Properties

Label 435.4.a.l.1.7
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} - 65 x^{8} + 257 x^{7} + 1374 x^{6} - 5303 x^{5} - 10562 x^{4} + 39282 x^{3} + \cdots + 34560 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(3.24917\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.24917 q^{2} +3.00000 q^{3} +2.55711 q^{4} +5.00000 q^{5} +9.74751 q^{6} +15.3171 q^{7} -17.6849 q^{8} +9.00000 q^{9} +16.2459 q^{10} +13.1966 q^{11} +7.67133 q^{12} +92.7046 q^{13} +49.7679 q^{14} +15.0000 q^{15} -77.9181 q^{16} -128.287 q^{17} +29.2425 q^{18} +127.704 q^{19} +12.7856 q^{20} +45.9514 q^{21} +42.8782 q^{22} -25.4317 q^{23} -53.0546 q^{24} +25.0000 q^{25} +301.213 q^{26} +27.0000 q^{27} +39.1676 q^{28} -29.0000 q^{29} +48.7376 q^{30} +157.197 q^{31} -111.690 q^{32} +39.5899 q^{33} -416.828 q^{34} +76.5856 q^{35} +23.0140 q^{36} +442.821 q^{37} +414.931 q^{38} +278.114 q^{39} -88.4244 q^{40} +73.3418 q^{41} +149.304 q^{42} -121.058 q^{43} +33.7453 q^{44} +45.0000 q^{45} -82.6321 q^{46} -106.742 q^{47} -233.754 q^{48} -108.386 q^{49} +81.2293 q^{50} -384.862 q^{51} +237.056 q^{52} -634.469 q^{53} +87.7276 q^{54} +65.9832 q^{55} -270.881 q^{56} +383.111 q^{57} -94.2260 q^{58} +420.721 q^{59} +38.3567 q^{60} -404.578 q^{61} +510.761 q^{62} +137.854 q^{63} +260.444 q^{64} +463.523 q^{65} +128.634 q^{66} +760.560 q^{67} -328.045 q^{68} -76.2952 q^{69} +248.840 q^{70} +353.030 q^{71} -159.164 q^{72} -562.959 q^{73} +1438.80 q^{74} +75.0000 q^{75} +326.553 q^{76} +202.135 q^{77} +903.639 q^{78} -1260.71 q^{79} -389.590 q^{80} +81.0000 q^{81} +238.300 q^{82} -1405.98 q^{83} +117.503 q^{84} -641.437 q^{85} -393.338 q^{86} -87.0000 q^{87} -233.381 q^{88} +286.757 q^{89} +146.213 q^{90} +1419.97 q^{91} -65.0318 q^{92} +471.592 q^{93} -346.822 q^{94} +638.519 q^{95} -335.070 q^{96} -565.998 q^{97} -352.164 q^{98} +118.770 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} + 30 q^{3} + 66 q^{4} + 50 q^{5} + 12 q^{6} + 75 q^{7} + 9 q^{8} + 90 q^{9} + 20 q^{10} + 3 q^{11} + 198 q^{12} + 75 q^{13} + 105 q^{14} + 150 q^{15} + 394 q^{16} + 131 q^{17} + 36 q^{18}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.24917 1.14876 0.574378 0.818590i \(-0.305244\pi\)
0.574378 + 0.818590i \(0.305244\pi\)
\(3\) 3.00000 0.577350
\(4\) 2.55711 0.319639
\(5\) 5.00000 0.447214
\(6\) 9.74751 0.663234
\(7\) 15.3171 0.827047 0.413523 0.910493i \(-0.364298\pi\)
0.413523 + 0.910493i \(0.364298\pi\)
\(8\) −17.6849 −0.781568
\(9\) 9.00000 0.333333
\(10\) 16.2459 0.513739
\(11\) 13.1966 0.361722 0.180861 0.983509i \(-0.442112\pi\)
0.180861 + 0.983509i \(0.442112\pi\)
\(12\) 7.67133 0.184544
\(13\) 92.7046 1.97782 0.988908 0.148526i \(-0.0474530\pi\)
0.988908 + 0.148526i \(0.0474530\pi\)
\(14\) 49.7679 0.950074
\(15\) 15.0000 0.258199
\(16\) −77.9181 −1.21747
\(17\) −128.287 −1.83025 −0.915126 0.403168i \(-0.867909\pi\)
−0.915126 + 0.403168i \(0.867909\pi\)
\(18\) 29.2425 0.382918
\(19\) 127.704 1.54196 0.770980 0.636859i \(-0.219767\pi\)
0.770980 + 0.636859i \(0.219767\pi\)
\(20\) 12.7856 0.142947
\(21\) 45.9514 0.477496
\(22\) 42.8782 0.415530
\(23\) −25.4317 −0.230560 −0.115280 0.993333i \(-0.536777\pi\)
−0.115280 + 0.993333i \(0.536777\pi\)
\(24\) −53.0546 −0.451239
\(25\) 25.0000 0.200000
\(26\) 301.213 2.27203
\(27\) 27.0000 0.192450
\(28\) 39.1676 0.264356
\(29\) −29.0000 −0.185695
\(30\) 48.7376 0.296607
\(31\) 157.197 0.910757 0.455379 0.890298i \(-0.349504\pi\)
0.455379 + 0.890298i \(0.349504\pi\)
\(32\) −111.690 −0.617007
\(33\) 39.5899 0.208840
\(34\) −416.828 −2.10251
\(35\) 76.5856 0.369867
\(36\) 23.0140 0.106546
\(37\) 442.821 1.96755 0.983776 0.179403i \(-0.0574167\pi\)
0.983776 + 0.179403i \(0.0574167\pi\)
\(38\) 414.931 1.77134
\(39\) 278.114 1.14189
\(40\) −88.4244 −0.349528
\(41\) 73.3418 0.279367 0.139684 0.990196i \(-0.455391\pi\)
0.139684 + 0.990196i \(0.455391\pi\)
\(42\) 149.304 0.548526
\(43\) −121.058 −0.429330 −0.214665 0.976688i \(-0.568866\pi\)
−0.214665 + 0.976688i \(0.568866\pi\)
\(44\) 33.7453 0.115620
\(45\) 45.0000 0.149071
\(46\) −82.6321 −0.264857
\(47\) −106.742 −0.331274 −0.165637 0.986187i \(-0.552968\pi\)
−0.165637 + 0.986187i \(0.552968\pi\)
\(48\) −233.754 −0.702907
\(49\) −108.386 −0.315994
\(50\) 81.2293 0.229751
\(51\) −384.862 −1.05670
\(52\) 237.056 0.632187
\(53\) −634.469 −1.64436 −0.822180 0.569228i \(-0.807242\pi\)
−0.822180 + 0.569228i \(0.807242\pi\)
\(54\) 87.7276 0.221078
\(55\) 65.9832 0.161767
\(56\) −270.881 −0.646394
\(57\) 383.111 0.890251
\(58\) −94.2260 −0.213319
\(59\) 420.721 0.928360 0.464180 0.885741i \(-0.346349\pi\)
0.464180 + 0.885741i \(0.346349\pi\)
\(60\) 38.3567 0.0825304
\(61\) −404.578 −0.849195 −0.424598 0.905382i \(-0.639584\pi\)
−0.424598 + 0.905382i \(0.639584\pi\)
\(62\) 510.761 1.04624
\(63\) 137.854 0.275682
\(64\) 260.444 0.508680
\(65\) 463.523 0.884507
\(66\) 128.634 0.239906
\(67\) 760.560 1.38682 0.693412 0.720542i \(-0.256107\pi\)
0.693412 + 0.720542i \(0.256107\pi\)
\(68\) −328.045 −0.585020
\(69\) −76.2952 −0.133114
\(70\) 248.840 0.424886
\(71\) 353.030 0.590097 0.295049 0.955482i \(-0.404664\pi\)
