Properties

Label 448.4.j.b.111.19
Level $448$
Weight $4$
Character 448.111
Analytic conductor $26.433$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(111,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.111");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 111.19
Character \(\chi\) \(=\) 448.111
Dual form 448.4.j.b.335.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.83086 - 1.83086i) q^{3} +(-11.2147 - 11.2147i) q^{5} +(-18.0262 - 4.24923i) q^{7} -20.2959i q^{9} +(3.79046 + 3.79046i) q^{11} +(-12.4135 + 12.4135i) q^{13} +41.0653i q^{15} -92.7849i q^{17} +(-112.714 - 112.714i) q^{19} +(25.2238 + 40.7833i) q^{21} -65.3480 q^{23} +126.541i q^{25} +(-86.5923 + 86.5923i) q^{27} +(179.260 + 179.260i) q^{29} +287.429 q^{31} -13.8796i q^{33} +(154.505 + 249.813i) q^{35} +(-194.602 + 194.602i) q^{37} +45.4548 q^{39} +291.553 q^{41} +(-186.279 - 186.279i) q^{43} +(-227.613 + 227.613i) q^{45} -203.179 q^{47} +(306.888 + 153.195i) q^{49} +(-169.876 + 169.876i) q^{51} +(-205.330 + 205.330i) q^{53} -85.0182i q^{55} +412.727i q^{57} +(-176.660 + 176.660i) q^{59} +(410.414 - 410.414i) q^{61} +(-86.2419 + 365.858i) q^{63} +278.428 q^{65} +(13.4406 - 13.4406i) q^{67} +(119.643 + 119.643i) q^{69} +416.602 q^{71} +268.844 q^{73} +(231.679 - 231.679i) q^{75} +(-52.2211 - 84.4342i) q^{77} +705.142i q^{79} -230.911 q^{81} +(296.671 + 296.671i) q^{83} +(-1040.56 + 1040.56i) q^{85} -656.402i q^{87} -1109.14 q^{89} +(276.516 - 171.020i) q^{91} +(-526.243 - 526.243i) q^{93} +2528.11i q^{95} +383.187i q^{97} +(76.9308 - 76.9308i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{7} - 112 q^{11} + 52 q^{21} - 160 q^{23} + 528 q^{29} - 476 q^{35} - 896 q^{37} + 8 q^{39} - 40 q^{43} - 1376 q^{49} - 1504 q^{51} - 1560 q^{53} - 8 q^{65} - 648 q^{67} + 456 q^{71} + 292 q^{77}+ \cdots - 7592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.83086 1.83086i −0.352350 0.352350i 0.508633 0.860983i \(-0.330151\pi\)
−0.860983 + 0.508633i \(0.830151\pi\)
\(4\) 0 0
\(5\) −11.2147 11.2147i −1.00308 1.00308i −0.999995 0.00308220i \(-0.999019\pi\)
−0.00308220 0.999995i \(-0.500981\pi\)
\(6\) 0 0
\(7\) −18.0262 4.24923i −0.973324 0.229437i
\(8\) 0 0
\(9\) 20.2959i 0.751699i
\(10\) 0 0
\(11\) 3.79046 + 3.79046i 0.103897 + 0.103897i 0.757144 0.653247i \(-0.226594\pi\)
−0.653247 + 0.757144i \(0.726594\pi\)
\(12\) 0 0
\(13\) −12.4135 + 12.4135i −0.264837 + 0.264837i −0.827016 0.562179i \(-0.809963\pi\)
0.562179 + 0.827016i \(0.309963\pi\)
\(14\) 0 0
\(15\) 41.0653i 0.706868i
\(16\) 0 0
\(17\) 92.7849i 1.32374i −0.749617 0.661872i \(-0.769762\pi\)
0.749617 0.661872i \(-0.230238\pi\)
\(18\) 0 0
\(19\) −112.714 112.714i −1.36096 1.36096i −0.872693 0.488270i \(-0.837628\pi\)
−0.488270 0.872693i \(-0.662372\pi\)
\(20\) 0 0
\(21\) 25.2238 + 40.7833i 0.262108 + 0.423792i
\(22\) 0 0
\(23\) −65.3480 −0.592435 −0.296218 0.955121i \(-0.595725\pi\)
−0.296218 + 0.955121i \(0.595725\pi\)
\(24\) 0 0
\(25\) 126.541i 1.01233i
\(26\) 0 0
\(27\) −86.5923 + 86.5923i −0.617211 + 0.617211i
\(28\) 0 0
\(29\) 179.260 + 179.260i 1.14786 + 1.14786i 0.986974 + 0.160882i \(0.0514337\pi\)
0.160882 + 0.986974i \(0.448566\pi\)
\(30\) 0 0
\(31\) 287.429 1.66528 0.832641 0.553813i \(-0.186828\pi\)
0.832641 + 0.553813i \(0.186828\pi\)
\(32\) 0 0
\(33\) 13.8796i 0.0732162i
\(34\) 0 0
\(35\) 154.505 + 249.813i 0.746176 + 1.20646i
\(36\) 0 0
\(37\) −194.602 + 194.602i −0.864660 + 0.864660i −0.991875 0.127215i \(-0.959396\pi\)
0.127215 + 0.991875i \(0.459396\pi\)
\(38\) 0 0
\(39\) 45.4548 0.186631
\(40\) 0 0
\(41\) 291.553 1.11056 0.555280 0.831663i \(-0.312611\pi\)
0.555280 + 0.831663i \(0.312611\pi\)
\(42\) 0 0
\(43\) −186.279 186.279i −0.660635 0.660635i 0.294895 0.955530i \(-0.404715\pi\)
−0.955530 + 0.294895i \(0.904715\pi\)
\(44\) 0 0
\(45\) −227.613 + 227.613i −0.754012 + 0.754012i
\(46\) 0 0
\(47\) −203.179 −0.630569 −0.315285 0.948997i \(-0.602100\pi\)
−0.315285 + 0.948997i \(0.602100\pi\)
\(48\) 0 0
\(49\) 306.888 + 153.195i 0.894717 + 0.446633i
\(50\) 0 0
\(51\) −169.876 + 169.876i −0.466421 + 0.466421i
\(52\) 0 0
\(53\) −205.330 + 205.330i −0.532155 + 0.532155i −0.921213 0.389058i \(-0.872801\pi\)
0.389058 + 0.921213i \(0.372801\pi\)
\(54\) 0 0
\(55\) 85.0182i 0.208434i
\(56\) 0 0
\(57\) 412.727i 0.959070i
\(58\) 0 0
\(59\) −176.660 + 176.660i −0.389816 + 0.389816i −0.874622 0.484806i \(-0.838890\pi\)
0.484806 + 0.874622i \(0.338890\pi\)
\(60\) 0 0
\(61\) 410.414 410.414i 0.861446 0.861446i −0.130060 0.991506i \(-0.541517\pi\)
0.991506 + 0.130060i \(0.0415171\pi\)
\(62\) 0 0
\(63\) −86.2419 + 365.858i −0.172468 + 0.731646i
\(64\) 0 0
\(65\) 278.428 0.531304
\(66\) 0 0
\(67\) 13.4406 13.4406i 0.0245079 0.0245079i −0.694747 0.719255i \(-0.744484\pi\)
0.719255 + 0.694747i \(0.244484\pi\)
\(68\) 0 0
\(69\) 119.643 + 119.643i 0.208744 + 0.208744i
\(70\) 0 0
\(71\) 416.602 0.696360 0.348180 0.937428i \(-0.386800\pi\)
0.348180 + 0.937428i \(0.386800\pi\)
\(72\) 0 0
\(73\) 268.844 0.431039 0.215519 0.976500i \(-0.430856\pi\)
