 −0.0278575
\(207\) 587.974i 0.197425i
\(208\) 2861.62 0.953931
\(209\) 119.726i 0.0396251i
\(210\) 0 0
\(211\) 566.816i 0.184935i −0.995716 0.0924674i \(-0.970525\pi\)
0.995716 0.0924674i \(-0.0294754\pi\)
\(212\) −4693.99 −1.52068
\(213\) 3318.20 1.06742
\(214\) 1621.61i 0.517994i
\(215\) 0 0
\(216\) 2288.42i 0.720868i
\(217\) 1746.93 0.546496
\(218\) 1064.14i 0.330610i
\(219\) 3448.71 1.06412
\(220\) 0 0
\(221\) 3168.57 + 3727.40i 0.964439 + 1.13453i
\(222\) −491.226 −0.148509
\(223\) 1657.72 0.497800 0.248900 0.968529i \(-0.419931\pi\)
0.248900 + 0.968529i \(0.419931\pi\)
\(224\) 5163.48i 1.54018i
\(225\) 0 0
\(226\) 1858.58i 0.547039i
\(227\) 4295.77i 1.25604i −0.778198 0.628019i \(-0.783866\pi\)
0.778198 0.628019i \(-0.216134\pi\)
\(228\) 2343.21i 0.680627i
\(229\) 1738.76 0.501749 0.250874 0.968020i \(-0.419282\pi\)
0.250874 + 0.968020i \(0.419282\pi\)
\(230\) 0 0
\(231\) 217.945i 0.0620767i
\(232\) 2017.82i 0.571019i
\(233\) 4877.51i 1.37140i 0.727884 + 0.685701i \(0.240504\pi\)
−0.727884 + 0.685701i \(0.759496\pi\)
\(234\) −558.365 −0.155989
\(235\) 0 0
\(236\) 2340.56 0.645581
\(237\) 221.343 0.0606658
\(238\) 1712.75 1455.97i 0.466476 0.396539i
\(239\) −3320.56 −0.898698 −0.449349 0.893356i \(-0.648344\pi\)
−0.449349 + 0.893356i \(0.648344\pi\)
\(240\) 0 0
\(241\) 1427.40i 0.381521i −0.981637 0.190761i \(-0.938905\pi\)
0.981637 0.190761i \(-0.0610955\pi\)
\(242\) −1328.57 −0.352908
\(243\) 2162.01i 0.570754i
\(244\) 4730.07i 1.24103i
\(245\) 0 0
\(246\) 1377.57 0.357035
\(247\) 5360.00 1.38076
\(248\) 817.055i 0.209206i
\(249\) 2653.68i 0.675382i
\(250\) 0 0
\(251\) −1030.43 −0.259124 −0.129562 0.991571i \(-0.541357\pi\)
−0.129562 + 0.991571i \(0.541357\pi\)
\(252\) 1795.99i 0.448956i
\(253\) −114.583 −0.0284735
\(254\) −199.139 −0.0491932
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) 4327.12 1.05027 0.525134 0.851020i \(-0.324015\pi\)
0.525134 + 0.851020i \(0.324015\pi\)
\(258\) 645.117i 0.155671i
\(259\) 3614.28 0.867105
\(260\) 0 0
\(261\) 1076.17i 0.255223i
\(262\) 2103.34i 0.495973i
\(263\) 663.139 0.155479 0.0777393 0.996974i \(-0.475230\pi\)
0.0777393 + 0.996974i \(0.475230\pi\)
\(264\) 101.935 0.0237638
\(265\) 0 0
\(266\) 2462.94i 0.567716i
\(267\) 207.350i 0.0475267i
\(268\) 7234.99 1.64906
\(269\) 7663.39i 1.73697i 0.495715 + 0.868485i \(0.334906\pi\)
−0.495715 + 0.868485i \(0.665094\pi\)
\(270\) 0 0
\(271\) −4319.05 −0.968132 −0.484066 0.875032i \(-0.660840\pi\)
−0.484066 + 0.875032i \(0.660840\pi\)
\(272\) 1861.31 + 2189.58i 0.414921 + 0.488099i
\(273\) −9757.12 −2.16311
\(274\) −1684.14 −0.371323
\(275\) 0 0
\(276\) −2242.56 −0.489080
\(277\) 2258.36i 0.489861i −0.969541 0.244930i \(-0.921235\pi\)
0.969541 0.244930i \(-0.0787651\pi\)
\(278\) 1534.30i 0.331012i
\(279\) 435.762i 0.0935069i
\(280\) 0 0
\(281\) −7381.40 −1.56704 −0.783519 0.621368i \(-0.786577\pi\)
−0.783519 + 0.621368i \(0.786577\pi\)
\(282\) 976.393i 0.206182i
\(283\) 1018.17i 0.213865i 0.994266 + 0.106933i \(0.0341029\pi\)
−0.994266 + 0.106933i \(0.965897\pi\)
\(284\) 5328.74i 1.11339i
\(285\) 0 0
\(286\) 108.813i 0.0224974i
\(287\) −10135.7 −2.08464
\(288\) −1288.00 −0.263528
\(289\) −791.076 + 4848.89i −0.161017 + 0.986952i
\(290\) 0 0
\(291\) 721.722 0.145389
\(292\) 5538.32i 1.10995i
\(293\) −7056.92 −1.40706 −0.703532 0.710664i \(-0.748395\pi\)
−0.703532 + 0.710664i \(0.748395\pi\)
\(294\) 2988.33i 0.592799i
\(295\) 0 0
\(296\) 1690.43i 0.331939i
\(297\) 237.847 0.0464690
\(298\) 1087.43 0.211386
\(299\) 5129.75i 0.992179i
\(300\) 0 0
\(301\) 4746.56i 0.908927i
\(302\) 3183.14 0.606520
\(303\) 1465.48i 0.277854i
\(304\) 3148.62 0.594032
\(305\) 0 0