0.295049 + 0.955482i \(0.404664\pi\)
\(72\) −159.164 −0.260523
\(73\) −562.959 −0.902595 −0.451297 0.892374i \(-0.649039\pi\)
−0.451297 + 0.892374i \(0.649039\pi\)
\(74\) 1438.80 2.26024
\(75\) 75.0000 0.115470
\(76\) 326.553 0.492870
\(77\) 202.135 0.299161
\(78\) 903.639 1.31176
\(79\) −1260.71 −1.79546 −0.897730 0.440547i \(-0.854785\pi\)
−0.897730 + 0.440547i \(0.854785\pi\)
\(80\) −389.590 −0.544469
\(81\) 81.0000 0.111111
\(82\) 238.300 0.320925
\(83\) −1405.98 −1.85935 −0.929677 0.368377i \(-0.879914\pi\)
−0.929677 + 0.368377i \(0.879914\pi\)
\(84\) 117.503 0.152626
\(85\) −641.437 −0.818514
\(86\) −393.338 −0.493195
\(87\) −87.0000 −0.107211
\(88\) −233.381 −0.282710
\(89\) 286.757 0.341530 0.170765 0.985312i \(-0.445376\pi\)
0.170765 + 0.985312i \(0.445376\pi\)
\(90\) 146.213 0.171246
\(91\) 1419.97 1.63575
\(92\) −65.0318 −0.0736960
\(93\) 471.592 0.525826
\(94\) −346.822 −0.380553
\(95\) 638.519 0.689586
\(96\) −335.070 −0.356229
\(97\) −565.998 −0.592457 −0.296229 0.955117i \(-0.595729\pi\)
−0.296229 + 0.955117i \(0.595729\pi\)
\(98\) −352.164 −0.362999
\(99\) 118.770 0.120574
\(100\) 63.9278 0.0639278
\(101\) 8.66755 0.00853914 0.00426957 0.999991i \(-0.498641\pi\)
0.00426957 + 0.999991i \(0.498641\pi\)
\(102\) −1250.48 −1.21389
\(103\) 22.2219 0.0212581 0.0106291 0.999944i \(-0.496617\pi\)
0.0106291 + 0.999944i \(0.496617\pi\)
\(104\) −1639.47 −1.54580
\(105\) 229.757 0.213543
\(106\) −2061.50 −1.88897
\(107\) −382.081 −0.345207 −0.172604 0.984991i \(-0.555218\pi\)
−0.172604 + 0.984991i \(0.555218\pi\)
\(108\) 69.0420 0.0615145
\(109\) −1458.66 −1.28179 −0.640893 0.767630i \(-0.721436\pi\)
−0.640893 + 0.767630i \(0.721436\pi\)
\(110\) 214.391 0.185831
\(111\) 1328.46 1.13597
\(112\) −1193.48 −1.00690
\(113\) 863.401 0.718778 0.359389 0.933188i \(-0.382985\pi\)
0.359389 + 0.933188i \(0.382985\pi\)
\(114\) 1244.79 1.02268
\(115\) −127.159 −0.103110
\(116\) −74.1562 −0.0593555
\(117\) 834.341 0.659272
\(118\) 1367.00 1.06646
\(119\) −1965.00 −1.51370
\(120\) −265.273 −0.201800
\(121\) −1156.85 −0.869157
\(122\) −1314.54 −0.975518
\(123\) 220.025 0.161293
\(124\) 401.971 0.291113
\(125\) 125.000 0.0894427
\(126\) 447.911 0.316691
\(127\) 145.667 0.101779 0.0508893 0.998704i \(-0.483794\pi\)
0.0508893 + 0.998704i \(0.483794\pi\)
\(128\) 1739.75 1.20136
\(129\) −363.174 −0.247874
\(130\) 1506.06 1.01608
\(131\) −2700.11 −1.80084 −0.900420 0.435021i \(-0.856741\pi\)
−0.900420 + 0.435021i \(0.856741\pi\)
\(132\) 101.236 0.0667534
\(133\) 1956.05 1.27527
\(134\) 2471.19 1.59312
\(135\) 135.000 0.0860663
\(136\) 2268.75 1.43047
\(137\) 2853.11 1.77926 0.889628 0.456686i \(-0.150964\pi\)
0.889628 + 0.456686i \(0.150964\pi\)
\(138\) −247.896 −0.152915
\(139\) 227.123 0.138592 0.0692960 0.997596i \(-0.477925\pi\)
0.0692960 + 0.997596i \(0.477925\pi\)
\(140\) 195.838 0.118224
\(141\) −320.225 −0.191261
\(142\) 1147.05 0.677877
\(143\) 1223.39 0.715419
\(144\) −701.263 −0.405823
\(145\) −145.000 −0.0830455
\(146\) −1829.15 −1.03686
\(147\) −325.157 −0.182439
\(148\) 1132.34 0.628906
\(149\) −2969.86 −1.63289 −0.816444 0.577425i \(-0.804058\pi\)
−0.816444 + 0.577425i \(0.804058\pi\)
\(150\) 243.688 0.132647
\(151\) −1346.91 −0.725892 −0.362946 0.931810i \(-0.618229\pi\)
−0.362946 + 0.931810i \(0.618229\pi\)
\(152\) −2258.42 −1.20515
\(153\) −1154.59 −0.610084
\(154\) 656.770 0.343662
\(155\) 785.987 0.407303
\(156\) 711.168 0.364993
\(157\) −667.920 −0.339527 −0.169764 0.985485i \(-0.554300\pi\)
−0.169764 + 0.985485i \(0.554300\pi\)
\(158\) −4096.27 −2.06254
\(159\) −1903.41 −0.949371
\(160\) −558.451 −0.275934
\(161\) −389.541 −0.190684
\(162\) 263.183 0.127639
\(163\) −685.566 −0.329434 −0.164717 0.986341i \(-0.552671\pi\)
−0.164717 + 0.986341i \(0.552671\pi\)
\(164\) 187.543 0.0892967
\(165\) 197.950 0.0933961
\(166\) −4568.27 −2.13594
\(167\) 1234.27 0.571922 0.285961 0.958241i \(-0.407687\pi\)
0.285961 + 0.958241i \(0.407687\pi\)
\(168\) −812.644 −0.373196
\(169\) 6397.14 2.91176
\(170\) −2084.14 −0.940272
\(171\) 1149.33 0.513987
\(172\) −309.559 −0.137231
\(173\) −2489.30 −1.09398 −0.546988 0.837140i \(-0.684226\pi\)
−0.546988 + 0.837140i \(0.684226\pi\)
\(174\) −282.678 −0.123160
\(175\) 382.928 0.165409
\(176\) −1028.26 −0.440385
\(177\) 1262.16 0.535989
\(178\) 931.721 0.392334
\(179\) 655.747 0.273815 0.136907 0.990584i \(-0.456284\pi\)
0.136907 + 0.990584i \(0.456284\pi\)
\(180\) 115.070 0.0476490
\(181\) −1121.86 −0.460704 −0.230352 0.973107i \(-0.573988\pi\)
−0.230352 + 0.973107i \(0.573988\pi\)
\(182\) 4613.72 1.87907
\(183\) −1213.73 −0.490283
\(184\) 449.757 0.180199
\(185\) 2214.11 0.879916
\(186\) 1532.28 0.604045
\(187\) −1692.96 −0.662042
\(188\) −272.950 −0.105888
\(189\) 413.562 0.159165
\(190\) 2074.66 0.792165
\(191\) 928.723 0.351832 0.175916 0.984405i \(-0.443711\pi\)
0.175916 + 0.984405i \(0.443711\pi\)
\(192\) 781.333 0.293687
\(193\) −1909.34 −0.712109 −0.356054 0.934465i \(-0.615878\pi\)
−0.356054 + 0.934465i \(0.615878\pi\)
\(194\) −1839.02 −0.680588
\(195\) 1390.57 0.510670
\(196\) −277.155 −0.101004