0.215519 + 0.976500i \(0.430856\pi\)
\(74\) 0 0
\(75\) 231.679 231.679i 0.356694 0.356694i
\(76\) 0 0
\(77\) −52.2211 84.4342i −0.0772876 0.124963i
\(78\) 0 0
\(79\) 705.142i 1.00424i 0.864799 + 0.502118i \(0.167446\pi\)
−0.864799 + 0.502118i \(0.832554\pi\)
\(80\) 0 0
\(81\) −230.911 −0.316751
\(82\) 0 0
\(83\) 296.671 + 296.671i 0.392335 + 0.392335i 0.875519 0.483184i \(-0.160520\pi\)
−0.483184 + 0.875519i \(0.660520\pi\)
\(84\) 0 0
\(85\) −1040.56 + 1040.56i −1.32782 + 1.32782i
\(86\) 0 0
\(87\) 656.402i 0.808893i
\(88\) 0 0
\(89\) −1109.14 −1.32100 −0.660500 0.750826i \(-0.729656\pi\)
−0.660500 + 0.750826i \(0.729656\pi\)
\(90\) 0 0
\(91\) 276.516 171.020i 0.318536 0.197009i
\(92\) 0 0
\(93\) −526.243 526.243i −0.586762 0.586762i
\(94\) 0 0
\(95\) 2528.11i 2.73030i
\(96\) 0 0
\(97\) 383.187i 0.401101i 0.979683 + 0.200550i \(0.0642730\pi\)
−0.979683 + 0.200550i \(0.935727\pi\)
\(98\) 0 0
\(99\) 76.9308 76.9308i 0.0780993 0.0780993i
\(100\) 0 0
\(101\) −565.573 565.573i −0.557194 0.557194i 0.371314 0.928508i \(-0.378907\pi\)
−0.928508 + 0.371314i \(0.878907\pi\)
\(102\) 0 0
\(103\) 152.956i 0.146323i −0.997320 0.0731613i \(-0.976691\pi\)
0.997320 0.0731613i \(-0.0233088\pi\)
\(104\) 0 0
\(105\) 174.496 740.252i 0.162182 0.688012i
\(106\) 0 0
\(107\) 147.332 + 147.332i 0.133113 + 0.133113i 0.770524 0.637411i \(-0.219995\pi\)
−0.637411 + 0.770524i \(0.719995\pi\)
\(108\) 0 0
\(109\) −287.137 287.137i −0.252319 0.252319i 0.569602 0.821921i \(-0.307097\pi\)
−0.821921 + 0.569602i \(0.807097\pi\)
\(110\) 0 0
\(111\) 712.580 0.609326
\(112\) 0 0
\(113\) 1290.14 1.07404 0.537020 0.843570i \(-0.319550\pi\)
0.537020 + 0.843570i \(0.319550\pi\)
\(114\) 0 0
\(115\) 732.862 + 732.862i 0.594258 + 0.594258i
\(116\) 0 0
\(117\) 251.943 + 251.943i 0.199078 + 0.199078i
\(118\) 0 0
\(119\) −394.264 + 1672.56i −0.303716 + 1.28843i
\(120\) 0 0
\(121\) 1302.26i 0.978411i
\(122\) 0 0
\(123\) −533.794 533.794i −0.391306 0.391306i
\(124\) 0 0
\(125\) 17.2830 17.2830i 0.0123667 0.0123667i
\(126\) 0 0
\(127\) 402.112i 0.280958i −0.990084 0.140479i \(-0.955136\pi\)
0.990084 0.140479i \(-0.0448643\pi\)
\(128\) 0 0
\(129\) 682.103i 0.465549i
\(130\) 0 0
\(131\) −1908.64 1908.64i −1.27297 1.27297i −0.944524 0.328442i \(-0.893476\pi\)
−0.328442 0.944524i \(-0.606524\pi\)
\(132\) 0 0
\(133\) 1552.85 + 2510.75i 1.01240 + 1.63691i
\(134\) 0 0
\(135\) 1942.22 1.23822
\(136\) 0 0
\(137\) 1156.17i 0.721006i −0.932758 0.360503i \(-0.882605\pi\)
0.932758 0.360503i \(-0.117395\pi\)
\(138\) 0 0
\(139\) −41.7681 + 41.7681i −0.0254872 + 0.0254872i −0.719736 0.694248i \(-0.755737\pi\)
0.694248 + 0.719736i \(0.255737\pi\)
\(140\) 0 0
\(141\) 371.994 + 371.994i 0.222181 + 0.222181i
\(142\) 0 0
\(143\) −94.1058 −0.0550316
\(144\) 0 0
\(145\) 4020.72i 2.30278i
\(146\) 0 0
\(147\) −281.391 842.349i −0.157883 0.472625i
\(148\) 0 0
\(149\) −697.420 + 697.420i −0.383456 + 0.383456i −0.872346 0.488890i \(-0.837402\pi\)
0.488890 + 0.872346i \(0.337402\pi\)
\(150\) 0 0
\(151\) 1440.69 0.776438 0.388219 0.921567i \(-0.373090\pi\)
0.388219 + 0.921567i \(0.373090\pi\)
\(152\) 0 0
\(153\) −1883.15 −0.995057
\(154\) 0 0
\(155\) −3223.44 3223.44i −1.67041 1.67041i
\(156\) 0 0
\(157\) −257.853 + 257.853i −0.131076 + 0.131076i −0.769601 0.638525i \(-0.779545\pi\)
0.638525 + 0.769601i \(0.279545\pi\)
\(158\) 0 0
\(159\) 751.862 0.375010
\(160\) 0 0
\(161\) 1177.98 + 277.679i 0.576631 + 0.135926i
\(162\) 0 0
\(163\) 1931.95 1931.95i 0.928354 0.928354i −0.0692461 0.997600i \(-0.522059\pi\)
0.997600 + 0.0692461i \(0.0220594\pi\)
\(164\) 0 0
\(165\) −155.657 + 155.657i −0.0734415 + 0.0734415i
\(166\) 0 0
\(167\) 694.423i 0.321773i −0.986973 0.160886i \(-0.948565\pi\)
0.986973 0.160886i \(-0.0514353\pi\)
\(168\) 0 0
\(169\) 1888.81i 0.859723i
\(170\) 0 0
\(171\) −2287.62 + 2287.62i −1.02303 + 1.02303i
\(172\) 0 0
\(173\) −2284.55 + 2284.55i −1.00400 + 1.00400i −0.00400438 + 0.999992i \(0.501275\pi\)
−0.999992 + 0.00400438i \(0.998725\pi\)
\(174\) 0 0
\(175\) 537.702 2281.06i 0.232266 0.985323i
\(176\) 0 0
\(177\) 646.880 0.274703
\(178\) 0 0
\(179\) −1164.37 + 1164.37i −0.486195 + 0.486195i −0.907103 0.420908i \(-0.861712\pi\)
0.420908 + 0.907103i \(0.361712\pi\)
\(180\) 0 0
\(181\) −1563.58 1563.58i −0.642099 0.642099i 0.308972 0.951071i \(-0.400015\pi\)
−0.951071 + 0.308972i \(0.900015\pi\)
\(182\) 0 0
\(183\) −1502.83 −0.607061
\(184\) 0 0
\(185\) 4364.83 1.73464
\(186\) 0 0
\(187\) 351.698 351.698i 0.137533 0.137533i
\(188\) 0 0
\(189\) 1928.88 1192.98i 0.742357 0.459135i
\(190\) 0 0
\(191\) 887.128i 0.336075i −0.985781 0.168037i \(-0.946257\pi\)
0.985781 0.168037i \(-0.0537429\pi\)
\(192\) 0 0
\(193\) 2230.55 0.831908 0.415954 0.909386i \(-0.363448\pi\)
0.415954 + 0.909386i \(0.363448\pi\)
\(194\) 0 0
\(195\) −509.764 509.764i −0.187205 0.187205i
\(196\) 0 0
\(197\) 788.206 788.206i 0.285063 0.285063i −0.550061 0.835124i \(-0.685396\pi\)
0.835124 + 0.550061i \(0.185396\pi\)
\(198\) 0 0
\(199\) 3530.96i 1.25780i −0.777485 0.628902i \(-0.783505\pi\)