\(306\) −363.183 427.236i −0.0678489 0.0798152i
\(307\) −2083.29 −0.387296 −0.193648 0.981071i \(-0.562032\pi\)
−0.193648 + 0.981071i \(0.562032\pi\)
\(308\) −350.000 −0.0647503
\(309\) 359.021i 0.0660971i
\(310\) 0 0
\(311\) 817.947i 0.149137i 0.997216 + 0.0745683i \(0.0237579\pi\)
−0.997216 + 0.0745683i \(0.976242\pi\)
\(312\) 4563.48i 0.828065i
\(313\) 1717.47i 0.310151i −0.987903 0.155075i \(-0.950438\pi\)
0.987903 0.155075i \(-0.0495620\pi\)
\(314\) −726.569 −0.130582
\(315\) 0 0
\(316\) 355.457i 0.0632786i
\(317\) 613.809i 0.108754i −0.998520 0.0543769i \(-0.982683\pi\)
0.998520 0.0543769i \(-0.0173172\pi\)
\(318\) 2922.94i 0.515442i
\(319\) 209.722 0.0368094
\(320\) 0 0
\(321\) −7068.42 −1.22904
\(322\) −2357.14 −0.407945
\(323\) 3486.35 + 4101.23i 0.600576 + 0.706497i
\(324\) 3143.00 0.538923
\(325\) 0 0
\(326\) 3090.65i 0.525078i
\(327\) 4638.50 0.784432
\(328\) 4740.54i 0.798026i
\(329\) 7183.98i 1.20385i
\(330\) 0 0
\(331\) −120.153 −0.0199523 −0.00997613 0.999950i \(-0.503176\pi\)
−0.00997613 + 0.999950i \(0.503176\pi\)
\(332\) 4261.57 0.704470
\(333\) 901.560i 0.148364i
\(334\) 3020.94i 0.494906i
\(335\) 0 0
\(336\) −5731.62 −0.930612
\(337\) 2003.79i 0.323897i 0.986799 + 0.161949i \(0.0517779\pi\)
−0.986799 + 0.161949i \(0.948222\pi\)
\(338\) −2674.43 −0.430384
\(339\) −8101.35 −1.29795
\(340\) 0 0
\(341\) −84.9206 −0.0134859
\(342\) −614.365 −0.0971376
\(343\) 10986.7i 1.72951i
\(344\) 2220.00 0.347949
\(345\) 0 0
\(346\) 1159.79i 0.180204i
\(347\) 1655.90i 0.256178i 0.991763 + 0.128089i \(0.0408842\pi\)
−0.991763 + 0.128089i \(0.959116\pi\)
\(348\) 4104.56 0.632262
\(349\) 2207.71 0.338613 0.169306 0.985563i \(-0.445847\pi\)
0.169306 + 0.985563i \(0.445847\pi\)
\(350\) 0 0
\(351\) 10648.1i 1.61924i
\(352\) 251.003i 0.0380071i
\(353\) 11084.9 1.67136 0.835682 0.549214i \(-0.185073\pi\)
0.835682 + 0.549214i \(0.185073\pi\)
\(354\) 1457.46i 0.218823i
\(355\) 0 0
\(356\) 332.986 0.0495737
\(357\) −6346.42 7465.71i −0.940863 1.10680i
\(358\) 117.569 0.0173568
\(359\) −8335.14 −1.22538 −0.612691 0.790323i \(-0.709913\pi\)
−0.612691 + 0.790323i \(0.709913\pi\)
\(360\) 0 0
\(361\) −961.431 −0.140171
\(362\) 4686.29i 0.680404i
\(363\) 5791.10i 0.837339i
\(364\) 15669.1i 2.25627i
\(365\) 0 0
\(366\) 2945.42 0.420654
\(367\) 5185.31i 0.737523i 0.929524 + 0.368761i \(0.120218\pi\)
−0.929524 + 0.368761i \(0.879782\pi\)
\(368\) 3013.37i 0.426855i
\(369\) 2528.29i 0.356687i
\(370\) 0 0
\(371\) 21506.0i 3.00954i
\(372\) −1662.01 −0.231644
\(373\) −4059.15 −0.563472 −0.281736 0.959492i \(-0.590910\pi\)
−0.281736 + 0.959492i \(0.590910\pi\)
\(374\) −83.2589 + 70.7764i −0.0115113 + 0.00978545i
\(375\) 0 0
\(376\) 3360.00 0.460848
\(377\) 9389.00i 1.28265i
\(378\) 4892.85 0.665770
\(379\) 8500.46i 1.15208i −0.817421 0.576041i \(-0.804597\pi\)
0.817421 0.576041i \(-0.195403\pi\)
\(380\) 0 0
\(381\) 868.026i 0.116720i
\(382\) −2497.42 −0.334500
\(383\) 4513.42 0.602154 0.301077 0.953600i \(-0.402654\pi\)
0.301077 + 0.953600i \(0.402654\pi\)
\(384\) 6342.20i 0.842836i
\(385\) 0 0
\(386\) 146.771i 0.0193535i
\(387\) 1184.00 0.155520
\(388\) 1159.02i 0.151650i
\(389\) −8881.39 −1.15759 −0.578797 0.815471i \(-0.696478\pi\)
−0.578797 + 0.815471i \(0.696478\pi\)
\(390\) 0 0
\(391\) 3925.06 3336.59i 0.507669 0.431557i
\(392\) −10283.5 −1.32499
\(393\) 9168.26 1.17679
\(394\) 4140.32i 0.529407i
\(395\) 0 0
\(396\) 87.3054i 0.0110789i
\(397\) 9320.28i 1.17827i −0.808036 0.589133i \(-0.799469\pi\)
0.808036 0.589133i \(-0.200531\pi\)
\(398\) 2846.33i 0.358476i
\(399\) −10735.7 −1.34701
\(400\) 0 0
\(401\) 13773.5i 1.71525i −0.514273 0.857627i \(-0.671938\pi\)
0.514273 0.857627i \(-0.328062\pi\)
\(402\) 4505.22i 0.558956i