\(197\) 1882.11 0.680685 0.340342 0.940302i \(-0.389457\pi\)
0.340342 + 0.940302i \(0.389457\pi\)
\(198\) 385.903 0.138510
\(199\) −859.913 −0.306320 −0.153160 0.988201i \(-0.548945\pi\)
−0.153160 + 0.988201i \(0.548945\pi\)
\(200\) −442.122 −0.156314
\(201\) 2281.68 0.800683
\(202\) 28.1623 0.00980938
\(203\) −444.197 −0.153579
\(204\) −984.136 −0.337761
\(205\) 366.709 0.124937
\(206\) 72.2027 0.0244204
\(207\) −228.886 −0.0768534
\(208\) −7223.36 −2.40793
\(209\) 1685.26 0.557760
\(210\) 746.519 0.245308
\(211\) 3021.13 0.985701 0.492850 0.870114i \(-0.335955\pi\)
0.492850 + 0.870114i \(0.335955\pi\)
\(212\) −1622.41 −0.525601
\(213\) 1059.09 0.340693
\(214\) −1241.45 −0.396559
\(215\) −605.290 −0.192002
\(216\) −477.492 −0.150413
\(217\) 2407.81 0.753239
\(218\) −4739.45 −1.47246
\(219\) −1688.88 −0.521113
\(220\) 168.726 0.0517070
\(221\) −11892.8 −3.61990
\(222\) 4316.41 1.30495
\(223\) −2426.93 −0.728787 −0.364394 0.931245i \(-0.618724\pi\)
−0.364394 + 0.931245i \(0.618724\pi\)
\(224\) −1710.77 −0.510293
\(225\) 225.000 0.0666667
\(226\) 2805.34 0.825700
\(227\) −688.137 −0.201204 −0.100602 0.994927i \(-0.532077\pi\)
−0.100602 + 0.994927i \(0.532077\pi\)
\(228\) 979.658 0.284559
\(229\) −2876.74 −0.830132 −0.415066 0.909791i \(-0.636241\pi\)
−0.415066 + 0.909791i \(0.636241\pi\)
\(230\) −413.160 −0.118448
\(231\) 606.404 0.172721
\(232\) 512.861 0.145134
\(233\) 3643.42 1.02441 0.512207 0.858862i \(-0.328828\pi\)
0.512207 + 0.858862i \(0.328828\pi\)
\(234\) 2710.92 0.757343
\(235\) −533.708 −0.148150
\(236\) 1075.83 0.296740
\(237\) −3782.14 −1.03661
\(238\) −6384.60 −1.73888
\(239\) 39.6875 0.0107413 0.00537066 0.999986i \(-0.498290\pi\)
0.00537066 + 0.999986i \(0.498290\pi\)
\(240\) −1168.77 −0.314349
\(241\) 1360.67 0.363688 0.181844 0.983327i \(-0.441793\pi\)
0.181844 + 0.983327i \(0.441793\pi\)
\(242\) −3758.80 −0.998449
\(243\) 243.000 0.0641500
\(244\) −1034.55 −0.271436
\(245\) −541.929 −0.141317
\(246\) 714.900 0.185286
\(247\) 11838.7 3.04971
\(248\) −2780.02 −0.711819
\(249\) −4217.94 −1.07350
\(250\) 406.146 0.102748
\(251\) −4520.37 −1.13675 −0.568373 0.822771i \(-0.692427\pi\)
−0.568373 + 0.822771i \(0.692427\pi\)
\(252\) 352.508 0.0881188
\(253\) −335.614 −0.0833986
\(254\) 473.298 0.116919
\(255\) −1924.31 −0.472569
\(256\) 3569.19 0.871384
\(257\) −2843.13 −0.690077 −0.345038 0.938589i \(-0.612134\pi\)
−0.345038 + 0.938589i \(0.612134\pi\)
\(258\) −1180.02 −0.284746
\(259\) 6782.75 1.62726
\(260\) 1185.28 0.282723
\(261\) −261.000 −0.0618984
\(262\) −8773.13 −2.06872
\(263\) −3664.30 −0.859127 −0.429563 0.903037i \(-0.641333\pi\)
−0.429563 + 0.903037i \(0.641333\pi\)
\(264\) −700.143 −0.163223
\(265\) −3172.35 −0.735380
\(266\) 6355.55 1.46498
\(267\) 860.270 0.197182
\(268\) 1944.84 0.443283
\(269\) 3948.22 0.894896 0.447448 0.894310i \(-0.352333\pi\)
0.447448 + 0.894310i \(0.352333\pi\)
\(270\) 438.638 0.0988691
\(271\) 8099.47 1.81553 0.907763 0.419484i \(-0.137789\pi\)
0.907763 + 0.419484i \(0.137789\pi\)
\(272\) 9995.91 2.22828
\(273\) 4259.90 0.944399
\(274\) 9270.26 2.04393
\(275\) 329.916 0.0723443
\(276\) −195.095 −0.0425484
\(277\) −4316.21 −0.936230 −0.468115 0.883668i \(-0.655067\pi\)
−0.468115 + 0.883668i \(0.655067\pi\)
\(278\) 737.961 0.159208
\(279\) 1414.78 0.303586
\(280\) −1354.41 −0.289076
\(281\) −5441.20 −1.15514 −0.577571 0.816341i \(-0.695999\pi\)
−0.577571 + 0.816341i \(0.695999\pi\)
\(282\) −1040.47 −0.219712
\(283\) −1488.06 −0.312565 −0.156282 0.987712i \(-0.549951\pi\)
−0.156282 + 0.987712i \(0.549951\pi\)
\(284\) 902.736 0.188618
\(285\) 1915.56 0.398132
\(286\) 3975.00 0.821842
\(287\) 1123.39 0.231050
\(288\) −1005.21 −0.205669
\(289\) 11544.7 2.34982
\(290\) −471.130 −0.0953989
\(291\) −1697.99 −0.342055
\(292\) −1439.55 −0.288504
\(293\) −1329.28 −0.265042 −0.132521 0.991180i \(-0.542307\pi\)
−0.132521 + 0.991180i \(0.542307\pi\)
\(294\) −1056.49 −0.209578
\(295\) 2103.61 0.415175
\(296\) −7831.24 −1.53778
\(297\) 356.309 0.0696134
\(298\) −9649.58 −1.87579
\(299\) −2357.64 −0.456006
\(300\) 191.783 0.0369087
\(301\) −1854.26 −0.355076
\(302\) −4376.33 −0.833873
\(303\) 26.0026 0.00493007
\(304\) −9950.43 −1.87729
\(305\) −2022.89 −0.379772
\(306\) −3751.45 −0.700837
\(307\) 3273.11 0.608489 0.304245 0.952594i \(-0.401596\pi\)
0.304245 + 0.952594i \(0.401596\pi\)
\(308\) 516.881 0.0956234
\(309\) 66.6657 0.0122734
\(310\) 2553.80 0.467892
\(311\) 6819.97 1.24349 0.621744 0.783220i \(-0.286424\pi\)
0.621744 + 0.783220i \(0.286424\pi\)
\(312\) −4918.41 −0.892468
\(313\) 6086.97 1.09922 0.549610 0.835421i \(-0.314776\pi\)
0.549610 + 0.835421i \(0.314776\pi\)
\(314\) −2170.19 −0.390034
\(315\) 689.270 0.123289
\(316\) −3223.78 −0.573899
\(317\) 528.192 0.0935844 0.0467922 0.998905i \(-0.485100\pi\)
0.0467922 + 0.998905i \(0.485100\pi\)
\(318\) −6184.50 −1.09060
\(319\) −382.703 −0.0671700
\(320\) 1302.22 0.227489
\(321\) −1146.24 −0.199305
\(322\) −1265.69 −0.219049
\(323\) −16382.8 −2.82218
\(324\) 207.126 0.0355154
\(325\) 2317.61 0.395563
\(326\) −2227.52 −0.378439
\(327\) −4375.99 −0.740039
\(328\) −1297.04 −0.218345