0.777485 0.628902i \(-0.216495\pi\)
\(200\) 0 0
\(201\) −49.2157 −0.0172707
\(202\) 0 0
\(203\) −2469.66 3993.10i −0.853874 1.38059i
\(204\) 0 0
\(205\) −3269.70 3269.70i −1.11398 1.11398i
\(206\) 0 0
\(207\) 1326.30i 0.445333i
\(208\) 0 0
\(209\) 854.474i 0.282800i
\(210\) 0 0
\(211\) 1565.47 1565.47i 0.510763 0.510763i −0.403997 0.914760i \(-0.632379\pi\)
0.914760 + 0.403997i \(0.132379\pi\)
\(212\) 0 0
\(213\) −762.741 762.741i −0.245362 0.245362i
\(214\) 0 0
\(215\) 4178.15i 1.32534i
\(216\) 0 0
\(217\) −5181.25 1221.35i −1.62086 0.382077i
\(218\) 0 0
\(219\) −492.217 492.217i −0.151876 0.151876i
\(220\) 0 0
\(221\) 1151.78 + 1151.78i 0.350576 + 0.350576i
\(222\) 0 0
\(223\) −4375.56 −1.31394 −0.656972 0.753915i \(-0.728163\pi\)
−0.656972 + 0.753915i \(0.728163\pi\)
\(224\) 0 0
\(225\) 2568.26 0.760967
\(226\) 0 0
\(227\) 810.029 + 810.029i 0.236844 + 0.236844i 0.815542 0.578698i \(-0.196439\pi\)
−0.578698 + 0.815542i \(0.696439\pi\)
\(228\) 0 0
\(229\) 3364.38 + 3364.38i 0.970849 + 0.970849i 0.999587 0.0287379i \(-0.00914881\pi\)
−0.0287379 + 0.999587i \(0.509149\pi\)
\(230\) 0 0
\(231\) −58.9778 + 250.197i −0.0167985 + 0.0712631i
\(232\) 0 0
\(233\) 5545.33i 1.55917i −0.626296 0.779585i \(-0.715430\pi\)
0.626296 0.779585i \(-0.284570\pi\)
\(234\) 0 0
\(235\) 2278.60 + 2278.60i 0.632510 + 0.632510i
\(236\) 0 0
\(237\) 1291.02 1291.02i 0.353842 0.353842i
\(238\) 0 0
\(239\) 1675.51i 0.453471i −0.973956 0.226735i \(-0.927195\pi\)
0.973956 0.226735i \(-0.0728053\pi\)
\(240\) 0 0
\(241\) 1991.63i 0.532333i 0.963927 + 0.266167i \(0.0857571\pi\)
−0.963927 + 0.266167i \(0.914243\pi\)
\(242\) 0 0
\(243\) 2760.76 + 2760.76i 0.728818 + 0.728818i
\(244\) 0 0
\(245\) −1723.63 5159.72i −0.449464 1.34548i
\(246\) 0 0
\(247\) 2798.34 0.720867
\(248\) 0 0
\(249\) 1086.33i 0.276479i
\(250\) 0 0
\(251\) 238.611 238.611i 0.0600040 0.0600040i −0.676468 0.736472i \(-0.736490\pi\)
0.736472 + 0.676468i \(0.236490\pi\)
\(252\) 0 0
\(253\) −247.699 247.699i −0.0615523 0.0615523i
\(254\) 0 0
\(255\) 3810.24 0.935712
\(256\) 0 0
\(257\) 6431.44i 1.56102i 0.625143 + 0.780510i \(0.285041\pi\)
−0.625143 + 0.780510i \(0.714959\pi\)
\(258\) 0 0
\(259\) 4334.85 2681.03i 1.03998 0.643209i
\(260\) 0 0
\(261\) 3638.25 3638.25i 0.862842 0.862842i
\(262\) 0 0
\(263\) −5721.88 −1.34154 −0.670772 0.741663i \(-0.734037\pi\)
−0.670772 + 0.741663i \(0.734037\pi\)
\(264\) 0 0
\(265\) 4605.44 1.06759
\(266\) 0 0
\(267\) 2030.69 + 2030.69i 0.465454 + 0.465454i
\(268\) 0 0
\(269\) −2618.36 + 2618.36i −0.593474 + 0.593474i −0.938568 0.345094i \(-0.887847\pi\)
0.345094 + 0.938568i \(0.387847\pi\)
\(270\) 0 0
\(271\) 910.567 0.204107 0.102054 0.994779i \(-0.467459\pi\)
0.102054 + 0.994779i \(0.467459\pi\)
\(272\) 0 0
\(273\) −819.378 193.148i −0.181652 0.0428200i
\(274\) 0 0
\(275\) −479.649 + 479.649i −0.105178 + 0.105178i
\(276\) 0 0
\(277\) −4584.43 + 4584.43i −0.994409 + 0.994409i −0.999984 0.00557497i \(-0.998225\pi\)
0.00557497 + 0.999984i \(0.498225\pi\)
\(278\) 0 0
\(279\) 5833.62i 1.25179i
\(280\) 0 0
\(281\) 2784.34i 0.591103i 0.955327 + 0.295552i \(0.0955034\pi\)
−0.955327 + 0.295552i \(0.904497\pi\)
\(282\) 0 0
\(283\) −2601.85 + 2601.85i −0.546516 + 0.546516i −0.925431 0.378915i \(-0.876297\pi\)
0.378915 + 0.925431i \(0.376297\pi\)
\(284\) 0 0
\(285\) 4628.62 4628.62i 0.962021 0.962021i
\(286\) 0 0
\(287\) −5255.60 1238.88i −1.08093 0.254804i
\(288\) 0 0
\(289\) −3696.03 −0.752296
\(290\) 0 0
\(291\) 701.563 701.563i 0.141328 0.141328i
\(292\) 0 0
\(293\) −1789.88 1789.88i −0.356880 0.356880i 0.505782 0.862662i \(-0.331204\pi\)
−0.862662 + 0.505782i \(0.831204\pi\)
\(294\) 0 0
\(295\) 3962.39 0.782032
\(296\) 0 0
\(297\) −656.450 −0.128253
\(298\) 0 0
\(299\) 811.197 811.197i 0.156899 0.156899i
\(300\) 0 0
\(301\) 2566.36 + 4149.45i 0.491437 + 0.794585i
\(302\) 0 0
\(303\) 2070.97i 0.392654i
\(304\) 0 0
\(305\) −9205.39 −1.72819
\(306\) 0 0
\(307\) −437.170 437.170i −0.0812724 0.0812724i 0.665302 0.746574i \(-0.268303\pi\)
−0.746574 + 0.665302i \(0.768303\pi\)
\(308\) 0 0
\(309\) −280.042 + 280.042i −0.0515567 + 0.0515567i
\(310\) 0 0
\(311\) 3087.74i 0.562989i 0.959563 + 0.281495i \(0.0908301\pi\)
−0.959563 + 0.281495i \(0.909170\pi\)
\(312\) 0 0
\(313\) −2848.48 −0.514395 −0.257197 0.966359i \(-0.582799\pi\)
−0.257197 + 0.966359i \(0.582799\pi\)
\(314\) 0 0
\(315\) 5070.18 3135.82i 0.906896 0.560900i
\(316\) 0 0
\(317\) −3347.44 3347.44i −0.593095 0.593095i 0.345371 0.938466i \(-0.387753\pi\)
−0.938466 + 0.345371i \(0.887753\pi\)
\(318\) 0 0
\(319\) 1358.96i 0.238518i
\(320\) 0 0
\(321\) 539.490i 0.0938050i
\(322\) 0 0
\(323\) −10458.1 + 10458.1i −1.80156 + 1.80156i
\(324\) 0 0
\(325\) −1570.82 1570.82i −0.268102 0.268102i
\(326\) 0 0
\(327\) 1051.42i 0.177809i
\(328\) 0 0
\(329\) 3662.55 + 863.356i 0.613748 + 0.144676i
\(330\) 0 0
\(331\) 3102.79 + 3102.79i 0.515241 + 0.515241i 0.916128 0.400887i \(-0.131298\pi\)
−0.400887 + 0.916128i \(0.631298\pi\)
\(332\) 0 0
\(333\) 3949.62 + 3949.62i 0.649964 + 0.649964i
\(334\) 0 0