\(403\) 3801.79i 0.469927i
\(404\) 2353.43 0.289821
\(405\) 0 0
\(406\) 4314.28 0.527374
\(407\) −175.694 −0.0213977
\(408\) −3491.77 + 2968.27i −0.423697 + 0.360174i
\(409\) 14516.1 1.75495 0.877476 0.479620i \(-0.159226\pi\)
0.877476 + 0.479620i \(0.159226\pi\)
\(410\) 0 0
\(411\) 7340.99i 0.881033i
\(412\) −576.556 −0.0689438
\(413\) 10723.5i 1.27765i
\(414\) 587.974i 0.0698004i
\(415\) 0 0
\(416\) −11237.1 −1.32438
\(417\) 6687.86 0.785386
\(418\) 119.726i 0.0140096i
\(419\) 3075.95i 0.358640i 0.983791 + 0.179320i \(0.0573897\pi\)
−0.983791 + 0.179320i \(0.942610\pi\)
\(420\) 0 0
\(421\) −3994.88 −0.462466 −0.231233 0.972898i \(-0.574276\pi\)
−0.231233 + 0.972898i \(0.574276\pi\)
\(422\) 566.816i 0.0653843i
\(423\) 1792.00 0.205981
\(424\) 10058.5 1.15209
\(425\) 0 0
\(426\) −3318.20 −0.377389
\(427\) −21671.4 −2.45609
\(428\) 11351.2i 1.28197i
\(429\) 474.306 0.0533792
\(430\) 0 0
\(431\) 3690.87i 0.412490i −0.978500 0.206245i \(-0.933876\pi\)
0.978500 0.206245i \(-0.0661244\pi\)
\(432\) 6255.02i 0.696631i
\(433\) −13886.3 −1.54119 −0.770593 0.637327i \(-0.780040\pi\)
−0.770593 + 0.637327i \(0.780040\pi\)
\(434\) −1746.93 −0.193216
\(435\) 0 0
\(436\) 7449.01i 0.818217i
\(437\) 5644.23i 0.617850i
\(438\) −3448.71 −0.376223
\(439\) 3706.34i 0.402947i 0.979494 + 0.201474i \(0.0645730\pi\)
−0.979494 + 0.201474i \(0.935427\pi\)
\(440\) 0 0
\(441\) −5484.56 −0.592221
\(442\) −3168.57 3727.40i −0.340981 0.401118i
\(443\) 5341.82 0.572906 0.286453 0.958094i \(-0.407524\pi\)
0.286453 + 0.958094i \(0.407524\pi\)
\(444\) −3438.58 −0.367540
\(445\) 0 0
\(446\) −1657.72 −0.175999
\(447\) 4740.00i 0.501553i
\(448\) 5355.91i 0.564828i
\(449\) 13111.6i 1.37812i 0.724705 + 0.689059i \(0.241976\pi\)
−0.724705 + 0.689059i \(0.758024\pi\)
\(450\) 0 0
\(451\) 492.708 0.0514429
\(452\) 13010.0i 1.35385i
\(453\) 13875.0i 1.43908i
\(454\) 4295.77i 0.444076i
\(455\) 0 0
\(456\) 5021.17i 0.515653i
\(457\) 2839.83 0.290682 0.145341 0.989382i \(-0.453572\pi\)
0.145341 + 0.989382i \(0.453572\pi\)
\(458\) −1738.76 −0.177395
\(459\) −8147.47 + 6925.96i −0.828521 + 0.704305i
\(460\) 0 0
\(461\) 3317.69 0.335185 0.167593 0.985856i \(-0.446401\pi\)
0.167593 + 0.985856i \(0.446401\pi\)
\(462\) 217.945i 0.0219474i
\(463\) 7078.28 0.710487 0.355243 0.934774i \(-0.384398\pi\)
0.355243 + 0.934774i \(0.384398\pi\)
\(464\) 5515.38i 0.551821i
\(465\) 0 0
\(466\) 4877.51i 0.484864i
\(467\) 460.468 0.0456273 0.0228136 0.999740i \(-0.492738\pi\)
0.0228136 + 0.999740i \(0.492738\pi\)
\(468\) −3908.56 −0.386054
\(469\) 33147.9i 3.26360i
\(470\) 0 0
\(471\) 3167.04i 0.309829i
\(472\) −5015.48 −0.489102
\(473\) 230.736i 0.0224297i
\(474\) −221.343 −0.0214486
\(475\) 0 0
\(476\) 11989.3 10191.8i 1.15447 0.981385i
\(477\) 5364.56 0.514939
\(478\) 3320.56 0.317738
\(479\) 1125.49i 0.107359i 0.998558 + 0.0536794i \(0.0170949\pi\)
−0.998558 + 0.0536794i \(0.982905\pi\)
\(480\) 0 0
\(481\) 7865.62i 0.745616i
\(482\) 1427.40i 0.134888i
\(483\) 10274.5i 0.967924i
\(484\) −9299.99 −0.873402
\(485\) 0 0
\(486\) 2162.01i 0.201792i
\(487\) 17849.9i 1.66090i 0.557095 + 0.830449i \(0.311916\pi\)
−0.557095 + 0.830449i \(0.688084\pi\)
\(488\) 10135.9i 0.940224i
\(489\) 13471.8 1.24584
\(490\) 0 0
\(491\) −19479.4 −1.79041 −0.895206 0.445652i \(-0.852972\pi\)
−0.895206 + 0.445652i \(0.852972\pi\)
\(492\) 9642.99 0.883617
\(493\) −7184.04 + 6106.98i −0.656294 + 0.557899i
\(494\) −5360.00 −0.488174
\(495\) 0 0
\(496\) 2233.28i 0.202172i
\(497\) 24414.2 2.20348
\(498\) 2653.68i 0.238784i
\(499\) 3510.92i 0.314970i 0.987521 + 0.157485i \(0.0503387\pi\)
−0.987521 + 0.157485i \(0.949661\pi\)
\(500\) 0 0
\(501\) 13168.0 1.17425