\(329\) −1634.97 −0.273979
\(330\) 643.172 0.107289
\(331\) −4640.42 −0.770576 −0.385288 0.922796i \(-0.625898\pi\)
−0.385288 + 0.922796i \(0.625898\pi\)
\(332\) −3595.25 −0.594322
\(333\) 3985.39 0.655850
\(334\) 4010.37 0.656998
\(335\) 3802.80 0.620206
\(336\) −3580.44 −0.581337
\(337\) 2733.84 0.441904 0.220952 0.975285i \(-0.429084\pi\)
0.220952 + 0.975285i \(0.429084\pi\)
\(338\) 20785.4 3.34490
\(339\) 2590.20 0.414987
\(340\) −1640.23 −0.261629
\(341\) 2074.48 0.329441
\(342\) 3734.38 0.590445
\(343\) −6913.93 −1.08839
\(344\) 2140.90 0.335551
\(345\) −381.476 −0.0595304
\(346\) −8088.16 −1.25671
\(347\) 11957.0 1.84982 0.924910 0.380187i \(-0.124140\pi\)
0.924910 + 0.380187i \(0.124140\pi\)
\(348\) −222.469 −0.0342689
\(349\) 5552.21 0.851584 0.425792 0.904821i \(-0.359996\pi\)
0.425792 + 0.904821i \(0.359996\pi\)
\(350\) 1244.20 0.190015
\(351\) 2503.02 0.380631
\(352\) −1473.93 −0.223185
\(353\) −3044.14 −0.458990 −0.229495 0.973310i \(-0.573707\pi\)
−0.229495 + 0.973310i \(0.573707\pi\)
\(354\) 4100.99 0.615720
\(355\) 1765.15 0.263899
\(356\) 733.268 0.109166
\(357\) −5894.99 −0.873938
\(358\) 2130.63 0.314546
\(359\) −5.90514 −0.000868138 0 −0.000434069 1.00000i \(-0.500138\pi\)
−0.000434069 1.00000i \(0.500138\pi\)
\(360\) −795.819 −0.116509
\(361\) 9449.24 1.37764
\(362\) −3645.13 −0.529236
\(363\) −3470.55 −0.501808
\(364\) 3631.01 0.522848
\(365\) −2814.80 −0.403653
\(366\) −3943.63 −0.563215
\(367\) 13082.6 1.86078 0.930390 0.366572i \(-0.119469\pi\)
0.930390 + 0.366572i \(0.119469\pi\)
\(368\) 1981.59 0.280700
\(369\) 660.076 0.0931225
\(370\) 7194.01 1.01081
\(371\) −9718.24 −1.35996
\(372\) 1205.91 0.168074
\(373\) 4362.30 0.605553 0.302777 0.953062i \(-0.402086\pi\)
0.302777 + 0.953062i \(0.402086\pi\)
\(374\) −5500.73 −0.760524
\(375\) 375.000 0.0516398
\(376\) 1887.71 0.258913
\(377\) −2688.43 −0.367271
\(378\) 1343.73 0.182842
\(379\) 9062.62 1.22827 0.614136 0.789200i \(-0.289504\pi\)
0.614136 + 0.789200i \(0.289504\pi\)
\(380\) 1632.76 0.220418
\(381\) 437.002 0.0587619
\(382\) 3017.58 0.404169
\(383\) −10642.7 −1.41989 −0.709946 0.704256i \(-0.751281\pi\)
−0.709946 + 0.704256i \(0.751281\pi\)
\(384\) 5219.25 0.693603
\(385\) 1010.67 0.133789
\(386\) −6203.76 −0.818039
\(387\) −1089.52 −0.143110
\(388\) −1447.32 −0.189372
\(389\) 7071.75 0.921728 0.460864 0.887471i \(-0.347540\pi\)
0.460864 + 0.887471i \(0.347540\pi\)
\(390\) 4518.19 0.586635
\(391\) 3262.57 0.421983
\(392\) 1916.79 0.246971
\(393\) −8100.34 −1.03972
\(394\) 6115.30 0.781940
\(395\) −6303.57 −0.802954
\(396\) 303.708 0.0385401
\(397\) −14393.7 −1.81964 −0.909821 0.415001i \(-0.863781\pi\)
−0.909821 + 0.415001i \(0.863781\pi\)
\(398\) −2794.01 −0.351886
\(399\) 5868.16 0.736279
\(400\) −1947.95 −0.243494
\(401\) 6410.03 0.798258 0.399129 0.916895i \(-0.369313\pi\)
0.399129 + 0.916895i \(0.369313\pi\)
\(402\) 7413.57 0.919789
\(403\) 14572.9 1.80131
\(404\) 22.1639 0.00272944
\(405\) 405.000 0.0496904
\(406\) −1443.27 −0.176424
\(407\) 5843.76 0.711706
\(408\) 6806.25 0.825881
\(409\) −1504.93 −0.181941 −0.0909704 0.995854i \(-0.528997\pi\)
−0.0909704 + 0.995854i \(0.528997\pi\)
\(410\) 1191.50 0.143522
\(411\) 8559.34 1.02725
\(412\) 56.8238 0.00679493
\(413\) 6444.24 0.767797
\(414\) −743.689 −0.0882858
\(415\) −7029.90 −0.831528
\(416\) −10354.2 −1.22033
\(417\) 681.368 0.0800162
\(418\) 5475.70 0.640730
\(419\) 9086.25 1.05941 0.529705 0.848182i \(-0.322303\pi\)
0.529705 + 0.848182i \(0.322303\pi\)
\(420\) 587.514 0.0682565
\(421\) 3629.83 0.420207 0.210104 0.977679i \(-0.432620\pi\)
0.210104 + 0.977679i \(0.432620\pi\)
\(422\) 9816.15 1.13233
\(423\) −960.675 −0.110425
\(424\) 11220.5 1.28518
\(425\) −3207.19 −0.366050
\(426\) 3441.16 0.391373
\(427\) −6196.97 −0.702324
\(428\) −977.023 −0.110342
\(429\) 3670.17 0.413047
\(430\) −1966.69 −0.220563
\(431\) 13184.1 1.47344 0.736722 0.676196i \(-0.236373\pi\)
0.736722 + 0.676196i \(0.236373\pi\)
\(432\) −2103.79 −0.234302
\(433\) 1537.65 0.170658 0.0853290 0.996353i \(-0.472806\pi\)
0.0853290 + 0.996353i \(0.472806\pi\)
\(434\) 7823.39 0.865287
\(435\) −435.000 −0.0479463
\(436\) −3729.96 −0.409708
\(437\) −3247.73 −0.355515
\(438\) −5487.45 −0.598632
\(439\) −11087.1 −1.20537 −0.602684 0.797980i \(-0.705902\pi\)
−0.602684 + 0.797980i \(0.705902\pi\)
\(440\) −1166.91 −0.126432
\(441\) −975.472 −0.105331
\(442\) −38641.9 −4.15838
\(443\) −55.7328 −0.00597731 −0.00298865 0.999996i \(-0.500951\pi\)
−0.00298865 + 0.999996i \(0.500951\pi\)
\(444\) 3397.03 0.363099
\(445\) 1433.78 0.152737
\(446\) −7885.52 −0.837198
\(447\) −8909.57 −0.942748
\(448\) 3989.26 0.420702
\(449\) 14054.7 1.47725 0.738623 0.674119i \(-0.235477\pi\)
0.738623 + 0.674119i \(0.235477\pi\)
\(450\) 731.063 0.0765837
\(451\) 967.865 0.101053
\(452\) 2207.81 0.229749
\(453\) −4040.72 −0.419094
\(454\) −2235.88 −0.231134
\(455\) 7099.84 0.731528
\(456\) −6775.27 −0.695792
\(457\) −14171.3 −1.45056 −0.725280 0.688454i \(-0.758289\pi\)
−0.725280 + 0.688454i \(0.758289\pi\)
\(458\) −9347.01 −0.953618
\(459\) −3463.76 −0.352232
\(460\) −325.159 −0.0329579