\(335\) −301.465 −0.0491666
\(336\) 0 0
\(337\) −188.583 −0.0304830 −0.0152415 0.999884i \(-0.504852\pi\)
−0.0152415 + 0.999884i \(0.504852\pi\)
\(338\) 0 0
\(339\) −2362.08 2362.08i −0.378438 0.378438i
\(340\) 0 0
\(341\) 1089.49 + 1089.49i 0.173018 + 0.173018i
\(342\) 0 0
\(343\) −4881.07 4065.56i −0.768375 0.639999i
\(344\) 0 0
\(345\) 2683.54i 0.418774i
\(346\) 0 0
\(347\) 6366.71 + 6366.71i 0.984965 + 0.984965i 0.999889 0.0149239i \(-0.00475059\pi\)
−0.0149239 + 0.999889i \(0.504751\pi\)
\(348\) 0 0
\(349\) −1932.62 + 1932.62i −0.296421 + 0.296421i −0.839610 0.543189i \(-0.817217\pi\)
0.543189 + 0.839610i \(0.317217\pi\)
\(350\) 0 0
\(351\) 2149.83i 0.326921i
\(352\) 0 0
\(353\) 7298.63i 1.10047i −0.835009 0.550236i \(-0.814538\pi\)
0.835009 0.550236i \(-0.185462\pi\)
\(354\) 0 0
\(355\) −4672.08 4672.08i −0.698503 0.698503i
\(356\) 0 0
\(357\) 3784.07 2340.38i 0.560992 0.346964i
\(358\) 0 0
\(359\) −357.053 −0.0524918 −0.0262459 0.999656i \(-0.508355\pi\)
−0.0262459 + 0.999656i \(0.508355\pi\)
\(360\) 0 0
\(361\) 18549.7i 2.70444i
\(362\) 0 0
\(363\) −2384.27 + 2384.27i −0.344743 + 0.344743i
\(364\) 0 0
\(365\) −3015.02 3015.02i −0.432365 0.432365i
\(366\) 0 0
\(367\) 1135.13 0.161453 0.0807266 0.996736i \(-0.474276\pi\)
0.0807266 + 0.996736i \(0.474276\pi\)
\(368\) 0 0
\(369\) 5917.33i 0.834807i
\(370\) 0 0
\(371\) 4573.81 2828.82i 0.640055 0.395863i
\(372\) 0 0
\(373\) 7327.70 7327.70i 1.01720 1.01720i 0.0173464 0.999850i \(-0.494478\pi\)
0.999850 0.0173464i \(-0.00552181\pi\)
\(374\) 0 0
\(375\) −63.2855 −0.00871479
\(376\) 0 0
\(377\) −4450.49 −0.607989
\(378\) 0 0
\(379\) 6349.98 + 6349.98i 0.860625 + 0.860625i 0.991411 0.130786i \(-0.0417501\pi\)
−0.130786 + 0.991411i \(0.541750\pi\)
\(380\) 0 0
\(381\) −736.212 + 736.212i −0.0989955 + 0.0989955i
\(382\) 0 0
\(383\) 7528.58 1.00442 0.502209 0.864746i \(-0.332521\pi\)
0.502209 + 0.864746i \(0.332521\pi\)
\(384\) 0 0
\(385\) −361.262 + 1532.55i −0.0478224 + 0.202873i
\(386\) 0 0
\(387\) −3780.70 + 3780.70i −0.496599 + 0.496599i
\(388\) 0 0
\(389\) −6789.02 + 6789.02i −0.884877 + 0.884877i −0.994025 0.109149i \(-0.965187\pi\)
0.109149 + 0.994025i \(0.465187\pi\)
\(390\) 0 0
\(391\) 6063.31i 0.784232i
\(392\) 0 0
\(393\) 6988.92i 0.897059i
\(394\) 0 0
\(395\) 7907.99 7907.99i 1.00733 1.00733i
\(396\) 0 0
\(397\) −7961.75 + 7961.75i −1.00652 + 1.00652i −0.00654246 + 0.999979i \(0.502083\pi\)
−0.999979 + 0.00654246i \(0.997917\pi\)
\(398\) 0 0
\(399\) 1753.77 7439.89i 0.220046 0.933485i
\(400\) 0 0
\(401\) −10277.5 −1.27988 −0.639940 0.768425i \(-0.721041\pi\)
−0.639940 + 0.768425i \(0.721041\pi\)
\(402\) 0 0
\(403\) −3567.99 + 3567.99i −0.441028 + 0.441028i
\(404\) 0 0
\(405\) 2589.61 + 2589.61i 0.317726 + 0.317726i
\(406\) 0 0
\(407\) −1475.27 −0.179671
\(408\) 0 0
\(409\) 684.166 0.0827135 0.0413567 0.999144i \(-0.486832\pi\)
0.0413567 + 0.999144i \(0.486832\pi\)
\(410\) 0 0
\(411\) −2116.78 + 2116.78i −0.254046 + 0.254046i
\(412\) 0 0
\(413\) 3935.18 2433.84i 0.468855 0.289979i
\(414\) 0 0
\(415\) 6654.17i 0.787086i
\(416\) 0 0
\(417\) 152.943 0.0179608
\(418\) 0 0
\(419\) 5968.84 + 5968.84i 0.695936 + 0.695936i 0.963531 0.267596i \(-0.0862292\pi\)
−0.267596 + 0.963531i \(0.586229\pi\)
\(420\) 0 0
\(421\) 6775.82 6775.82i 0.784402 0.784402i −0.196168 0.980570i \(-0.562850\pi\)
0.980570 + 0.196168i \(0.0628498\pi\)
\(422\) 0 0
\(423\) 4123.70i 0.473998i
\(424\) 0 0
\(425\) 11741.1 1.34006
\(426\) 0 0
\(427\) −9142.16 + 5654.27i −1.03611 + 0.640818i
\(428\) 0 0
\(429\) 172.295 + 172.295i 0.0193904 + 0.0193904i
\(430\) 0 0
\(431\) 8756.78i 0.978652i 0.872101 + 0.489326i \(0.162757\pi\)
−0.872101 + 0.489326i \(0.837243\pi\)
\(432\) 0 0
\(433\) 10685.4i 1.18593i 0.805229 + 0.592964i \(0.202043\pi\)
−0.805229 + 0.592964i \(0.797957\pi\)
\(434\) 0 0
\(435\) −7361.39 + 7361.39i −0.811383 + 0.811383i
\(436\) 0 0
\(437\) 7365.62 + 7365.62i 0.806282 + 0.806282i
\(438\) 0 0
\(439\) 7688.54i 0.835886i 0.908473 + 0.417943i \(0.137249\pi\)
−0.908473 + 0.417943i \(0.862751\pi\)
\(440\) 0 0
\(441\) 3109.23 6228.56i 0.335733 0.672558i
\(442\) 0 0
\(443\) 852.302 + 852.302i 0.0914088 + 0.0914088i 0.751333 0.659924i \(-0.229411\pi\)
−0.659924 + 0.751333i \(0.729411\pi\)
\(444\) 0 0
\(445\) 12438.8 + 12438.8i 1.32506 + 1.32506i
\(446\) 0 0
\(447\) 2553.76 0.270221
\(448\) 0 0
\(449\) −4449.83 −0.467707 −0.233853 0.972272i \(-0.575134\pi\)
−0.233853 + 0.972272i \(0.575134\pi\)
\(450\) 0 0
\(451\) 1105.12 + 1105.12i 0.115384 + 0.115384i
\(452\) 0 0
\(453\) −2637.72 2637.72i −0.273578 0.273578i
\(454\) 0 0
\(455\) −5019.01 1183.11i −0.517131 0.121901i
\(456\) 0 0
\(457\) 7852.46i 0.803769i 0.915690 + 0.401885i \(0.131645\pi\)
−0.915690 + 0.401885i \(0.868355\pi\)
\(458\) 0 0
\(459\) 8034.45 + 8034.45i 0.817029 + 0.817029i
\(460\) 0 0
\(461\) 7341.95 7341.95i 0.741755 0.741755i −0.231161 0.972916i \(-0.574252\pi\)
0.972916 + 0.231161i \(0.0742524\pi\)
\(462\) 0 0
\(463\) 3439.86i 0.345278i 0.984985 + 0.172639i \(0.0552294\pi\)
−0.984985 + 0.172639i \(0.944771\pi\)