\(502\) 1030.43 0.0916143
\(503\) 1137.77i 0.100856i 0.998728 + 0.0504280i \(0.0160585\pi\)
−0.998728 + 0.0504280i \(0.983941\pi\)
\(504\) 3848.56i 0.340136i
\(505\) 0 0
\(506\) 114.583 0.0100669
\(507\) 11657.6i 1.02117i
\(508\) −1393.97 −0.121747
\(509\) 5528.26 0.481407 0.240703 0.970599i \(-0.422622\pi\)
0.240703 + 0.970599i \(0.422622\pi\)
\(510\) 0 0
\(511\) 25374.4 2.19667
\(512\) −11521.0 −0.994455
\(513\) 11716.1i 1.00834i
\(514\) −4327.12 −0.371325
\(515\) 0 0
\(516\) 4515.82i 0.385267i
\(517\) 349.222i 0.0297075i
\(518\) −3614.28 −0.306568
\(519\) −5055.39 −0.427566
\(520\) 0 0
\(521\) 10168.0i 0.855029i 0.904009 + 0.427514i \(0.140611\pi\)
−0.904009 + 0.427514i \(0.859389\pi\)
\(522\) 1076.17i 0.0902351i
\(523\) 13495.8 1.12836 0.564180 0.825652i \(-0.309192\pi\)
0.564180 + 0.825652i \(0.309192\pi\)
\(524\) 14723.4i 1.22747i
\(525\) 0 0
\(526\) −663.139 −0.0549700
\(527\) 2908.96 2472.83i 0.240448 0.204399i
\(528\) 278.621 0.0229648
\(529\) 6765.22 0.556030
\(530\) 0 0
\(531\) −2674.92 −0.218610
\(532\) 17240.6i 1.40502i
\(533\) 22057.9i 1.79256i
\(534\) 207.350i 0.0168032i
\(535\) 0 0
\(536\) −15503.5 −1.24935
\(537\) 512.473i 0.0411822i
\(538\) 7663.39i 0.614112i
\(539\) 1068.82i 0.0854125i
\(540\) 0 0
\(541\) 6134.53i 0.487512i −0.969837 0.243756i \(-0.921620\pi\)
0.969837 0.243756i \(-0.0783796\pi\)
\(542\) 4319.05 0.342286
\(543\) 20427.1 1.61438
\(544\) −7309.05 8598.12i −0.576053 0.677650i
\(545\) 0 0
\(546\) 9757.12 0.764774
\(547\) 3005.13i 0.234899i 0.993079 + 0.117450i \(0.0374719\pi\)
−0.993079 + 0.117450i \(0.962528\pi\)
\(548\) −11789.0 −0.918978
\(549\) 5405.80i 0.420244i
\(550\) 0 0
\(551\) 10330.7i 0.798731i
\(552\) 4805.48 0.370534
\(553\) 1628.57 0.125233
\(554\) 2258.36i 0.173192i
\(555\) 0 0
\(556\) 10740.1i 0.819212i
\(557\) 12422.3 0.944970 0.472485 0.881339i \(-0.343357\pi\)
0.472485 + 0.881339i \(0.343357\pi\)
\(558\) 435.762i 0.0330597i
\(559\) 10329.8 0.781578
\(560\) 0 0
\(561\) 308.507 + 362.917i 0.0232178 + 0.0273126i
\(562\) 7381.40 0.554031
\(563\) −25057.8 −1.87577 −0.937885 0.346947i \(-0.887219\pi\)
−0.937885 + 0.346947i \(0.887219\pi\)
\(564\) 6834.75i 0.510275i
\(565\) 0 0
\(566\) 1018.17i 0.0756128i
\(567\) 14400.0i 1.06657i
\(568\) 11418.7i 0.843519i
\(569\) −10908.1 −0.803677 −0.401839 0.915710i \(-0.631629\pi\)
−0.401839 + 0.915710i \(0.631629\pi\)
\(570\) 0 0
\(571\) 23519.0i 1.72371i −0.507155 0.861855i \(-0.669303\pi\)
0.507155 0.861855i \(-0.330697\pi\)
\(572\) 761.692i 0.0556782i
\(573\) 10886.0i 0.793663i
\(574\) 10135.7 0.737031
\(575\) 0 0
\(576\) −1336.00 −0.0966435
\(577\) 10551.4 0.761280 0.380640 0.924723i \(-0.375704\pi\)
0.380640 + 0.924723i \(0.375704\pi\)
\(578\) 791.076 4848.89i 0.0569281 0.348940i
\(579\) 639.760 0.0459197
\(580\) 0 0
\(581\) 19524.9i 1.39420i
\(582\) −721.722 −0.0514027
\(583\) 1045.43i 0.0742667i
\(584\) 11867.8i 0.840914i
\(585\) 0 0
\(586\) 7056.92 0.497472
\(587\) 20441.8 1.43735 0.718674 0.695348i \(-0.244750\pi\)
0.718674 + 0.695348i \(0.244750\pi\)
\(588\) 20918.3i 1.46710i
\(589\) 4183.08i 0.292633i
\(590\) 0 0
\(591\) −18047.2 −1.25611
\(592\) 4620.50i 0.320779i
\(593\) −768.111 −0.0531915 −0.0265957 0.999646i \(-0.508467\pi\)
−0.0265957 + 0.999646i \(0.508467\pi\)
\(594\) −237.847 −0.0164293
\(595\) 0 0
\(596\) 7612.01 0.523155
\(597\) −12406.9 −0.850551
\(598\) 5129.75i 0.350788i
\(599\) 20756.2 1.41582 0.707911 0.706302i \(-0.249638\pi\)
0.707911 + 0.706302i \(0.249638\pi\)
\(600\) 0 0
\(601\) 20609.7i 1.39882i −0.714722 0.699408i \(-0.753447\pi\)
0.714722 0.699408i \(-0.246553\pi\)
\(602\) 4746.56i 0.321354i
\(603\) −8268.56 −0.558411
\(604\) 22282.0 1.50106
\(605\) 0 0
