Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [448,4,Mod(111,448)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(448, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("448.111");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 448 = 2^{6} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 448.j (of order \(4\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(26.4328556826\) |
Analytic rank: | \(0\) |
Dimension: | \(88\) |
Relative dimension: | \(44\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 112) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
111.1 | 0 | −7.12471 | − | 7.12471i | 0 | 5.44380 | + | 5.44380i | 0 | −16.6758 | + | 8.05711i | 0 | 74.5229i | 0 | ||||||||||||
111.2 | 0 | −6.75145 | − | 6.75145i | 0 | −10.7426 | − | 10.7426i | 0 | −7.90955 | − | 16.7463i | 0 | 64.1641i | 0 | ||||||||||||
111.3 | 0 | −6.00789 | − | 6.00789i | 0 | 8.45808 | + | 8.45808i | 0 | 17.6848 | − | 5.49968i | 0 | 45.1894i | 0 | ||||||||||||
111.4 | 0 | −5.85052 | − | 5.85052i | 0 | −6.82314 | − | 6.82314i | 0 | 18.5177 | − | 0.310856i | 0 | 41.4573i | 0 | ||||||||||||
111.5 | 0 | −5.75197 | − | 5.75197i | 0 | 6.05552 | + | 6.05552i | 0 | 4.50707 | + | 17.9635i | 0 | 39.1703i | 0 | ||||||||||||
111.6 | 0 | −5.70883 | − | 5.70883i | 0 | −14.7783 | − | 14.7783i | 0 | 2.64946 | + | 18.3298i | 0 | 38.1815i | 0 | ||||||||||||
111.7 | 0 | −5.68355 | − | 5.68355i | 0 | −2.84203 | − | 2.84203i | 0 | 2.19712 | − | 18.3895i | 0 | 37.6054i | 0 | ||||||||||||
111.8 | 0 | −4.79702 | − | 4.79702i | 0 | −2.04624 | − | 2.04624i | 0 | −13.3740 | + | 12.8115i | 0 | 19.0229i | 0 | ||||||||||||
111.9 | 0 | −4.73059 | − | 4.73059i | 0 | 5.14976 | + | 5.14976i | 0 | −10.9791 | − | 14.9150i | 0 | 17.7570i | 0 | ||||||||||||
111.10 | 0 | −4.69197 | − | 4.69197i | 0 | 9.81242 | + | 9.81242i | 0 | 17.7338 | − | 5.33982i | 0 | 17.0292i | 0 | ||||||||||||
111.11 | 0 | −3.57396 | − | 3.57396i | 0 | −2.98764 | − | 2.98764i | 0 | −17.0858 | + | 7.14665i | 0 | − | 1.45369i | 0 | |||||||||||
111.12 | 0 | −3.51698 | − | 3.51698i | 0 | 14.7032 | + | 14.7032i | 0 | −16.3514 | − | 8.69658i | 0 | − | 2.26172i | 0 | |||||||||||
111.13 | 0 | −3.36528 | − | 3.36528i | 0 | −8.35027 | − | 8.35027i | 0 | 17.6921 | + | 5.47632i | 0 | − | 4.34978i | 0 | |||||||||||
111.14 | 0 | −2.83962 | − | 2.83962i | 0 | −7.83669 | − | 7.83669i | 0 | 12.7115 | − | 13.4692i | 0 | − | 10.8731i | 0 | |||||||||||
111.15 | 0 | −2.77244 | − | 2.77244i | 0 | 13.8731 | + | 13.8731i | 0 | 7.54098 | + | 16.9155i | 0 | − | 11.6272i | 0 | |||||||||||
111.16 | 0 | −2.68963 | − | 2.68963i | 0 | −1.79622 | − | 1.79622i | 0 | −8.50315 | + | 16.4529i | 0 | − | 12.5318i | 0 | |||||||||||
111.17 | 0 | −2.09861 | − | 2.09861i | 0 | 4.88560 | + | 4.88560i | 0 | −4.27896 | − | 18.0192i | 0 | − | 18.1917i | 0 | |||||||||||
111.18 | 0 | −2.04007 | − | 2.04007i | 0 | −1.81821 | − | 1.81821i | 0 | 10.2362 | + | 15.4344i | 0 | − | 18.6762i | 0 | |||||||||||
111.19 | 0 | −1.83086 | − | 1.83086i | 0 | −11.2147 | − | 11.2147i | 0 | −18.0262 | − | 4.24923i | 0 | − | 20.2959i | 0 | |||||||||||
111.20 | 0 | −1.20488 | − | 1.20488i | 0 | −11.4522 | − | 11.4522i | 0 | −13.8299 | − | 12.3180i | 0 | − | 24.0965i | 0 | |||||||||||
See all 88 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
16.f | odd | 4 | 1 | inner |
112.j | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 448.4.j.b | 88 | |
4.b | odd | 2 | 1 | 112.4.j.b | ✓ | 88 | |
7.b | odd | 2 | 1 | inner | 448.4.j.b | 88 | |
16.e | even | 4 | 1 | 112.4.j.b | ✓ | 88 | |
16.f | odd | 4 | 1 | inner | 448.4.j.b | 88 | |
28.d | even | 2 | 1 | 112.4.j.b | ✓ | 88 | |
112.j | even | 4 | 1 | inner | 448.4.j.b | 88 | |
112.l | odd | 4 | 1 | 112.4.j.b | ✓ | 88 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
112.4.j.b | ✓ | 88 | 4.b | odd | 2 | 1 | |
112.4.j.b | ✓ | 88 | 16.e | even | 4 | 1 | |
112.4.j.b | ✓ | 88 | 28.d | even | 2 | 1 | |
112.4.j.b | ✓ | 88 | 112.l | odd | 4 | 1 | |
448.4.j.b | 88 | 1.a | even | 1 | 1 | trivial | |
448.4.j.b | 88 | 7.b | odd | 2 | 1 | inner | |
448.4.j.b | 88 | 16.f | odd | 4 | 1 | inner | |
448.4.j.b | 88 | 112.j | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{88} + 50060 T_{3}^{84} + 1106718216 T_{3}^{80} + 14309556615488 T_{3}^{76} + \cdots + 20\!\cdots\!36 \) acting on \(S_{4}^{\mathrm{new}}(448, [\chi])\).