\(461\) 13504.2 1.36432 0.682161 0.731202i \(-0.261041\pi\)
0.682161 + 0.731202i \(0.261041\pi\)
\(462\) 1970.31 0.198414
\(463\) 4288.75 0.430486 0.215243 0.976561i \(-0.430946\pi\)
0.215243 + 0.976561i \(0.430946\pi\)
\(464\) 2259.62 0.226078
\(465\) 2357.96 0.235157
\(466\) 11838.1 1.17680
\(467\) 2434.86 0.241268 0.120634 0.992697i \(-0.461507\pi\)
0.120634 + 0.992697i \(0.461507\pi\)
\(468\) 2133.50 0.210729
\(469\) 11649.6 1.14697
\(470\) −1734.11 −0.170188
\(471\) −2003.76 −0.196026
\(472\) −7440.41 −0.725577
\(473\) −1597.56 −0.155298
\(474\) −12288.8 −1.19081
\(475\) 3192.59 0.308392
\(476\) −5024.71 −0.483839
\(477\) −5710.22 −0.548120
\(478\) 128.952 0.0123391
\(479\) 5102.67 0.486737 0.243369 0.969934i \(-0.421748\pi\)
0.243369 + 0.969934i \(0.421748\pi\)
\(480\) −1675.35 −0.159310
\(481\) 41051.6 3.89146
\(482\) 4421.07 0.417788
\(483\) −1168.62 −0.110092
\(484\) −2958.19 −0.277817
\(485\) −2829.99 −0.264955
\(486\) 789.549 0.0736927
\(487\) −16.0388 −0.00149237 −0.000746187 1.00000i \(-0.500238\pi\)
−0.000746187 1.00000i \(0.500238\pi\)
\(488\) 7154.91 0.663704
\(489\) −2056.70 −0.190199
\(490\) −1760.82 −0.162338
\(491\) 8830.31 0.811622 0.405811 0.913957i \(-0.366989\pi\)
0.405811 + 0.913957i \(0.366989\pi\)
\(492\) 562.629 0.0515555
\(493\) 3720.34 0.339869
\(494\) 38466.0 3.50338
\(495\) 593.849 0.0539223
\(496\) −12248.5 −1.10882
\(497\) 5407.40 0.488038
\(498\) −13704.8 −1.23319
\(499\) −18025.8 −1.61712 −0.808562 0.588411i \(-0.799754\pi\)
−0.808562 + 0.588411i \(0.799754\pi\)
\(500\) 319.639 0.0285894
\(501\) 3702.82 0.330199
\(502\) −14687.5 −1.30584
\(503\) −10613.5 −0.940823 −0.470412 0.882447i \(-0.655895\pi\)
−0.470412 + 0.882447i \(0.655895\pi\)
\(504\) −2437.93 −0.215465
\(505\) 43.3377 0.00381882
\(506\) −1090.47 −0.0958046
\(507\) 19191.4 1.68111
\(508\) 372.487 0.0325324
\(509\) 21672.1 1.88723 0.943615 0.331045i \(-0.107401\pi\)
0.943615 + 0.331045i \(0.107401\pi\)
\(510\) −6252.42 −0.542866
\(511\) −8622.92 −0.746488
\(512\) −2321.09 −0.200349
\(513\) 3448.00 0.296750
\(514\) −9237.83 −0.792730
\(515\) 111.109 0.00950693
\(516\) −928.677 −0.0792301
\(517\) −1408.63 −0.119829
\(518\) 22038.3 1.86932
\(519\) −7467.90 −0.631608
\(520\) −8197.34 −0.691302
\(521\) 5074.30 0.426697 0.213348 0.976976i \(-0.431563\pi\)
0.213348 + 0.976976i \(0.431563\pi\)
\(522\) −848.034 −0.0711062
\(523\) −2270.14 −0.189802 −0.0949009 0.995487i \(-0.530253\pi\)
−0.0949009 + 0.995487i \(0.530253\pi\)
\(524\) −6904.49 −0.575619
\(525\) 1148.78 0.0954991
\(526\) −11905.9 −0.986927
\(527\) −20166.5 −1.66692
\(528\) −3084.77 −0.254257
\(529\) −11520.2 −0.946842
\(530\) −10307.5 −0.844772
\(531\) 3786.49 0.309453
\(532\) 5001.85 0.407627
\(533\) 6799.12 0.552538
\(534\) 2795.16 0.226514
\(535\) −1910.40 −0.154381
\(536\) −13450.4 −1.08390
\(537\) 1967.24 0.158087
\(538\) 12828.4 1.02802
\(539\) −1430.33 −0.114302
\(540\) 345.210 0.0275101
\(541\) −16931.4 −1.34554 −0.672771 0.739850i \(-0.734896\pi\)
−0.672771 + 0.739850i \(0.734896\pi\)
\(542\) 26316.5 2.08560
\(543\) −3365.59 −0.265988
\(544\) 14328.4 1.12928
\(545\) −7293.32 −0.573232
\(546\) 13841.1 1.08488
\(547\) −19277.9 −1.50688 −0.753439 0.657518i \(-0.771607\pi\)
−0.753439 + 0.657518i \(0.771607\pi\)
\(548\) 7295.73 0.568719
\(549\) −3641.20 −0.283065
\(550\) 1071.95 0.0831059
\(551\) −3703.41 −0.286335
\(552\) 1349.27 0.104038
\(553\) −19310.5 −1.48493
\(554\) −14024.1 −1.07550
\(555\) 6642.32 0.508020
\(556\) 580.778 0.0442994
\(557\) 22405.6 1.70441 0.852205 0.523208i \(-0.175265\pi\)
0.852205 + 0.523208i \(0.175265\pi\)
\(558\) 4596.85 0.348746
\(559\) −11222.6 −0.849136
\(560\) −5967.40 −0.450301
\(561\) −5078.89 −0.382230
\(562\) −17679.4 −1.32698
\(563\) −5383.32 −0.402984 −0.201492 0.979490i \(-0.564579\pi\)
−0.201492 + 0.979490i \(0.564579\pi\)
\(564\) −818.851 −0.0611345
\(565\) 4317.00 0.321447
\(566\) −4834.96 −0.359061
\(567\) 1240.69 0.0918941
\(568\) −6243.28 −0.461201
\(569\) 11142.9 0.820977 0.410489 0.911866i \(-0.365358\pi\)
0.410489 + 0.911866i \(0.365358\pi\)
\(570\) 6223.97 0.457357
\(571\) 19658.2 1.44075 0.720377 0.693583i \(-0.243969\pi\)
0.720377 + 0.693583i \(0.243969\pi\)
\(572\) 3128.34 0.228676
\(573\) 2786.17 0.203131
\(574\) 3650.07 0.265420
\(575\) −635.794 −0.0461120
\(576\) 2344.00 0.169560
\(577\) 11106.1 0.801305 0.400652 0.916230i \(-0.368784\pi\)
0.400652 + 0.916230i \(0.368784\pi\)
\(578\) 37510.6 2.69937
\(579\) −5728.01 −0.411136
\(580\) −370.781 −0.0265446
\(581\) −21535.6 −1.53777
\(582\) −5517.07 −0.392938
\(583\) −8372.86 −0.594800
\(584\) 9955.87 0.705439
\(585\) 4171.71 0.294836
\(586\) −4319.05 −0.304468
\(587\) 3384.91 0.238007 0.119003 0.992894i \(-0.462030\pi\)
0.119003 + 0.992894i \(0.462030\pi\)
\(588\) −831.464 −0.0583146
\(589\) 20074.7 1.40435
\(590\) 6834.98 0.476935
\(591\) 5646.33 0.392993
\(592\) −34503.8 −2.39543
\(593\) −14326.2 −0.992087 −0.496044 0.868298i \(-0.665214\pi\)
−0.496044 + 0.868298i \(0.665214\pi\)
\(594\) 1157.71 0.0799687
\(595\) −9824.98 −0.676949
\(596\) −7594.26 −0.521934
\(597\) −2579.74 −0.176854