\(606\) 1465.48i 0.0982361i
\(607\) 5057.91i 0.338211i −0.985598 0.169106i \(-0.945912\pi\)
0.985598 0.169106i \(-0.0540879\pi\)
\(608\) −12364.1 −0.824721
\(609\) 18805.5i 1.25129i
\(610\) 0 0
\(611\) 15634.2 1.03518
\(612\) −2542.28 2990.65i −0.167917 0.197533i
\(613\) −2960.26 −0.195047 −0.0975236 0.995233i \(-0.531092\pi\)
−0.0975236 + 0.995233i \(0.531092\pi\)
\(614\) 2083.29 0.136930
\(615\) 0 0
\(616\) 750.000 0.0490558
\(617\) 12811.6i 0.835941i 0.908461 + 0.417970i \(0.137258\pi\)
−0.908461 + 0.417970i \(0.862742\pi\)
\(618\) 359.021i 0.0233688i
\(619\) 9469.50i 0.614881i −0.951567 0.307441i \(-0.900527\pi\)
0.951567 0.307441i \(-0.0994725\pi\)
\(620\) 0 0
\(621\) 11212.8 0.724562
\(622\) 817.947i 0.0527278i
\(623\) 1525.61i 0.0981099i
\(624\) 12473.5i 0.800225i
\(625\) 0 0
\(626\) 1717.47i 0.109655i
\(627\) 521.875 0.0332403
\(628\) −5085.99 −0.323173
\(629\) 6018.42 5116.11i 0.381510 0.324313i
\(630\) 0 0
\(631\) −2124.25 −0.134018 −0.0670088 0.997752i \(-0.521346\pi\)
−0.0670088 + 0.997752i \(0.521346\pi\)
\(632\) 761.694i 0.0479408i
\(633\) 2470.69 0.155136
\(634\) 613.809i 0.0384503i
\(635\) 0 0
\(636\) 20460.6i 1.27565i
\(637\) −47849.8 −2.97626
\(638\) −209.722 −0.0130141
\(639\) 6089.99i 0.377021i
\(640\) 0 0
\(641\) 14267.3i 0.879132i −0.898210 0.439566i \(-0.855132\pi\)
0.898210 0.439566i \(-0.144868\pi\)
\(642\) 7068.42 0.434530
\(643\) 18401.0i 1.12856i −0.825582 0.564282i \(-0.809153\pi\)
0.825582 0.564282i \(-0.190847\pi\)
\(644\) −16500.0 −1.00961
\(645\) 0 0
\(646\) −3486.35 4101.23i −0.212336 0.249784i
\(647\) −31074.7 −1.88821 −0.944105 0.329644i \(-0.893071\pi\)
−0.944105 + 0.329644i \(0.893071\pi\)
\(648\) −6735.00 −0.408296
\(649\) 521.284i 0.0315288i
\(650\) 0 0
\(651\) 7614.71i 0.458439i
\(652\) 21634.6i 1.29950i
\(653\) 9139.88i 0.547735i 0.961767 + 0.273868i \(0.0883030\pi\)
−0.961767 + 0.273868i \(0.911697\pi\)
\(654\) −4638.50 −0.277339
\(655\) 0 0
\(656\) 12957.5i 0.771196i
\(657\) 6329.50i 0.375856i
\(658\) 7183.98i 0.425624i
\(659\) −7548.40 −0.446197 −0.223099 0.974796i \(-0.571617\pi\)
−0.223099 + 0.974796i \(0.571617\pi\)
\(660\) 0 0
\(661\) 27546.8 1.62095 0.810474 0.585775i \(-0.199210\pi\)
0.810474 + 0.585775i \(0.199210\pi\)
\(662\) 120.153 0.00705419
\(663\) −16247.4 + 13811.5i −0.951727 + 0.809040i
\(664\) −9131.93 −0.533717
\(665\) 0 0
\(666\) 901.560i 0.0524546i
\(667\) 9886.89 0.573946
\(668\) 21146.6i 1.22483i
\(669\) 7225.84i 0.417589i
\(670\) 0 0
\(671\) 1053.47 0.0606093
\(672\) 22507.1 1.29201
\(673\) 21053.9i 1.20590i −0.797780 0.602949i \(-0.793992\pi\)
0.797780 0.602949i \(-0.206008\pi\)
\(674\) 2003.79i 0.114515i
\(675\) 0 0
\(676\) −18721.0 −1.06515
\(677\) 26364.3i 1.49669i −0.663308 0.748347i \(-0.730848\pi\)
0.663308 0.748347i \(-0.269152\pi\)
\(678\) 8101.35 0.458895
\(679\) 5310.19 0.300127
\(680\) 0 0
\(681\) 18724.8 1.05365
\(682\) 84.9206 0.00476800
\(683\) 9790.88i 0.548518i −0.961656 0.274259i \(-0.911567\pi\)
0.961656 0.274259i \(-0.0884325\pi\)
\(684\) −4300.56 −0.240403
\(685\) 0 0
\(686\) 10986.7i 0.611476i
\(687\) 7579.08i 0.420902i
\(688\) 6068.00 0.336250
\(689\) 46802.8 2.58787
\(690\) 0 0
\(691\) 16042.1i 0.883171i −0.897219 0.441585i \(-0.854416\pi\)
0.897219 0.441585i \(-0.145584\pi\)
\(692\) 8118.50i 0.445981i
\(693\) 400.000 0.0219260
\(694\) 1655.90i 0.0905724i
\(695\) 0 0
\(696\) −8795.48 −0.479011
\(697\) −16877.7 + 14347.3i −0.917202 + 0.779691i
\(698\) −2207.71 −0.119718
\(699\) −21260.6 −1.15043
\(700\) 0 0
\(701\) 23409.6 1.26130 0.630649 0.776068i \(-0.282789\pi\)
0.630649 + 0.776068i \(0.282789\pi\)
\(702\) 10648.1i 0.572489i
\(703\) 8654.49i 0.464310i
\(704\) 260.357i 0.0139383i
