Properties

Label 45.3.k.a.22.8
Level $45$
Weight $3$
Character 45.22
Analytic conductor $1.226$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,3,Mod(7,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([8, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.k (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 22.8
Character \(\chi\) \(=\) 45.22
Dual form 45.3.k.a.43.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.639624 - 2.38711i) q^{2} +(2.11050 - 2.13208i) q^{3} +(-1.82507 - 1.05371i) q^{4} +(-3.10636 + 3.91797i) q^{5} +(-3.73959 - 6.40173i) q^{6} +(-2.77655 + 10.3622i) q^{7} +(3.30727 - 3.30727i) q^{8} +(-0.0915623 - 8.99953i) q^{9} +(7.36573 + 9.92126i) q^{10} +(-5.66397 - 9.81028i) q^{11} +(-6.09842 + 1.66736i) q^{12} +(2.53087 + 9.44533i) q^{13} +(22.9598 + 13.2559i) q^{14} +(1.79747 + 14.8919i) q^{15} +(-9.99423 - 17.3105i) q^{16} +(8.05728 + 8.05728i) q^{17} +(-21.5414 - 5.53775i) q^{18} +3.73565i q^{19} +(9.79774 - 3.87740i) q^{20} +(16.2332 + 27.7894i) q^{21} +(-27.0410 + 7.24562i) q^{22} +(-3.60402 - 13.4504i) q^{23} +(-0.0713765 - 14.0314i) q^{24} +(-5.70105 - 24.3413i) q^{25} +24.1658 q^{26} +(-19.3810 - 18.7983i) q^{27} +(15.9862 - 15.9862i) q^{28} +(-28.7625 + 16.6061i) q^{29} +(36.6983 + 5.23447i) q^{30} +(7.67855 - 13.2996i) q^{31} +(-29.6434 + 7.94293i) q^{32} +(-32.8702 - 8.62856i) q^{33} +(24.3873 - 14.0800i) q^{34} +(-31.9740 - 43.0673i) q^{35} +(-9.31577 + 16.5213i) q^{36} +(13.7991 + 13.7991i) q^{37} +(8.91741 + 2.38941i) q^{38} +(25.4796 + 14.5384i) q^{39} +(2.68423 + 23.2313i) q^{40} +(4.87477 - 8.44335i) q^{41} +(76.7194 - 20.9758i) q^{42} +(38.3822 + 10.2845i) q^{43} +23.8727i q^{44} +(35.5444 + 27.5971i) q^{45} -34.4127 q^{46} +(-0.451608 + 1.68543i) q^{47} +(-58.0003 - 15.2253i) q^{48} +(-57.2314 - 33.0426i) q^{49} +(-61.7519 - 1.96023i) q^{50} +(34.1837 - 0.173890i) q^{51} +(5.33359 - 19.9052i) q^{52} +(-45.3574 + 45.3574i) q^{53} +(-57.2702 + 34.2407i) q^{54} +(56.0308 + 8.28298i) q^{55} +(25.0879 + 43.4535i) q^{56} +(7.96472 + 7.88410i) q^{57} +(21.2433 + 79.2810i) q^{58} +(10.2473 + 5.91626i) q^{59} +(12.4112 - 29.0729i) q^{60} +(-28.0510 - 48.5858i) q^{61} +(-26.8363 - 26.8363i) q^{62} +(93.5095 + 24.0389i) q^{63} -4.11124i q^{64} +(-44.8683 - 19.4247i) q^{65} +(-41.6219 + 72.9456i) q^{66} +(47.4011 - 12.7011i) q^{67} +(-6.21513 - 23.1952i) q^{68} +(-36.2836 - 20.7030i) q^{69} +(-123.258 + 48.7786i) q^{70} +22.2795 q^{71} +(-30.0667 - 29.4610i) q^{72} +(37.2225 - 37.2225i) q^{73} +(41.7661 - 24.1137i) q^{74} +(-63.9297 - 39.2172i) q^{75} +(3.93628 - 6.81784i) q^{76} +(117.383 - 31.4526i) q^{77} +(51.0021 - 51.5236i) q^{78} +(105.323 - 60.8084i) q^{79} +(98.8678 + 14.6155i) q^{80} +(-80.9832 + 1.64804i) q^{81} +(-17.0372 - 17.0372i) q^{82} +(105.029 + 28.1424i) q^{83} +(-0.345009 - 67.8227i) q^{84} +(-56.5971 + 6.53941i) q^{85} +(49.1003 - 85.0443i) q^{86} +(-25.2979 + 96.3713i) q^{87} +(-51.1775 - 13.7130i) q^{88} -16.0767i q^{89} +(88.6123 - 67.1966i) q^{90} -104.902 q^{91} +(-7.59516 + 28.3455i) q^{92} +(-12.1504 - 44.4403i) q^{93} +(3.73444 + 2.15608i) q^{94} +(-14.6362 - 11.6043i) q^{95} +(-45.6275 + 79.9658i) q^{96} +(-46.1951 + 172.402i) q^{97} +(-115.483 + 115.483i) q^{98} +(-87.7693 + 51.8713i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} - 6 q^{3} - 2 q^{5} - 24 q^{6} - 2 q^{7} - 24 q^{8} - 8 q^{10} + 8 q^{11} - 30 q^{12} - 2 q^{13} - 30 q^{15} + 28 q^{16} + 28 q^{17} + 48 q^{18} - 114 q^{20} + 12 q^{21} + 14 q^{22} + 82 q^{23}+ \cdots - 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.639624 2.38711i 0.319812 1.19356i −0.599613 0.800290i \(-0.704679\pi\)
0.919425 0.393265i \(-0.128655\pi\)
\(3\) 2.11050 2.13208i 0.703501 0.710695i
\(4\) −1.82507 1.05371i −0.456269 0.263427i
\(5\) −3.10636 + 3.91797i −0.621272 + 0.783595i
\(6\) −3.73959 6.40173i −0.623265 1.06696i
\(7\) −2.77655 + 10.3622i −0.396650 + 1.48032i 0.422301 + 0.906456i \(0.361223\pi\)
−0.818951 + 0.573863i \(0.805444\pi\)
\(8\) 3.30727 3.30727i 0.413408 0.413408i
\(9\) −0.0915623 8.99953i −0.0101736 0.999948i
\(10\) 7.36573 + 9.92126i 0.736573 + 0.992126i
\(11\) −5.66397 9.81028i −0.514906 0.891844i −0.999850 0.0172985i \(-0.994493\pi\)
0.484944 0.874545i \(-0.338840\pi\)
\(12\) −6.09842 + 1.66736i −0.508201 + 0.138947i
\(13\) 2.53087 + 9.44533i 0.194682 + 0.726564i 0.992349 + 0.123465i \(0.0394007\pi\)
−0.797667 + 0.603098i \(0.793933\pi\)
\(14\) 22.9598 + 13.2559i 1.63999 + 0.946848i
\(15\) 1.79747 + 14.8919i 0.119831 + 0.992794i
\(16\) −9.99423 17.3105i −0.624639 1.08191i
\(17\) 8.05728 + 8.05728i 0.473958 + 0.473958i 0.903193 0.429235i \(-0.141217\pi\)
−0.429235 + 0.903193i \(0.641217\pi\)
\(18\) −21.5414 5.53775i −1.19675 0.307653i
\(19\) 3.73565i 0.196613i 0.995156 + 0.0983066i \(0.0313426\pi\)
−0.995156 + 0.0983066i \(0.968657\pi\)
\(20\) 9.79774 3.87740i 0.489887 0.193870i
\(21\) 16.2332 + 27.7894i 0.773011 + 1.32330i
\(22\) −27.0410 + 7.24562i −1.22914 + 0.329346i
\(23\) −3.60402 13.4504i −0.156696 0.584799i −0.998954 0.0457238i \(-0.985441\pi\)
0.842258 0.539075i \(-0.181226\pi\)
\(24\) −0.0713765 14.0314i −0.00297402 0.584640i
\(25\) −5.70105 24.3413i −0.228042 0.973651i
\(26\) 24.1658 0.929456
\(27\) −19.3810 18.7983i −0.717815 0.696234i
\(28\) 15.9862 15.9862i 0.570935 0.570935i
\(29\) −28.7625 + 16.6061i −0.991812 + 0.572623i −0.905815 0.423673i \(-0.860741\pi\)
−0.0859964 + 0.996295i \(0.527407\pi\)
\(30\) 36.6983 + 5.23447i 1.22328 + 0.174482i
\(31\) 7.67855 13.2996i 0.247695 0.429021i −0.715191 0.698929i \(-0.753660\pi\)
0.962886 + 0.269909i \(0.0869935\pi\)
\(32\) −29.6434 + 7.94293i −0.926357 + 0.248217i
\(33\) −32.8702 8.62856i −0.996065 0.261472i
\(34\) 24.3873 14.0800i 0.717272 0.414117i
\(35\) −31.9740 43.0673i −0.913543 1.23049i
\(36\) −9.31577 + 16.5213i −0.258771 + 0.458925i
\(37\) 13.7991 + 13.7991i 0.372947 + 0.372947i 0.868550 0.495602i \(-0.165053\pi\)
−0.495602 + 0.868550i \(0.665053\pi\)