\(598\) −7660.37 −0.523839
\(599\) −9809.62 −0.669132 −0.334566 0.942372i \(-0.608590\pi\)
−0.334566 + 0.942372i \(0.608590\pi\)
\(600\) −1326.37 −0.0902478
\(601\) 21136.6 1.43457 0.717287 0.696778i \(-0.245384\pi\)
0.717287 + 0.696778i \(0.245384\pi\)
\(602\) −6024.81 −0.407895
\(603\) 6845.04 0.462275
\(604\) −3444.19 −0.232023
\(605\) −5784.24 −0.388699
\(606\) 84.4870 0.00566345
\(607\) −14745.5 −0.986002 −0.493001 0.870029i \(-0.664100\pi\)
−0.493001 + 0.870029i \(0.664100\pi\)
\(608\) −14263.2 −0.951400
\(609\) −1332.59 −0.0886687
\(610\) −6572.72 −0.436265
\(611\) −9895.44 −0.655199
\(612\) −2952.41 −0.195007
\(613\) −5291.00 −0.348616 −0.174308 0.984691i \(-0.555769\pi\)
−0.174308 + 0.984691i \(0.555769\pi\)
\(614\) 10634.9 0.699005
\(615\) 1100.13 0.0721323
\(616\) −3574.73 −0.233815
\(617\) −11432.8 −0.745977 −0.372988 0.927836i \(-0.621667\pi\)
−0.372988 + 0.927836i \(0.621667\pi\)
\(618\) 216.608 0.0140991
\(619\) −28040.9 −1.82077 −0.910387 0.413759i \(-0.864216\pi\)
−0.910387 + 0.413759i \(0.864216\pi\)
\(620\) 2009.86 0.130190
\(621\) −686.657 −0.0443713
\(622\) 22159.2 1.42846
\(623\) 4392.28 0.282461
\(624\) −21670.1 −1.39022
\(625\) 625.000 0.0400000
\(626\) 19777.6 1.26274
\(627\) 5055.78 0.322023
\(628\) −1707.94 −0.108526
\(629\) −56808.5 −3.60112
\(630\) 2239.56 0.141629
\(631\) −11034.1 −0.696132 −0.348066 0.937470i \(-0.613161\pi\)
−0.348066 + 0.937470i \(0.613161\pi\)
\(632\) 22295.6 1.40327
\(633\) 9063.38 0.569095
\(634\) 1716.19 0.107506
\(635\) 728.336 0.0455167
\(636\) −4867.22 −0.303456
\(637\) −10047.9 −0.624977
\(638\) −1243.47 −0.0771619
\(639\) 3177.27 0.196699
\(640\) 8698.74 0.537263
\(641\) −13944.7 −0.859256 −0.429628 0.903006i \(-0.641355\pi\)
−0.429628 + 0.903006i \(0.641355\pi\)
\(642\) −3724.34 −0.228953
\(643\) −19721.2 −1.20953 −0.604766 0.796403i \(-0.706733\pi\)
−0.604766 + 0.796403i \(0.706733\pi\)
\(644\) −996.100 −0.0609501
\(645\) −1815.87 −0.110852
\(646\) −53230.5 −3.24199
\(647\) −17085.3 −1.03816 −0.519082 0.854724i \(-0.673726\pi\)
−0.519082 + 0.854724i \(0.673726\pi\)
\(648\) −1432.47 −0.0868409
\(649\) 5552.11 0.335808
\(650\) 7530.32 0.454406
\(651\) 7223.43 0.434883
\(652\) −1753.07 −0.105300
\(653\) 3094.80 0.185465 0.0927327 0.995691i \(-0.470440\pi\)
0.0927327 + 0.995691i \(0.470440\pi\)
\(654\) −14218.3 −0.850124
\(655\) −13500.6 −0.805360
\(656\) −5714.65 −0.340121
\(657\) −5066.63 −0.300865
\(658\) −5312.31 −0.314735
\(659\) −7435.85 −0.439544 −0.219772 0.975551i \(-0.570531\pi\)
−0.219772 + 0.975551i \(0.570531\pi\)
\(660\) 506.179 0.0298530
\(661\) 21337.1 1.25555 0.627775 0.778395i \(-0.283966\pi\)
0.627775 + 0.778395i \(0.283966\pi\)
\(662\) −15077.5 −0.885204
\(663\) −35678.5 −2.08995
\(664\) 24864.6 1.45321
\(665\) 9780.27 0.570320
\(666\) 12949.2 0.753412
\(667\) 737.521 0.0428140
\(668\) 3156.17 0.182808
\(669\) −7280.80 −0.420765
\(670\) 12355.9 0.712465
\(671\) −5339.07 −0.307172
\(672\) −5132.31 −0.294618
\(673\) −4392.84 −0.251607 −0.125804 0.992055i \(-0.540151\pi\)
−0.125804 + 0.992055i \(0.540151\pi\)
\(674\) 8882.70 0.507639
\(675\) 675.000 0.0384900
\(676\) 16358.2 0.930712
\(677\) 21663.4 1.22983 0.614913 0.788595i \(-0.289191\pi\)
0.614913 + 0.788595i \(0.289191\pi\)
\(678\) 8416.01 0.476718
\(679\) −8669.46 −0.489990
\(680\) 11343.7 0.639724
\(681\) −2064.41 −0.116165
\(682\) 6740.33 0.378447
\(683\) 8116.08 0.454690 0.227345 0.973814i \(-0.426996\pi\)
0.227345 + 0.973814i \(0.426996\pi\)
\(684\) 2938.97 0.164290
\(685\) 14265.6 0.795707
\(686\) −22464.5 −1.25029
\(687\) −8630.21 −0.479277
\(688\) 9432.61 0.522696
\(689\) −58818.2 −3.25224
\(690\) −1239.48 −0.0683859
\(691\) −26418.5 −1.45442 −0.727212 0.686413i \(-0.759184\pi\)
−0.727212 + 0.686413i \(0.759184\pi\)
\(692\) −6365.42 −0.349677
\(693\) 1819.21 0.0997202
\(694\) 38850.5 2.12499
\(695\) 1135.61 0.0619803
\(696\) 1538.58 0.0837929
\(697\) −9408.83 −0.511313
\(698\) 18040.1 0.978262
\(699\) 10930.3 0.591445
\(700\) 979.190 0.0528713
\(701\) −18824.8 −1.01427 −0.507134 0.861867i \(-0.669295\pi\)
−0.507134 + 0.861867i \(0.669295\pi\)
\(702\) 8132.75 0.437252
\(703\) 56549.9 3.03389
\(704\) 3436.99 0.184001
\(705\) −1601.12 −0.0855345
\(706\) −9890.94 −0.527267
\(707\) 132.762 0.00706227
\(708\) 3227.49 0.171323
\(709\) −18712.6 −0.991210 −0.495605 0.868548i \(-0.665054\pi\)
−0.495605 + 0.868548i \(0.665054\pi\)
\(710\) 5735.27 0.303156
\(711\) −11346.4 −0.598487
\(712\) −5071.25 −0.266929
\(713\) −3997.80 −0.209984
\(714\) −19153.8 −1.00394
\(715\) 6116.95 0.319945
\(716\) 1676.82 0.0875218
\(717\) 119.063 0.00620150
\(718\) −19.1868 −0.000997278 0
\(719\) 4139.21 0.214696 0.107348 0.994222i \(-0.465764\pi\)
0.107348 + 0.994222i \(0.465764\pi\)
\(720\) −3506.31 −0.181490
\(721\) 340.375 0.0175815
\(722\) 30702.2 1.58257
\(723\) 4082.02 0.209975
\(724\) −2868.73 −0.147259
\(725\) −725.000 −0.0371391
\(726\) −11276.4 −0.576455
\(727\) −20932.3 −1.06786 −0.533931 0.845528i \(-0.679286\pi\)
−0.533931 + 0.845528i \(0.679286\pi\)
\(728\) −25111.9 −1.27845
\(729\) 729.000 0.0370370
\(730\) −9145.76 −0.463698
\(731\) 15530.2 0.785782