\(705\) 0 0
\(706\) −11084.9 −0.590916
\(707\) 10782.5i 0.573576i
\(708\) 10202.2i 0.541559i
\(709\) 28647.7i 1.51747i −0.651399 0.758736i \(-0.725817\pi\)
0.651399 0.758736i \(-0.274183\pi\)
\(710\) 0 0
\(711\) 406.237i 0.0214277i
\(712\) −713.542 −0.0375577
\(713\) −4003.39 −0.210278
\(714\) 6346.42 + 7465.71i 0.332645 + 0.391313i
\(715\) 0 0
\(716\) 822.986 0.0429559
\(717\) 14474.0i 0.753891i
\(718\) 8335.14 0.433238
\(719\) 37028.9i 1.92065i −0.278891 0.960323i \(-0.589967\pi\)
0.278891 0.960323i \(-0.410033\pi\)
\(720\) 0 0
\(721\) 2641.56i 0.136445i
\(722\) 961.431 0.0495578
\(723\) 6221.88 0.320047
\(724\) 32804.1i 1.68391i
\(725\) 0 0
\(726\) 5791.10i 0.296044i
\(727\) 20104.0 1.02561 0.512803 0.858506i \(-0.328607\pi\)
0.512803 + 0.858506i \(0.328607\pi\)
\(728\) 33576.6i 1.70938i
\(729\) −21547.0 −1.09470
\(730\) 0 0
\(731\) 6718.88 + 7903.86i 0.339954 + 0.399911i
\(732\) 20617.9 1.04107
\(733\) −6503.46 −0.327709 −0.163855 0.986485i \(-0.552393\pi\)
−0.163855 + 0.986485i \(0.552393\pi\)
\(734\) 5185.31i 0.260754i
\(735\) 0 0
\(736\) 11833.0i 0.592622i
\(737\) 1611.36i 0.0805363i
\(738\) 2528.29i 0.126108i
\(739\) 20453.1 1.01810 0.509051 0.860736i \(-0.329996\pi\)
0.509051 + 0.860736i \(0.329996\pi\)
\(740\) 0 0
\(741\) 23363.7i 1.15828i
\(742\) 21506.0i 1.06403i
\(743\) 21062.8i 1.04000i −0.854166 0.520000i \(-0.825932\pi\)
0.854166 0.520000i \(-0.174068\pi\)
\(744\) 3561.46 0.175497
\(745\) 0 0
\(746\) 4059.15 0.199217
\(747\) −4870.37 −0.238551
\(748\) −582.813 + 495.434i −0.0284890 + 0.0242178i
\(749\) −52007.0 −2.53711
\(750\) 0 0
\(751\) 21729.2i 1.05581i 0.849305 + 0.527903i \(0.177021\pi\)
−0.849305 + 0.527903i \(0.822979\pi\)
\(752\) 9184.00 0.445354
\(753\) 4491.54i 0.217372i
\(754\) 9389.00i 0.453485i
\(755\) 0 0
\(756\) 34249.9 1.64770
\(757\) 25048.6 1.20265 0.601325 0.799004i \(-0.294640\pi\)
0.601325 + 0.799004i \(0.294640\pi\)
\(758\) 8500.46i 0.407323i
\(759\) 499.457i 0.0238856i
\(760\) 0 0
\(761\) −19548.1 −0.931169 −0.465584 0.885003i \(-0.654156\pi\)
−0.465584 + 0.885003i \(0.654156\pi\)
\(762\) 868.026i 0.0412668i
\(763\) 34128.5 1.61931
\(764\) −17481.9 −0.827845
\(765\) 0 0
\(766\) −4513.42 −0.212893
\(767\) −23337.2 −1.09864
\(768\) 518.709i 0.0243715i
\(769\) 10730.7 0.503197 0.251599 0.967832i \(-0.419044\pi\)
0.251599 + 0.967832i \(0.419044\pi\)
\(770\) 0 0
\(771\) 18861.5i 0.881038i
\(772\) 1027.40i 0.0478974i
\(773\) 11068.5 0.515014 0.257507 0.966276i \(-0.417099\pi\)
0.257507 + 0.966276i \(0.417099\pi\)
\(774\) −1184.00 −0.0549845
\(775\) 0 0
\(776\) 2483.62i 0.114893i
\(777\) 15754.3i 0.727389i
\(778\) 8881.39 0.409271
\(779\) 24270.2i 1.11626i
\(780\) 0 0
\(781\) −1186.81 −0.0543755
\(782\) −3925.06 + 3336.59i −0.179488 + 0.152578i
\(783\) −20522.8 −0.936685
\(784\) −28108.3 −1.28045
\(785\) 0 0
\(786\) −9168.26 −0.416057
\(787\) 36768.9i 1.66540i 0.553725 + 0.832699i \(0.313206\pi\)
−0.553725 + 0.832699i \(0.686794\pi\)
\(788\) 28982.2i 1.31021i
\(789\) 2890.56i 0.130426i
\(790\) 0 0
\(791\) −59607.0 −2.67937
\(792\) 187.083i 0.00839357i
\(793\) 47162.6i 2.11197i
\(794\) 9320.28i 0.416580i
\(795\) 0 0
\(796\) 19924.3i 0.887184i
\(797\) −23834.5 −1.05930 −0.529650 0.848216i \(-0.677677\pi\)
−0.529650 + 0.848216i \(0.677677\pi\)
\(798\) 10735.7 0.476240
\(799\) 10169.1 + 11962.6i 0.450259 + 0.529670i
\(800\) 0 0
\(801\) −380.556 −0.0167869
\(802\) 13773.5i 0.606434i
\(803\) −1233.48 −0.0542075
\(804\) 31536.6i 1.38334i
\(805\) 0 0
\(806\) 3801.79i 0.166144i
\(807\) −33403.9 −1.45709
\(808\) −5043.07 −0.219572
\(809\) 22538.1i 0.979478i 0.871869 + 0.489739i \(0.162908\pi\)
−0.871869 + 0.489739i \(0.837092\pi\)
\(810\) 0 0