\(464\) 0 0
\(465\) 11803.4i 1.17714i
\(466\) 0 0
\(467\) 2011.27 + 2011.27i 0.199295 + 0.199295i 0.799698 0.600403i \(-0.204993\pi\)
−0.600403 + 0.799698i \(0.704993\pi\)
\(468\) 0 0
\(469\) −299.395 + 185.170i −0.0294771 + 0.0182311i
\(470\) 0 0
\(471\) 944.187 0.0923690
\(472\) 0 0
\(473\) 1412.17i 0.137276i
\(474\) 0 0
\(475\) 14262.9 14262.9i 1.37774 1.37774i
\(476\) 0 0
\(477\) 4167.35 + 4167.35i 0.400021 + 0.400021i
\(478\) 0 0
\(479\) −17755.0 −1.69363 −0.846814 0.531890i \(-0.821482\pi\)
−0.846814 + 0.531890i \(0.821482\pi\)
\(480\) 0 0
\(481\) 4831.39i 0.457988i
\(482\) 0 0
\(483\) −1648.32 2665.11i −0.155282 0.251070i
\(484\) 0 0
\(485\) 4297.35 4297.35i 0.402335 0.402335i
\(486\) 0 0
\(487\) −18871.9 −1.75599 −0.877997 0.478666i \(-0.841120\pi\)
−0.877997 + 0.478666i \(0.841120\pi\)
\(488\) 0 0
\(489\) −7074.26 −0.654210
\(490\) 0 0
\(491\) −5489.27 5489.27i −0.504537 0.504537i 0.408308 0.912844i \(-0.366119\pi\)
−0.912844 + 0.408308i \(0.866119\pi\)
\(492\) 0 0
\(493\) 16632.6 16632.6i 1.51947 1.51947i
\(494\) 0 0
\(495\) −1725.52 −0.156679
\(496\) 0 0
\(497\) −7509.75 1770.24i −0.677783 0.159771i
\(498\) 0 0
\(499\) 9410.32 9410.32i 0.844216 0.844216i −0.145188 0.989404i \(-0.546379\pi\)
0.989404 + 0.145188i \(0.0463788\pi\)
\(500\) 0 0
\(501\) −1271.39 + 1271.39i −0.113377 + 0.113377i
\(502\) 0 0
\(503\) 10971.4i 0.972548i 0.873806 + 0.486274i \(0.161644\pi\)
−0.873806 + 0.486274i \(0.838356\pi\)
\(504\) 0 0
\(505\) 12685.5i 1.11782i
\(506\) 0 0
\(507\) 3458.15 3458.15i 0.302923 0.302923i
\(508\) 0 0
\(509\) −3007.58 + 3007.58i −0.261903 + 0.261903i −0.825827 0.563924i \(-0.809291\pi\)
0.563924 + 0.825827i \(0.309291\pi\)
\(510\) 0 0
\(511\) −4846.24 1142.38i −0.419540 0.0988962i
\(512\) 0 0
\(513\) 19520.3 1.68000
\(514\) 0 0
\(515\) −1715.37 + 1715.37i −0.146773 + 0.146773i
\(516\) 0 0
\(517\) −770.144 770.144i −0.0655143 0.0655143i
\(518\) 0 0
\(519\) 8365.41 0.707516
\(520\) 0 0
\(521\) −23290.9 −1.95853 −0.979265 0.202585i \(-0.935066\pi\)
−0.979265 + 0.202585i \(0.935066\pi\)
\(522\) 0 0
\(523\) −6591.18 + 6591.18i −0.551075 + 0.551075i −0.926751 0.375676i \(-0.877411\pi\)
0.375676 + 0.926751i \(0.377411\pi\)
\(524\) 0 0
\(525\) −5160.76 + 3191.84i −0.429017 + 0.265340i
\(526\) 0 0
\(527\) 26669.0i 2.20441i
\(528\) 0 0
\(529\) −7896.63 −0.649021
\(530\) 0 0
\(531\) 3585.47 + 3585.47i 0.293024 + 0.293024i
\(532\) 0 0
\(533\) −3619.19 + 3619.19i −0.294118 + 0.294118i
\(534\) 0 0
\(535\) 3304.59i 0.267046i
\(536\) 0 0
\(537\) 4263.60 0.342622
\(538\) 0 0
\(539\) 582.568 + 1743.93i 0.0465547 + 0.139362i
\(540\) 0 0
\(541\) 3915.48 + 3915.48i 0.311164 + 0.311164i 0.845360 0.534196i \(-0.179386\pi\)
−0.534196 + 0.845360i \(0.679386\pi\)
\(542\) 0 0
\(543\) 5725.40i 0.452487i
\(544\) 0 0
\(545\) 6440.33i 0.506190i
\(546\) 0 0
\(547\) 285.556 285.556i 0.0223208 0.0223208i −0.695858 0.718179i \(-0.744976\pi\)
0.718179 + 0.695858i \(0.244976\pi\)
\(548\) 0 0
\(549\) −8329.72 8329.72i −0.647548 0.647548i
\(550\) 0 0
\(551\) 40410.2i 3.12438i
\(552\) 0 0
\(553\) 2996.31 12711.0i 0.230409 0.977447i
\(554\) 0 0
\(555\) −7991.41 7991.41i −0.611201 0.611201i
\(556\) 0 0
\(557\) 5713.13 + 5713.13i 0.434601 + 0.434601i 0.890190 0.455589i \(-0.150571\pi\)
−0.455589 + 0.890190i \(0.650571\pi\)
\(558\) 0 0
\(559\) 4624.75 0.349921
\(560\) 0 0
\(561\) −1287.82 −0.0969195
\(562\) 0 0
\(563\) −4321.65 4321.65i −0.323510 0.323510i 0.526602 0.850112i \(-0.323466\pi\)
−0.850112 + 0.526602i \(0.823466\pi\)
\(564\) 0 0
\(565\) −14468.6 14468.6i −1.07734 1.07734i
\(566\) 0 0
\(567\) 4162.45 + 981.196i 0.308301 + 0.0726743i
\(568\) 0 0
\(569\) 7330.40i 0.540082i −0.962849 0.270041i \(-0.912963\pi\)
0.962849 0.270041i \(-0.0870372\pi\)
\(570\) 0 0
\(571\) −2589.85 2589.85i −0.189811 0.189811i 0.605803 0.795614i \(-0.292852\pi\)
−0.795614 + 0.605803i \(0.792852\pi\)
\(572\) 0 0
\(573\) −1624.21 + 1624.21i −0.118416 + 0.118416i
\(574\) 0 0
\(575\) 8269.21i 0.599739i
\(576\) 0 0
\(577\) 21935.0i 1.58261i −0.611423 0.791304i \(-0.709403\pi\)
0.611423 0.791304i \(-0.290597\pi\)
\(578\) 0 0
\(579\) −4083.83 4083.83i −0.293123 0.293123i
\(580\) 0 0
\(581\) −4087.22 6608.47i −0.291853 0.471886i
\(582\) 0 0
\(583\) −1556.59 −0.110579
\(584\) 0 0
\(585\) 5650.95i 0.399381i
\(586\) 0 0
\(587\) −12339.1 + 12339.1i −0.867610 + 0.867610i −0.992207 0.124597i \(-0.960236\pi\)
0.124597 + 0.992207i \(0.460236\pi\)
\(588\) 0 0
\(589\) −32397.2 32397.2i −2.26639 2.26639i
\(590\) 0 0
\(591\) −2886.19 −0.200884
\(592\) 0 0
\(593\) 5060.82i 0.350460i 0.984528 + 0.175230i \(0.0560669\pi\)
−0.984528 + 0.175230i \(0.943933\pi\)
\(594\) 0 0
\(595\) 23178.9 14335.7i 1.59705 0.987745i
\(596\) 0 0
\(597\) −6464.70 + 6464.70i −0.443187 + 0.443187i
\(598\) 0 0
\(599\) −4676.57 −0.318997 −0.159499 0.987198i \(-0.550988\pi\)
−0.159499 + 0.987198i \(0.550988\pi\)
\(600\) 0 0
\(601\) 21898.3 1.48627 0.743137 0.669140i \(-0.233337\pi\)
0.743137 + 0.669140i \(0.233337\pi\)
\(602\) 0 0
\(603\) −272.788 272.788i −0.0184225 0.0184225i