\(38\) 8.91741 + 2.38941i 0.234669 + 0.0628793i
\(39\) 25.4796 + 14.5384i 0.653324 + 0.372779i
\(40\) 2.68423 + 23.2313i 0.0671057 + 0.580784i
\(41\) 4.87477 8.44335i 0.118897 0.205935i −0.800434 0.599421i \(-0.795398\pi\)
0.919331 + 0.393486i \(0.128731\pi\)
\(42\) 76.7194 20.9758i 1.82665 0.499423i
\(43\) 38.3822 + 10.2845i 0.892609 + 0.239174i 0.675839 0.737049i \(-0.263781\pi\)
0.216769 + 0.976223i \(0.430448\pi\)
\(44\) 23.8727i 0.542560i
\(45\) 35.5444 + 27.5971i 0.789875 + 0.613268i
\(46\) −34.4127 −0.748103
\(47\) −0.451608 + 1.68543i −0.00960869 + 0.0358601i −0.970564 0.240844i \(-0.922576\pi\)
0.960955 + 0.276705i \(0.0892423\pi\)
\(48\) −58.0003 15.2253i −1.20834 0.317195i
\(49\) −57.2314 33.0426i −1.16799 0.674338i
\(50\) −61.7519 1.96023i −1.23504 0.0392045i
\(51\) 34.1837 0.173890i 0.670269 0.00340961i
\(52\) 5.33359 19.9052i 0.102569 0.382793i
\(53\) −45.3574 + 45.3574i −0.855801 + 0.855801i −0.990840 0.135040i \(-0.956884\pi\)
0.135040 + 0.990840i \(0.456884\pi\)
\(54\) −57.2702 + 34.2407i −1.06056 + 0.634088i
\(55\) 56.0308 + 8.28298i 1.01874 + 0.150600i
\(56\) 25.0879 + 43.4535i 0.447998 + 0.775955i
\(57\) 7.96472 + 7.88410i 0.139732 + 0.138318i
\(58\) 21.2433 + 79.2810i 0.366263 + 1.36691i
\(59\) 10.2473 + 5.91626i 0.173683 + 0.100276i 0.584321 0.811523i \(-0.301361\pi\)
−0.410639 + 0.911798i \(0.634694\pi\)
\(60\) 12.4112 29.0729i 0.206853 0.484548i
\(61\) −28.0510 48.5858i −0.459852 0.796488i 0.539100 0.842242i \(-0.318764\pi\)
−0.998953 + 0.0457538i \(0.985431\pi\)
\(62\) −26.8363 26.8363i −0.432844 0.432844i
\(63\) 93.5095 + 24.0389i 1.48428 + 0.381570i
\(64\) 4.11124i 0.0642381i
\(65\) −44.8683 19.4247i −0.690282 0.298842i
\(66\) −41.6219 + 72.9456i −0.630634 + 1.10524i
\(67\) 47.4011 12.7011i 0.707480 0.189569i 0.112901 0.993606i \(-0.463986\pi\)
0.594578 + 0.804038i \(0.297319\pi\)
\(68\) −6.21513 23.1952i −0.0913989 0.341105i
\(69\) −36.2836 20.7030i −0.525849 0.300043i
\(70\) −123.258 + 48.7786i −1.76082 + 0.696837i
\(71\) 22.2795 0.313795 0.156898 0.987615i \(-0.449851\pi\)
0.156898 + 0.987615i \(0.449851\pi\)
\(72\) −30.0667 29.4610i −0.417593 0.409181i
\(73\) 37.2225 37.2225i 0.509898 0.509898i −0.404597 0.914495i \(-0.632588\pi\)
0.914495 + 0.404597i \(0.132588\pi\)
\(74\) 41.7661 24.1137i 0.564407 0.325860i
\(75\) −63.9297 39.2172i −0.852397 0.522896i
\(76\) 3.93628 6.81784i 0.0517932 0.0897084i
\(77\) 117.383 31.4526i 1.52445 0.408475i
\(78\) 51.0021 51.5236i 0.653873 0.660559i
\(79\) 105.323 60.8084i 1.33321 0.769726i 0.347416 0.937711i \(-0.387059\pi\)
0.985790 + 0.167985i \(0.0537260\pi\)
\(80\) 98.8678 + 14.6155i 1.23585 + 0.182694i
\(81\) −80.9832 + 1.64804i −0.999793 + 0.0203461i
\(82\) −17.0372 17.0372i −0.207771 0.207771i
\(83\) 105.029 + 28.1424i 1.26541 + 0.339065i 0.828270 0.560329i \(-0.189325\pi\)
0.437139 + 0.899394i \(0.355992\pi\)
\(84\) −0.345009 67.8227i −0.00410725 0.807413i
\(85\) −56.5971 + 6.53941i −0.665848 + 0.0769343i
\(86\) 49.1003 85.0443i 0.570934 0.988887i