\(811\) 22895.4i 0.991325i −0.868515 0.495663i \(-0.834925\pi\)
0.868515 0.495663i \(-0.165075\pi\)
\(812\) 30199.9 1.30519
\(813\) 18826.3i 0.812137i
\(814\) 175.694 0.00756522
\(815\) 0 0
\(816\) −9544.17 + 8113.26i −0.409452 + 0.348065i
\(817\) 11365.8 0.486704
\(818\) −14516.1 −0.620469
\(819\) 17907.5i 0.764028i
\(820\) 0 0
\(821\) 13361.7i 0.567999i −0.958824 0.283999i \(-0.908339\pi\)
0.958824 0.283999i \(-0.0916614\pi\)
\(822\) 7340.99i 0.311492i
\(823\) 22013.0i 0.932349i −0.884693 0.466175i \(-0.845632\pi\)
0.884693 0.466175i \(-0.154368\pi\)
\(824\) 1235.48 0.0522328
\(825\) 0 0
\(826\) 10723.5i 0.451718i
\(827\) 17100.5i 0.719035i −0.933138 0.359517i \(-0.882941\pi\)
0.933138 0.359517i \(-0.117059\pi\)
\(828\) 4115.82i 0.172747i
\(829\) 13082.8 0.548113 0.274057 0.961714i \(-0.411634\pi\)
0.274057 + 0.961714i \(0.411634\pi\)
\(830\) 0 0
\(831\) 9843.94 0.410930
\(832\) −11655.9 −0.485691
\(833\) −31123.4 36612.5i −1.29455 1.52287i
\(834\) −6687.86 −0.277676
\(835\) 0 0
\(836\) 838.084i 0.0346720i
\(837\) 8310.07 0.343176
\(838\) 3075.95i 0.126798i
\(839\) 26770.1i 1.10156i 0.834652 + 0.550778i \(0.185669\pi\)
−0.834652 + 0.550778i \(0.814331\pi\)
\(840\) 0 0
\(841\) 6293.00 0.258026
\(842\) 3994.88 0.163507
\(843\) 32174.8i 1.31454i
\(844\) 3967.71i 0.161818i
\(845\) 0 0
\(846\) −1792.00 −0.0728253
\(847\) 42609.0i 1.72853i
\(848\) 27493.3 1.11336
\(849\) −4438.10 −0.179405
\(850\) 0 0
\(851\) −8282.72 −0.333640
\(852\) −23227.4 −0.933989
\(853\) 19707.4i 0.791053i 0.918455 + 0.395526i \(0.129438\pi\)
−0.918455 + 0.395526i \(0.870562\pi\)
\(854\) 21671.4 0.868360
\(855\) 0 0
\(856\) 24324.1i 0.971239i
\(857\) 19382.1i 0.772556i −0.922382 0.386278i \(-0.873761\pi\)
0.922382 0.386278i \(-0.126239\pi\)
\(858\) −474.306 −0.0188724
\(859\) 37163.2 1.47613 0.738063 0.674732i \(-0.235741\pi\)
0.738063 + 0.674732i \(0.235741\pi\)
\(860\) 0 0
\(861\) 44180.5i 1.74874i
\(862\) 3690.87i 0.145837i
\(863\) 19130.8 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(864\) 24562.4i 0.967164i
\(865\) 0 0
\(866\) 13886.3 0.544892
\(867\) −21135.8 3448.22i −0.827925 0.135072i
\(868\) −12228.5 −0.478184
\(869\) −79.1667 −0.00309039
\(870\) 0 0
\(871\) −72138.6 −2.80634
\(872\) 15962.2i 0.619893i
\(873\) 1324.60i 0.0513525i
\(874\) 5644.23i 0.218443i
\(875\) 0 0
\(876\) −24141.0 −0.931104
\(877\) 45521.7i 1.75275i 0.481633 + 0.876373i \(0.340044\pi\)
−0.481633 + 0.876373i \(0.659956\pi\)
\(878\) 3706.34i 0.142463i
\(879\) 30760.4i 1.18034i
\(880\) 0 0
\(881\) 33610.6i 1.28532i −0.766150 0.642662i \(-0.777830\pi\)
0.766150 0.642662i \(-0.222170\pi\)
\(882\) 5484.56 0.209382
\(883\) 42768.9 1.63000 0.814999 0.579462i \(-0.196737\pi\)
0.814999 + 0.579462i \(0.196737\pi\)
\(884\) −22180.0 26091.8i −0.843884 0.992717i
\(885\) 0 0
\(886\) −5341.82 −0.202553
\(887\) 4402.36i 0.166648i −0.996523 0.0833240i \(-0.973446\pi\)
0.996523 0.0833240i \(-0.0265536\pi\)
\(888\) 7368.39 0.278454
\(889\) 6386.65i 0.240946i
\(890\) 0 0
\(891\) 700.002i 0.0263198i
\(892\) −11604.1 −0.435575
\(893\) 17202.2 0.644625
\(894\) 4740.00i 0.177326i
\(895\) 0 0
\(896\) 46663.8i 1.73987i
\(897\) 22360.1 0.832309
\(898\) 13111.6i 0.487238i
\(899\) 7327.42 0.271839
\(900\) 0 0
\(901\) 30442.4 + 35811.4i 1.12562 + 1.32414i
\(902\) −492.708 −0.0181878
\(903\) −20689.8 −0.762472
\(904\) 27878.7i 1.02570i
\(905\) 0 0
\(906\) 13875.0i 0.508792i
\(907\) 34274.0i 1.25474i 0.778721 + 0.627370i \(0.215869\pi\)
−0.778721 + 0.627370i \(0.784131\pi\)
\(908\) 30070.4i 1.09903i
\(909\) −2689.63 −0.0981403
\(910\) 0 0
\(911\) 48631.3i 1.76863i 0.466887 + 0.884317i \(0.345375\pi\)
−0.466887 + 0.884317i \(0.654625\pi\)
\(912\) 13724.5i 0.498316i