\(604\) 0 0
\(605\) −14604.6 + 14604.6i −0.981422 + 0.981422i
\(606\) 0 0
\(607\) −19840.3 −1.32667 −0.663337 0.748321i \(-0.730860\pi\)
−0.663337 + 0.748321i \(0.730860\pi\)
\(608\) 0 0
\(609\) −2789.21 + 11832.4i −0.185590 + 0.787315i
\(610\) 0 0
\(611\) 2522.16 2522.16i 0.166998 0.166998i
\(612\) 0 0
\(613\) 11909.5 11909.5i 0.784696 0.784696i −0.195923 0.980619i \(-0.562770\pi\)
0.980619 + 0.195923i \(0.0627703\pi\)
\(614\) 0 0
\(615\) 11972.7i 0.785020i
\(616\) 0 0
\(617\) 13162.6i 0.858842i 0.903104 + 0.429421i \(0.141282\pi\)
−0.903104 + 0.429421i \(0.858718\pi\)
\(618\) 0 0
\(619\) 11398.3 11398.3i 0.740125 0.740125i −0.232477 0.972602i \(-0.574683\pi\)
0.972602 + 0.232477i \(0.0746830\pi\)
\(620\) 0 0
\(621\) 5658.64 5658.64i 0.365657 0.365657i
\(622\) 0 0
\(623\) 19993.6 + 4713.01i 1.28576 + 0.303086i
\(624\) 0 0
\(625\) 15430.0 0.987519
\(626\) 0 0
\(627\) −1564.43 + 1564.43i −0.0996445 + 0.0996445i
\(628\) 0 0
\(629\) 18056.1 + 18056.1i 1.14459 + 1.14459i
\(630\) 0 0
\(631\) 29952.0 1.88965 0.944826 0.327574i \(-0.106231\pi\)
0.944826 + 0.327574i \(0.106231\pi\)
\(632\) 0 0
\(633\) −5732.31 −0.359935
\(634\) 0 0
\(635\) −4509.58 + 4509.58i −0.281823 + 0.281823i
\(636\) 0 0
\(637\) −5711.24 + 1907.87i −0.355239 + 0.118669i
\(638\) 0 0
\(639\) 8455.30i 0.523453i
\(640\) 0 0
\(641\) −12639.3 −0.778817 −0.389409 0.921065i \(-0.627321\pi\)
−0.389409 + 0.921065i \(0.627321\pi\)
\(642\) 0 0
\(643\) −3582.49 3582.49i −0.219720 0.219720i 0.588661 0.808380i \(-0.299655\pi\)
−0.808380 + 0.588661i \(0.799655\pi\)
\(644\) 0 0
\(645\) 7649.62 7649.62i 0.466982 0.466982i
\(646\) 0 0
\(647\) 21300.9i 1.29432i 0.762354 + 0.647160i \(0.224044\pi\)
−0.762354 + 0.647160i \(0.775956\pi\)
\(648\) 0 0
\(649\) −1339.25 −0.0810015
\(650\) 0 0
\(651\) 7250.03 + 11722.3i 0.436484 + 0.705734i
\(652\) 0 0
\(653\) −17283.7 17283.7i −1.03578 1.03578i −0.999336 0.0364411i \(-0.988398\pi\)
−0.0364411 0.999336i \(-0.511602\pi\)
\(654\) 0 0
\(655\) 42809.8i 2.55377i
\(656\) 0 0
\(657\) 5456.43i 0.324011i
\(658\) 0 0
\(659\) −16431.8 + 16431.8i −0.971309 + 0.971309i −0.999600 0.0282905i \(-0.990994\pi\)
0.0282905 + 0.999600i \(0.490994\pi\)
\(660\) 0 0
\(661\) 13671.4 + 13671.4i 0.804471 + 0.804471i 0.983791 0.179320i \(-0.0573898\pi\)
−0.179320 + 0.983791i \(0.557390\pi\)
\(662\) 0 0
\(663\) 4217.52i 0.247051i
\(664\) 0 0
\(665\) 10742.5 45572.2i 0.626432 2.65747i
\(666\) 0 0
\(667\) −11714.3 11714.3i −0.680030 0.680030i
\(668\) 0 0
\(669\) 8011.06 + 8011.06i 0.462968 + 0.462968i
\(670\) 0 0
\(671\) 3111.32 0.179003
\(672\) 0 0
\(673\) 28888.0 1.65460 0.827302 0.561757i \(-0.189874\pi\)
0.827302 + 0.561757i \(0.189874\pi\)
\(674\) 0 0
\(675\) −10957.5 10957.5i −0.624820 0.624820i
\(676\) 0 0
\(677\) −5592.63 5592.63i −0.317492 0.317492i 0.530311 0.847803i \(-0.322075\pi\)
−0.847803 + 0.530311i \(0.822075\pi\)
\(678\) 0 0
\(679\) 1628.25 6907.41i 0.0920273 0.390401i
\(680\) 0 0
\(681\) 2966.10i 0.166904i
\(682\) 0 0
\(683\) −3564.66 3564.66i −0.199704 0.199704i 0.600169 0.799873i \(-0.295100\pi\)
−0.799873 + 0.600169i \(0.795100\pi\)
\(684\) 0 0
\(685\) −12966.1 + 12966.1i −0.723225 + 0.723225i
\(686\) 0 0
\(687\) 12319.4i 0.684157i
\(688\) 0 0
\(689\) 5097.72i 0.281869i
\(690\) 0 0
\(691\) 10009.9 + 10009.9i 0.551080 + 0.551080i 0.926752 0.375673i \(-0.122588\pi\)
−0.375673 + 0.926752i \(0.622588\pi\)
\(692\) 0 0
\(693\) −1713.67 + 1059.87i −0.0939348 + 0.0580970i
\(694\) 0 0
\(695\) 936.838 0.0511313
\(696\) 0 0
\(697\) 27051.7i 1.47010i
\(698\) 0 0
\(699\) −10152.7 + 10152.7i −0.549374 + 0.549374i
\(700\) 0 0
\(701\) −5491.44 5491.44i −0.295875 0.295875i 0.543520 0.839396i \(-0.317091\pi\)
−0.839396 + 0.543520i \(0.817091\pi\)
\(702\) 0 0
\(703\) 43868.7 2.35354
\(704\) 0 0
\(705\) 8343.63i 0.445729i
\(706\) 0 0
\(707\) 7791.88 + 12598.4i 0.414489 + 0.670171i
\(708\) 0 0
\(709\) 7585.98 7585.98i 0.401830 0.401830i −0.477047 0.878878i \(-0.658293\pi\)
0.878878 + 0.477047i \(0.158293\pi\)
\(710\) 0 0
\(711\) 14311.5 0.754883
\(712\) 0 0
\(713\) −18782.9 −0.986571
\(714\) 0 0
\(715\) 1055.37 + 1055.37i 0.0552010 + 0.0552010i
\(716\) 0 0
\(717\) −3067.62 + 3067.62i −0.159780 + 0.159780i
\(718\) 0 0
\(719\) 16056.7 0.832842 0.416421 0.909172i \(-0.363284\pi\)
0.416421 + 0.909172i \(0.363284\pi\)
\(720\) 0 0
\(721\) −649.946 + 2757.22i −0.0335718 + 0.142419i
\(722\) 0 0
\(723\) 3646.41 3646.41i 0.187567 0.187567i
\(724\) 0 0
\(725\) −22683.8 + 22683.8i −1.16201 + 1.16201i
\(726\) 0 0
\(727\) 28984.2i 1.47863i −0.673360 0.739314i \(-0.735150\pi\)
0.673360 0.739314i \(-0.264850\pi\)
\(728\) 0 0
\(729\) 3874.54i 0.196847i
\(730\) 0 0
\(731\) −17283.9 + 17283.9i −0.874511 + 0.874511i
\(732\) 0 0
\(733\) −6059.21 + 6059.21i −0.305323 + 0.305323i −0.843092 0.537769i \(-0.819267\pi\)
0.537769 + 0.843092i \(0.319267\pi\)
\(734\) 0 0
\(735\) −6291.01 + 12602.5i −0.315711 + 0.632447i
\(736\) 0 0
\(737\) 101.892 0.00509259
\(738\) 0 0
\(739\) 19859.9 19859.9i 0.988578 0.988578i −0.0113576 0.999936i \(-0.503615\pi\)