\(732\) −3103.65 −0.156714
\(733\) 9244.31 0.465821 0.232910 0.972498i \(-0.425175\pi\)
0.232910 + 0.972498i \(0.425175\pi\)
\(734\) 42507.6 2.13758
\(735\) −1625.79 −0.0815892
\(736\) 2840.47 0.142257
\(737\) 10036.8 0.501644
\(738\) 2144.70 0.106975
\(739\) 18604.3 0.926075 0.463038 0.886339i \(-0.346759\pi\)
0.463038 + 0.886339i \(0.346759\pi\)
\(740\) 5661.72 0.281255
\(741\) 35516.2 1.76075
\(742\) −31576.2 −1.56226
\(743\) −25455.8 −1.25691 −0.628453 0.777848i \(-0.716312\pi\)
−0.628453 + 0.777848i \(0.716312\pi\)
\(744\) −8340.05 −0.410969
\(745\) −14849.3 −0.730249
\(746\) 14173.9 0.695632
\(747\) −12653.8 −0.619784
\(748\) −4329.10 −0.211614
\(749\) −5852.38 −0.285502
\(750\) 1218.44 0.0593215
\(751\) −30977.0 −1.50515 −0.752574 0.658508i \(-0.771188\pi\)
−0.752574 + 0.658508i \(0.771188\pi\)
\(752\) 8317.10 0.403316
\(753\) −13561.1 −0.656301
\(754\) −8735.18 −0.421905
\(755\) −6734.53 −0.324629
\(756\) 1057.52 0.0508754
\(757\) 10166.1 0.488102 0.244051 0.969762i \(-0.421524\pi\)
0.244051 + 0.969762i \(0.421524\pi\)
\(758\) 29446.0 1.41098
\(759\) −1006.84 −0.0481502
\(760\) −11292.1 −0.538958
\(761\) 5617.56 0.267591 0.133795 0.991009i \(-0.457284\pi\)
0.133795 + 0.991009i \(0.457284\pi\)
\(762\) 1419.89 0.0675030
\(763\) −22342.5 −1.06010
\(764\) 2374.85 0.112459
\(765\) −5772.94 −0.272838
\(766\) −34580.1 −1.63111
\(767\) 39002.8 1.83613
\(768\) 10707.6 0.503094
\(769\) 25596.5 1.20030 0.600152 0.799886i \(-0.295107\pi\)
0.600152 + 0.799886i \(0.295107\pi\)
\(770\) 3283.85 0.153691
\(771\) −8529.40 −0.398416
\(772\) −4882.39 −0.227618
\(773\) −16425.4 −0.764269 −0.382134 0.924107i \(-0.624811\pi\)
−0.382134 + 0.924107i \(0.624811\pi\)
\(774\) −3540.05 −0.164398
\(775\) 3929.93 0.182151
\(776\) 10009.6 0.463046
\(777\) 20348.2 0.939497
\(778\) 22977.3 1.05884
\(779\) 9366.02 0.430773
\(780\) 3555.84 0.163230
\(781\) 4658.81 0.213451
\(782\) 10600.7 0.484756
\(783\) −783.000 −0.0357371
\(784\) 8445.21 0.384713
\(785\) −3339.60 −0.151841
\(786\) −26319.4 −1.19438
\(787\) 35122.2 1.59081 0.795407 0.606076i \(-0.207257\pi\)
0.795407 + 0.606076i \(0.207257\pi\)
\(788\) 4812.77 0.217573
\(789\) −10992.9 −0.496017
\(790\) −20481.4 −0.922398
\(791\) 13224.8 0.594463
\(792\) −2100.43 −0.0942367
\(793\) −37506.2 −1.67955
\(794\) −46767.5 −2.09032
\(795\) −9517.04 −0.424572
\(796\) −2198.89 −0.0979117
\(797\) −15617.2 −0.694092 −0.347046 0.937848i \(-0.612815\pi\)
−0.347046 + 0.937848i \(0.612815\pi\)
\(798\) 19066.7 0.845805
\(799\) 13693.6 0.606315
\(800\) −2792.25 −0.123401
\(801\) 2580.81 0.113843
\(802\) 20827.3 0.917003
\(803\) −7429.17 −0.326488
\(804\) 5834.51 0.255929
\(805\) −1947.71 −0.0852765
\(806\) 47349.9 2.06927
\(807\) 11844.6 0.516668
\(808\) −153.284 −0.00667392
\(809\) 38122.1 1.65674 0.828370 0.560182i \(-0.189269\pi\)
0.828370 + 0.560182i \(0.189269\pi\)
\(810\) 1315.91 0.0570821
\(811\) 14593.9 0.631887 0.315943 0.948778i \(-0.397679\pi\)
0.315943 + 0.948778i \(0.397679\pi\)
\(812\) −1135.86 −0.0490897
\(813\) 24298.4 1.04819
\(814\) 18987.4 0.817576
\(815\) −3427.83 −0.147327
\(816\) 29987.7 1.28650
\(817\) −15459.6 −0.662009
\(818\) −4889.76 −0.209005
\(819\) 12779.7 0.545249
\(820\) 937.716 0.0399347
\(821\) −33424.2 −1.42085 −0.710423 0.703775i \(-0.751496\pi\)
−0.710423 + 0.703775i \(0.751496\pi\)
\(822\) 27810.8 1.18006
\(823\) 39376.7 1.66778 0.833892 0.551928i \(-0.186108\pi\)
0.833892 + 0.551928i \(0.186108\pi\)
\(824\) −392.991 −0.0166147
\(825\) 989.748 0.0417680
\(826\) 20938.4 0.882011
\(827\) −8360.01 −0.351519 −0.175759 0.984433i \(-0.556238\pi\)
−0.175759 + 0.984433i \(0.556238\pi\)
\(828\) −585.286 −0.0245653
\(829\) 6309.82 0.264353 0.132177 0.991226i \(-0.457803\pi\)
0.132177 + 0.991226i \(0.457803\pi\)
\(830\) −22841.3 −0.955222
\(831\) −12948.6 −0.540533
\(832\) 24144.4 1.00608
\(833\) 13904.5 0.578348
\(834\) 2213.88 0.0919190
\(835\) 6171.37 0.255771
\(836\) 4309.40 0.178282
\(837\) 4244.33 0.175275
\(838\) 29522.8 1.21700
\(839\) −17336.1 −0.713360 −0.356680 0.934227i \(-0.616091\pi\)
−0.356680 + 0.934227i \(0.616091\pi\)
\(840\) −4063.22 −0.166898
\(841\) 841.000 0.0344828
\(842\) 11793.9 0.482715
\(843\) −16323.6 −0.666921
\(844\) 7725.35 0.315068
\(845\) 31985.7 1.30218
\(846\) −3121.40 −0.126851
\(847\) −17719.6 −0.718834
\(848\) 49436.6 2.00196
\(849\) −4464.17 −0.180459
\(850\) −10420.7 −0.420502
\(851\) −11261.7 −0.453639
\(852\) 2708.21 0.108899
\(853\) −2482.79 −0.0996591 −0.0498295 0.998758i \(-0.515868\pi\)
−0.0498295 + 0.998758i \(0.515868\pi\)
\(854\) −20135.0 −0.806799
\(855\) 5746.67 0.229862
\(856\) 6757.05 0.269803
\(857\) −41167.3 −1.64090 −0.820448 0.571721i \(-0.806276\pi\)
−0.820448 + 0.571721i \(0.806276\pi\)
\(858\) 11925.0 0.474490
\(859\) −31282.9 −1.24256 −0.621279 0.783589i \(-0.713387\pi\)
−0.621279 + 0.783589i \(0.713387\pi\)
\(860\) −1547.79 −0.0613714
\(861\) 3370.16 0.133397
\(862\) 42837.3 1.69263
\(863\) −18016.6 −0.710652 −0.355326 0.934742i \(-0.615630\pi\)
−0.355326 + 0.934742i \(0.615630\pi\)
\(864\) −3015.63 −0.118743
\(865\) −12446.5 −0.489241
\(866\) 4996.10 0.196044