\(913\) 949.128i 0.0344048i
\(914\) −2839.83 −0.102772
\(915\) 0 0
\(916\) −12171.3 −0.439030
\(917\) 67457.0 2.42926
\(918\) 8147.47 6925.96i 0.292926 0.249009i
\(919\) −5743.19 −0.206149 −0.103074 0.994674i \(-0.532868\pi\)
−0.103074 + 0.994674i \(0.532868\pi\)
\(920\) 0 0
\(921\) 9080.86i 0.324891i
\(922\) −3317.69 −0.118506
\(923\) 53131.8i 1.89475i
\(924\) 1525.61i 0.0543171i
\(925\) 0 0
\(926\) −7078.28 −0.251195
\(927\) 658.921 0.0233461
\(928\) 21657.9i 0.766117i
\(929\) 23854.7i 0.842462i −0.906953 0.421231i \(-0.861598\pi\)
0.906953 0.421231i \(-0.138402\pi\)
\(930\) 0 0
\(931\) −52648.7 −1.85338
\(932\) 34142.6i 1.19998i
\(933\) −3565.35 −0.125106
\(934\) −460.468 −0.0161317
\(935\) 0 0
\(936\) 8375.48 0.292480
\(937\) −53543.7 −1.86681 −0.933403 0.358830i \(-0.883176\pi\)
−0.933403 + 0.358830i \(0.883176\pi\)
\(938\) 33147.9i 1.15386i
\(939\) 7486.28 0.260176
\(940\) 0 0
\(941\) 9811.15i 0.339888i 0.985454 + 0.169944i \(0.0543587\pi\)
−0.985454 + 0.169944i \(0.945641\pi\)
\(942\) 3167.04i 0.109541i
\(943\) 23227.6 0.802117
\(944\) −13709.0 −0.472658
\(945\) 0 0
\(946\) 230.736i 0.00793009i
\(947\) 39956.9i 1.37109i 0.728030 + 0.685546i \(0.240436\pi\)
−0.728030 + 0.685546i \(0.759564\pi\)
\(948\) −1549.40 −0.0530826
\(949\) 55221.5i 1.88890i
\(950\) 0 0
\(951\) 2675.53 0.0912304
\(952\) −25691.3 + 21839.5i −0.874642 + 0.743511i
\(953\) 32346.1 1.09947 0.549733 0.835340i \(-0.314729\pi\)
0.549733 + 0.835340i \(0.314729\pi\)
\(954\) −5364.56 −0.182059
\(955\) 0 0
\(956\) 23243.9 0.786361
\(957\) 914.158i 0.0308783i
\(958\) 1125.49i 0.0379571i
\(959\) 54012.6i 1.81872i
\(960\) 0 0
\(961\) 26824.0 0.900406
\(962\) 7865.62i 0.263615i
\(963\) 12972.8i 0.434106i
\(964\) 9991.77i 0.333831i
\(965\) 0 0
\(966\) 10274.5i 0.342213i
\(967\) 13344.6 0.443777 0.221888 0.975072i \(-0.428778\pi\)
0.221888 + 0.975072i \(0.428778\pi\)
\(968\) 19928.5 0.661702
\(969\) −17876.9 + 15196.7i −0.592660 + 0.503805i
\(970\) 0 0
\(971\) 27529.6 0.909852 0.454926 0.890529i \(-0.349666\pi\)
0.454926 + 0.890529i \(0.349666\pi\)
\(972\) 15134.1i 0.499410i
\(973\) 49207.0 1.62128
\(974\) 17849.9i 0.587216i
\(975\) 0 0
\(976\) 27704.7i 0.908613i
\(977\) −39539.2 −1.29475 −0.647375 0.762172i \(-0.724133\pi\)
−0.647375 + 0.762172i \(0.724133\pi\)
\(978\) −13471.8 −0.440472
\(979\) 74.1620i 0.00242107i
\(980\) 0 0
\(981\) 8513.15i 0.277068i
\(982\) 19479.4 0.633006
\(983\) 27892.1i 0.905006i 0.891763 + 0.452503i \(0.149469\pi\)
−0.891763 + 0.452503i \(0.850531\pi\)
\(984\) −20663.5 −0.669441
\(985\) 0 0
\(986\) 7184.04 6106.98i 0.232035 0.197247i
\(987\) −31314.2 −1.00987
\(988\) −37520.0 −1.20817
\(989\) 10877.5i 0.349732i
\(990\) 0 0
\(991\) 25872.6i 0.829336i 0.909973 + 0.414668i \(0.136102\pi\)
−0.909973 + 0.414668i \(0.863898\pi\)
\(992\) 8769.72i 0.280684i
\(993\) 523.734i 0.0167374i
\(994\) −24414.2 −0.779047
\(995\) 0 0
\(996\) 18575.8i 0.590959i
\(997\) 26538.1i 0.843000i −0.906828 0.421500i \(-0.861504\pi\)
0.906828 0.421500i \(-0.138496\pi\)
\(998\) 3510.92i 0.111359i
\(999\) 17192.9 0.544504
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.4.d.b.101.4 yes 4
5.2 odd 4 425.4.c.d.424.3 8
5.3 odd 4 425.4.c.d.424.6 8
5.4 even 2 425.4.d.d.101.1 yes 4
17.16 even 2 inner 425.4.d.b.101.1 4
85.33 odd 4 425.4.c.d.424.7 8
85.67 odd 4 425.4.c.d.424.2 8
85.84 even 2 425.4.d.d.101.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.4.c.d.424.2 8 85.67 odd 4
425.4.c.d.424.3 8 5.2 odd 4
425.4.c.d.424.6 8 5.3 odd 4
425.4.c.d.424.7 8 85.33 odd 4
425.4.d.b.101.1 4 17.16 even 2 inner
425.4.d.b.101.4 yes 4 1.1 even 1 trivial
425.4.d.d.101.1 yes 4 5.4 even 2
425.4.d.d.101.4 yes 4 85.84 even 2