0.999936 + 0.0113576i \(0.00361530\pi\)
\(740\) 0 0
\(741\) −5123.38 5123.38i −0.253997 0.253997i
\(742\) 0 0
\(743\) 8710.40 0.430086 0.215043 0.976605i \(-0.431011\pi\)
0.215043 + 0.976605i \(0.431011\pi\)
\(744\) 0 0
\(745\) 15642.8 0.769272
\(746\) 0 0
\(747\) 6021.19 6021.19i 0.294918 0.294918i
\(748\) 0 0
\(749\) −2029.79 3281.89i −0.0990213 0.160104i
\(750\) 0 0
\(751\) 12623.6i 0.613373i −0.951811 0.306686i \(-0.900780\pi\)
0.951811 0.306686i \(-0.0992202\pi\)
\(752\) 0 0
\(753\) −873.729 −0.0422848
\(754\) 0 0
\(755\) −16157.0 16157.0i −0.778827 0.778827i
\(756\) 0 0
\(757\) −14538.8 + 14538.8i −0.698046 + 0.698046i −0.963989 0.265943i \(-0.914317\pi\)
0.265943 + 0.963989i \(0.414317\pi\)
\(758\) 0 0
\(759\) 907.007i 0.0433759i
\(760\) 0 0
\(761\) −13774.9 −0.656164 −0.328082 0.944649i \(-0.606402\pi\)
−0.328082 + 0.944649i \(0.606402\pi\)
\(762\) 0 0
\(763\) 3955.88 + 6396.10i 0.187696 + 0.303479i
\(764\) 0 0
\(765\) 21119.1 + 21119.1i 0.998119 + 0.998119i
\(766\) 0 0
\(767\) 4385.93i 0.206476i
\(768\) 0 0
\(769\) 39212.0i 1.83878i −0.393351 0.919388i \(-0.628684\pi\)
0.393351 0.919388i \(-0.371316\pi\)
\(770\) 0 0
\(771\) 11775.1 11775.1i 0.550025 0.550025i
\(772\) 0 0
\(773\) 12077.5 + 12077.5i 0.561961 + 0.561961i 0.929864 0.367903i \(-0.119924\pi\)
−0.367903 + 0.929864i \(0.619924\pi\)
\(774\) 0 0
\(775\) 36371.6i 1.68581i
\(776\) 0 0
\(777\) −12845.1 3027.92i −0.593071 0.139802i
\(778\) 0 0
\(779\) −32862.0 32862.0i −1.51143 1.51143i
\(780\) 0 0
\(781\) 1579.11 + 1579.11i 0.0723497 + 0.0723497i
\(782\) 0 0
\(783\) −31045.1 −1.41694
\(784\) 0 0
\(785\) 5783.51 0.262958
\(786\) 0 0
\(787\) −12974.2 12974.2i −0.587649 0.587649i 0.349345 0.936994i \(-0.386404\pi\)
−0.936994 + 0.349345i \(0.886404\pi\)
\(788\) 0 0
\(789\) 10476.0 + 10476.0i 0.472693 + 0.472693i
\(790\) 0 0
\(791\) −23256.4 5482.11i −1.04539 0.246424i
\(792\) 0 0
\(793\) 10189.4i 0.456286i
\(794\) 0 0
\(795\) −8431.94 8431.94i −0.376164 0.376164i
\(796\) 0 0
\(797\) 10200.6 10200.6i 0.453353 0.453353i −0.443113 0.896466i \(-0.646126\pi\)
0.896466 + 0.443113i \(0.146126\pi\)
\(798\) 0 0
\(799\) 18852.0i 0.834711i
\(800\) 0 0
\(801\) 22511.0i 0.992994i
\(802\) 0 0
\(803\) 1019.04 + 1019.04i 0.0447836 + 0.0447836i
\(804\) 0 0
\(805\) −10096.6 16324.8i −0.442061 0.714750i
\(806\) 0 0
\(807\) 9587.73 0.418221
\(808\) 0 0
\(809\) 5095.00i 0.221422i 0.993853 + 0.110711i \(0.0353128\pi\)
−0.993853 + 0.110711i \(0.964687\pi\)
\(810\) 0 0
\(811\) 16365.5 16365.5i 0.708595 0.708595i −0.257644 0.966240i \(-0.582946\pi\)
0.966240 + 0.257644i \(0.0829463\pi\)
\(812\) 0 0
\(813\) −1667.12 1667.12i −0.0719171 0.0719171i
\(814\) 0 0
\(815\) −43332.6 −1.86242
\(816\) 0 0
\(817\) 41992.4i 1.79820i
\(818\) 0 0
\(819\) −3471.01 5612.13i −0.148091 0.239443i
\(820\) 0 0
\(821\) −17759.4 + 17759.4i −0.754943 + 0.754943i −0.975397 0.220455i \(-0.929246\pi\)
0.220455 + 0.975397i \(0.429246\pi\)
\(822\) 0 0
\(823\) −40905.7 −1.73254 −0.866272 0.499572i \(-0.833490\pi\)
−0.866272 + 0.499572i \(0.833490\pi\)
\(824\) 0 0
\(825\) 1756.35 0.0741189
\(826\) 0 0
\(827\) −28790.3 28790.3i −1.21056 1.21056i −0.970842 0.239722i \(-0.922944\pi\)
−0.239722 0.970842i \(-0.577056\pi\)
\(828\) 0 0
\(829\) 23367.1 23367.1i 0.978977 0.978977i −0.0208065 0.999784i \(-0.506623\pi\)
0.999784 + 0.0208065i \(0.00662340\pi\)
\(830\) 0 0
\(831\) 16786.9 0.700760
\(832\) 0 0
\(833\) 14214.2 28474.6i 0.591227 1.18438i
\(834\) 0 0
\(835\) −7787.77 + 7787.77i −0.322763 + 0.322763i
\(836\) 0 0
\(837\) −24889.1 + 24889.1i −1.02783 + 1.02783i
\(838\) 0 0
\(839\) 11206.9i 0.461152i −0.973054 0.230576i \(-0.925939\pi\)
0.973054 0.230576i \(-0.0740610\pi\)
\(840\) 0 0
\(841\) 39879.5i 1.63514i
\(842\) 0 0
\(843\) 5097.75 5097.75i 0.208275 0.208275i
\(844\) 0 0
\(845\) 21182.5 21182.5i 0.862368 0.862368i
\(846\) 0 0
\(847\) −5533.62 + 23474.9i −0.224484 + 0.952310i
\(848\) 0 0
\(849\) 9527.28 0.385130
\(850\) 0 0
\(851\) 12716.9 12716.9i 0.512255 0.512255i
\(852\) 0 0
\(853\) −13523.7 13523.7i −0.542839 0.542839i 0.381521 0.924360i \(-0.375400\pi\)
−0.924360 + 0.381521i \(0.875400\pi\)
\(854\) 0 0
\(855\) 51310.2 2.05237
\(856\) 0 0
\(857\) −10498.9 −0.418477 −0.209238 0.977865i \(-0.567098\pi\)
−0.209238 + 0.977865i \(0.567098\pi\)
\(858\) 0 0
\(859\) 13133.0 13133.0i 0.521643 0.521643i −0.396425 0.918067i \(-0.629749\pi\)
0.918067 + 0.396425i \(0.129749\pi\)
\(860\) 0 0
\(861\) 7354.07 + 11890.5i 0.291087 + 0.470647i
\(862\) 0 0
\(863\) 29386.8i 1.15914i 0.814922 + 0.579571i \(0.196780\pi\)
−0.814922 + 0.579571i \(0.803220\pi\)
\(864\) 0 0
\(865\) 51241.4 2.01417
\(866\) 0 0
\(867\) 6766.93 + 6766.93i 0.265071 + 0.265071i
\(868\) 0 0
\(869\) −2672.81 + 2672.81i −0.104337 + 0.104337i
\(870\) 0 0
\(871\) 333.689i 0.0129812i
\(872\) 0 0
\(873\) 7777.12 0.301507
\(874\) 0 0
\(875\) −384.985 + 238.107i −0.0148741 + 0.00919940i
\(876\) 0 0
\(877\) −9197.32 9197.32i −0.354129 0.354129i 0.507514 0.861643i \(-0.330564\pi\)
−0.861643 + 0.507514i \(0.830564\pi\)
\(878\) 0 0