\(867\) 34634.0 1.35667
\(868\) 6157.04 0.240764
\(869\) −16637.2 −0.649457
\(870\) −1413.39 −0.0550786
\(871\) 70507.4 2.74288
\(872\) 25796.3 1.00180
\(873\) −5093.98 −0.197486
\(874\) −10552.4 −0.408399
\(875\) 1914.64 0.0739733
\(876\) −4318.65 −0.166568
\(877\) 13691.7 0.527181 0.263590 0.964635i \(-0.415093\pi\)
0.263590 + 0.964635i \(0.415093\pi\)
\(878\) −36023.7 −1.38467
\(879\) −3987.84 −0.153022
\(880\) −5141.29 −0.196946
\(881\) −30275.0 −1.15776 −0.578882 0.815412i \(-0.696511\pi\)
−0.578882 + 0.815412i \(0.696511\pi\)
\(882\) −3169.48 −0.121000
\(883\) 26094.1 0.994491 0.497246 0.867610i \(-0.334345\pi\)
0.497246 + 0.867610i \(0.334345\pi\)
\(884\) −30411.3 −1.15706
\(885\) 6310.82 0.239702
\(886\) −181.086 −0.00686646
\(887\) −7825.04 −0.296211 −0.148106 0.988972i \(-0.547318\pi\)
−0.148106 + 0.988972i \(0.547318\pi\)
\(888\) −23493.7 −0.887835
\(889\) 2231.20 0.0841756
\(890\) 4658.60 0.175457
\(891\) 1068.93 0.0401913
\(892\) −6205.94 −0.232949
\(893\) −13631.3 −0.510811
\(894\) −28948.7 −1.08299
\(895\) 3278.74 0.122454
\(896\) 26647.9 0.993577
\(897\) −7072.92 −0.263275
\(898\) 45666.2 1.69699
\(899\) −4558.72 −0.169123
\(900\) 575.350 0.0213093
\(901\) 81394.5 3.00959
\(902\) 3144.76 0.116085
\(903\) −5562.78 −0.205003
\(904\) −15269.1 −0.561774
\(905\) −5609.32 −0.206033
\(906\) −13129.0 −0.481437
\(907\) −21608.8 −0.791080 −0.395540 0.918449i \(-0.629443\pi\)
−0.395540 + 0.918449i \(0.629443\pi\)
\(908\) −1759.64 −0.0643126
\(909\) 78.0079 0.00284638
\(910\) 23068.6 0.840347
\(911\) 30884.1 1.12320 0.561601 0.827409i \(-0.310186\pi\)
0.561601 + 0.827409i \(0.310186\pi\)
\(912\) −29851.3 −1.08385
\(913\) −18554.2 −0.672568
\(914\) −46045.0 −1.66634
\(915\) −6068.67 −0.219261
\(916\) −7356.14 −0.265342
\(917\) −41358.0 −1.48938
\(918\) −11254.4 −0.404629
\(919\) 2004.36 0.0719453 0.0359726 0.999353i \(-0.488547\pi\)
0.0359726 + 0.999353i \(0.488547\pi\)
\(920\) 2248.79 0.0805873
\(921\) 9819.33 0.351311
\(922\) 43877.4 1.56727
\(923\) 32727.5 1.16710
\(924\) 1550.64 0.0552082
\(925\) 11070.5 0.393510
\(926\) 13934.9 0.494523
\(927\) 199.997 0.00708605
\(928\) 3239.01 0.114575
\(929\) 35337.2 1.24798 0.623991 0.781431i \(-0.285510\pi\)
0.623991 + 0.781431i \(0.285510\pi\)
\(930\) 7661.41 0.270137
\(931\) −13841.3 −0.487249
\(932\) 9316.62 0.327442
\(933\) 20459.9 0.717929
\(934\) 7911.29 0.277158
\(935\) −8464.82 −0.296074
\(936\) −14755.2 −0.515266
\(937\) −5564.16 −0.193995 −0.0969974 0.995285i \(-0.530924\pi\)
−0.0969974 + 0.995285i \(0.530924\pi\)
\(938\) 37851.5 1.31759
\(939\) 18260.9 0.634635
\(940\) −1364.75 −0.0473545
\(941\) 35384.3 1.22582 0.612909 0.790154i \(-0.289999\pi\)
0.612909 + 0.790154i \(0.289999\pi\)
\(942\) −6510.56 −0.225186
\(943\) −1865.21 −0.0644110
\(944\) −32781.8 −1.13025
\(945\) 2067.81 0.0711809
\(946\) −5190.75 −0.178399
\(947\) 8856.56 0.303906 0.151953 0.988388i \(-0.451444\pi\)
0.151953 + 0.988388i \(0.451444\pi\)
\(948\) −9671.35 −0.331341
\(949\) −52188.9 −1.78517
\(950\) 10373.3 0.354267
\(951\) 1584.58 0.0540310
\(952\) 34750.7 1.18306
\(953\) −26016.5 −0.884320 −0.442160 0.896936i \(-0.645788\pi\)
−0.442160 + 0.896936i \(0.645788\pi\)
\(954\) −18553.5 −0.629656
\(955\) 4643.61 0.157344
\(956\) 101.485 0.00343334
\(957\) −1148.11 −0.0387806
\(958\) 16579.5 0.559142
\(959\) 43701.5 1.47153
\(960\) 3906.66 0.131341
\(961\) −5080.00 −0.170521
\(962\) 133384. 4.47033
\(963\) −3438.73 −0.115069
\(964\) 3479.40 0.116249
\(965\) −9546.68 −0.318465
\(966\) −3797.06 −0.126468
\(967\) −11223.4 −0.373239 −0.186619 0.982432i \(-0.559753\pi\)
−0.186619 + 0.982432i \(0.559753\pi\)
\(968\) 20458.7 0.679306
\(969\) −49148.4 −1.62938
\(970\) −9195.12 −0.304368
\(971\) −33787.2 −1.11667 −0.558333 0.829617i \(-0.688559\pi\)
−0.558333 + 0.829617i \(0.688559\pi\)
\(972\) 621.378 0.0205048
\(973\) 3478.87 0.114622
\(974\) −52.1127 −0.00171437
\(975\) 6952.84 0.228379
\(976\) 31523.9 1.03387
\(977\) 39082.5 1.27980 0.639898 0.768460i \(-0.278977\pi\)
0.639898 + 0.768460i \(0.278977\pi\)
\(978\) −6682.57 −0.218492
\(979\) 3784.22 0.123539
\(980\) −1385.77 −0.0451703
\(981\) −13128.0 −0.427262
\(982\) 28691.2 0.932355
\(983\) −17510.6 −0.568162 −0.284081 0.958800i \(-0.591688\pi\)
−0.284081 + 0.958800i \(0.591688\pi\)
\(984\) −3891.12 −0.126061
\(985\) 9410.56 0.304411
\(986\) 12088.0 0.390427
\(987\) −4904.92 −0.158182
\(988\) 30272.9 0.974808
\(989\) 3078.72 0.0989864
\(990\) 1929.52 0.0619435
\(991\) −47916.0 −1.53592 −0.767962 0.640495i \(-0.778729\pi\)
−0.767962 + 0.640495i \(0.778729\pi\)
\(992\) −17557.4 −0.561943
\(993\) −13921.3 −0.444892
\(994\) 17569.6 0.560636
\(995\) −4299.57 −0.136990
\(996\) −10785.7 −0.343132
\(997\) 39414.7 1.25203 0.626016 0.779810i \(-0.284684\pi\)
0.626016 + 0.779810i \(0.284684\pi\)
\(998\) −58568.8 −1.85768
\(999\) 11956.2 0.378655
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.l.1.7 10
3.2 odd 2 1305.4.a.q.1.4 10
5.4 even 2 2175.4.a.p.1.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.l.1.7 10 1.1 even 1 trivial
1305.4.a.q.1.4 10 3.2 odd 2
2175.4.a.p.1.4 10 5.4 even 2