\(879\) 6554.05i 0.251493i
\(880\) 0 0
\(881\) 13824.6i 0.528676i 0.964430 + 0.264338i \(0.0851534\pi\)
−0.964430 + 0.264338i \(0.914847\pi\)
\(882\) 0 0
\(883\) −32329.5 + 32329.5i −1.23213 + 1.23213i −0.268993 + 0.963142i \(0.586691\pi\)
−0.963142 + 0.268993i \(0.913309\pi\)
\(884\) 0 0
\(885\) −7254.60 7254.60i −0.275549 0.275549i
\(886\) 0 0
\(887\) 23638.4i 0.894815i 0.894330 + 0.447408i \(0.147653\pi\)
−0.894330 + 0.447408i \(0.852347\pi\)
\(888\) 0 0
\(889\) −1708.67 + 7248.55i −0.0644621 + 0.273463i
\(890\) 0 0
\(891\) −875.261 875.261i −0.0329095 0.0329095i
\(892\) 0 0
\(893\) 22901.1 + 22901.1i 0.858181 + 0.858181i
\(894\) 0 0
\(895\) 26116.2 0.975383
\(896\) 0 0
\(897\) −2970.38 −0.110567
\(898\) 0 0
\(899\) 51524.6 + 51524.6i 1.91150 + 1.91150i
\(900\) 0 0
\(901\) 19051.5 + 19051.5i 0.704437 + 0.704437i
\(902\) 0 0
\(903\) 2898.41 12295.7i 0.106814 0.453130i
\(904\) 0 0
\(905\) 35070.3i 1.28815i
\(906\) 0 0
\(907\) 17491.9 + 17491.9i 0.640365 + 0.640365i 0.950645 0.310281i \(-0.100423\pi\)
−0.310281 + 0.950645i \(0.600423\pi\)
\(908\) 0 0
\(909\) −11478.8 + 11478.8i −0.418842 + 0.418842i
\(910\) 0 0
\(911\) 8516.20i 0.309719i −0.987936 0.154860i \(-0.950507\pi\)
0.987936 0.154860i \(-0.0494926\pi\)
\(912\) 0 0
\(913\) 2249.04i 0.0815250i
\(914\) 0 0
\(915\) 16853.8 + 16853.8i 0.608929 + 0.608929i
\(916\) 0 0
\(917\) 26295.3 + 42515.8i 0.946942 + 1.53107i
\(918\) 0 0
\(919\) −26011.3 −0.933661 −0.466830 0.884347i \(-0.654604\pi\)
−0.466830 + 0.884347i \(0.654604\pi\)
\(920\) 0 0
\(921\) 1600.80i 0.0572726i
\(922\) 0 0
\(923\) −5171.48 + 5171.48i −0.184422 + 0.184422i
\(924\) 0 0
\(925\) −24625.2 24625.2i −0.875320 0.875320i
\(926\) 0 0
\(927\) −3104.38 −0.109991
\(928\) 0 0
\(929\) 4227.95i 0.149316i −0.997209 0.0746579i \(-0.976214\pi\)
0.997209 0.0746579i \(-0.0237865\pi\)
\(930\) 0 0
\(931\) −17323.3 51857.6i −0.609826 1.82553i
\(932\) 0 0
\(933\) 5653.23 5653.23i 0.198369 0.198369i
\(934\) 0 0
\(935\) −7888.40 −0.275913
\(936\) 0 0
\(937\) −3414.62 −0.119051 −0.0595255 0.998227i \(-0.518959\pi\)
−0.0595255 + 0.998227i \(0.518959\pi\)
\(938\) 0 0
\(939\) 5215.17 + 5215.17i 0.181247 + 0.181247i
\(940\) 0 0
\(941\) −10219.7 + 10219.7i −0.354042 + 0.354042i −0.861611 0.507569i \(-0.830544\pi\)
0.507569 + 0.861611i \(0.330544\pi\)
\(942\) 0 0
\(943\) −19052.4 −0.657935
\(944\) 0 0
\(945\) −35010.9 8252.95i −1.20519 0.284094i
\(946\) 0 0
\(947\) −21349.8 + 21349.8i −0.732603 + 0.732603i −0.971135 0.238532i \(-0.923334\pi\)
0.238532 + 0.971135i \(0.423334\pi\)
\(948\) 0 0
\(949\) −3337.29 + 3337.29i −0.114155 + 0.114155i
\(950\) 0 0
\(951\) 12257.4i 0.417954i
\(952\) 0 0
\(953\) 664.145i 0.0225748i 0.999936 + 0.0112874i \(0.00359296\pi\)
−0.999936 + 0.0112874i \(0.996407\pi\)
\(954\) 0 0
\(955\) −9948.91 + 9948.91i −0.337109 + 0.337109i
\(956\) 0 0
\(957\) 2488.07 2488.07i 0.0840416 0.0840416i
\(958\) 0 0
\(959\) −4912.81 + 20841.3i −0.165425 + 0.701772i
\(960\) 0 0
\(961\) 52824.3 1.77316
\(962\) 0 0
\(963\) 2990.24 2990.24i 0.100061 0.100061i
\(964\) 0 0
\(965\) −25015.0 25015.0i −0.834468 0.834468i
\(966\) 0 0
\(967\) 9585.77 0.318777 0.159389 0.987216i \(-0.449048\pi\)
0.159389 + 0.987216i \(0.449048\pi\)
\(968\) 0 0
\(969\) 38294.8 1.26956
\(970\) 0 0
\(971\) −15043.6 + 15043.6i −0.497190 + 0.497190i −0.910562 0.413372i \(-0.864351\pi\)
0.413372 + 0.910562i \(0.364351\pi\)
\(972\) 0 0
\(973\) 930.403 575.438i 0.0306550 0.0189596i
\(974\) 0 0
\(975\) 5751.90i 0.188932i
\(976\) 0 0
\(977\) −45426.9 −1.48755 −0.743774 0.668431i \(-0.766966\pi\)
−0.743774 + 0.668431i \(0.766966\pi\)
\(978\) 0 0
\(979\) −4204.17 4204.17i −0.137248 0.137248i
\(980\) 0 0
\(981\) −5827.69 + 5827.69i −0.189668 + 0.189668i
\(982\) 0 0
\(983\) 52579.6i 1.70603i −0.521885 0.853016i \(-0.674771\pi\)
0.521885 0.853016i \(-0.325229\pi\)
\(984\) 0 0
\(985\) −17679.1 −0.571880
\(986\) 0 0
\(987\) −5124.95 8286.32i −0.165277 0.267230i
\(988\) 0 0
\(989\) 12173.0 + 12173.0i 0.391383 + 0.391383i
\(990\) 0 0
\(991\) 7892.45i 0.252989i 0.991967 + 0.126494i \(0.0403726\pi\)
−0.991967 + 0.126494i \(0.959627\pi\)
\(992\) 0 0
\(993\) 11361.6i 0.363090i
\(994\) 0 0
\(995\) −39598.8 + 39598.8i −1.26167 + 1.26167i
\(996\) 0 0
\(997\) −10004.4 10004.4i −0.317796 0.317796i 0.530124 0.847920i \(-0.322145\pi\)
−0.847920 + 0.530124i \(0.822145\pi\)
\(998\) 0 0
\(999\) 33702.1i 1.06736i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.j.b.111.19 88
4.3 odd 2 112.4.j.b.83.34 yes 88
7.6 odd 2 inner 448.4.j.b.111.26 88
16.5 even 4 112.4.j.b.27.33 88
16.11 odd 4 inner 448.4.j.b.335.26 88
28.27 even 2 112.4.j.b.83.33 yes 88
112.27 even 4 inner 448.4.j.b.335.19 88
112.69 odd 4 112.4.j.b.27.34 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.4.j.b.27.33 88 16.5 even 4
112.4.j.b.27.34 yes 88 112.69 odd 4
112.4.j.b.83.33 yes 88 28.27 even 2
112.4.j.b.83.34 yes 88 4.3 odd 2
448.4.j.b.111.19 88 1.1 even 1 trivial
448.4.j.b.111.26 88 7.6 odd 2 inner
448.4.j.b.335.19 88 112.27 even 4 inner
448.4.j.b.335.26 88 16.11 odd 4 inner