\(87\) −25.2979 + 96.3713i −0.290780 + 1.10772i
\(88\) −51.1775 13.7130i −0.581562 0.155829i
\(89\) 16.0767i 0.180637i −0.995913 0.0903186i \(-0.971211\pi\)
0.995913 0.0903186i \(-0.0287885\pi\)
\(90\) 88.6123 67.1966i 0.984581 0.746629i
\(91\) −104.902 −1.15277
\(92\) −7.59516 + 28.3455i −0.0825560 + 0.308103i
\(93\) −12.1504 44.4403i −0.130649 0.477852i
\(94\) 3.73444 + 2.15608i 0.0397281 + 0.0229370i
\(95\) −14.6362 11.6043i −0.154065 0.122150i
\(96\) −45.6275 + 79.9658i −0.475287 + 0.832977i
\(97\) −46.1951 + 172.402i −0.476238 + 1.77734i 0.140398 + 0.990095i \(0.455162\pi\)
−0.616636 + 0.787248i \(0.711505\pi\)
\(98\) −115.483 + 115.483i −1.17840 + 1.17840i
\(99\) −87.7693 + 51.8713i −0.886559 + 0.523953i
\(100\) −15.2437 + 50.4319i −0.152437 + 0.504319i
\(101\) −13.8448 23.9798i −0.137077 0.237424i 0.789312 0.613992i \(-0.210437\pi\)
−0.926389 + 0.376568i \(0.877104\pi\)
\(102\) 21.4496 81.7115i 0.210291 0.801093i
\(103\) −39.5049 147.434i −0.383543 1.43140i −0.840451 0.541888i \(-0.817710\pi\)
0.456908 0.889514i \(-0.348957\pi\)
\(104\) 39.6085 + 22.8680i 0.380851 + 0.219884i
\(105\) −159.304 22.7224i −1.51718 0.216403i
\(106\) 79.2615 + 137.285i 0.747750 + 1.29514i
\(107\) −108.283 108.283i −1.01199 1.01199i −0.999927 0.0120628i \(-0.996160\pi\)
−0.0120628 0.999927i \(-0.503840\pi\)
\(108\) 15.5639 + 54.7302i 0.144110 + 0.506761i
\(109\) 184.036i 1.68841i 0.536024 + 0.844203i \(0.319926\pi\)
−0.536024 + 0.844203i \(0.680074\pi\)
\(110\) 55.6110 128.454i 0.505555 1.16776i
\(111\) 58.5437 0.297807i 0.527421 0.00268295i
\(112\) 207.125 55.4990i 1.84933 0.495527i
\(113\) 43.5785 + 162.637i 0.385650 + 1.43927i 0.837139 + 0.546990i \(0.184226\pi\)
−0.451489 + 0.892277i \(0.649107\pi\)
\(114\) 23.9146 13.9698i 0.209778 0.122542i
\(115\) 63.8936 + 27.6613i 0.555596 + 0.240533i
\(116\) 69.9917 0.603377
\(117\) 84.7718 23.6415i 0.724545 0.202064i
\(118\) 20.6772 20.6772i 0.175230 0.175230i
\(119\) −105.863 + 61.1200i −0.889604 + 0.513613i
\(120\) 55.1962 + 43.3068i 0.459969 + 0.360890i
\(121\) −3.66106 + 6.34114i −0.0302567 + 0.0524061i
\(122\) −133.922 + 35.8842i −1.09772 + 0.294133i
\(123\) −7.71372 28.2131i −0.0627132 0.229375i
\(124\) −28.0279 + 16.1819i −0.226031 + 0.130499i
\(125\) 113.078 + 53.2762i 0.904624 + 0.426210i
\(126\) 117.194 207.842i 0.930114 1.64954i
\(127\) −94.7770 94.7770i −0.746275 0.746275i 0.227502 0.973778i \(-0.426944\pi\)
−0.973778 + 0.227502i \(0.926944\pi\)
\(128\) −128.388 34.4014i −1.00303 0.268761i
\(129\) 102.933 60.1286i 0.797930 0.466113i
\(130\) −75.0678 + 94.6812i −0.577445 + 0.728317i
\(131\) −56.6078 + 98.0476i −0.432121 + 0.748455i −0.997056 0.0766803i \(-0.975568\pi\)
0.564935 + 0.825135i \(0.308901\pi\)
\(132\) 50.8985 + 50.3833i 0.385595 + 0.381692i
\(133\) −38.7097 10.3722i −0.291050 0.0779867i
\(134\) 121.276i 0.905042i
\(135\) 133.856 17.5399i 0.991524 0.129926i
\(136\) 53.2952 0.391876
\(137\) −6.25891 + 23.3586i −0.0456855 + 0.170501i −0.984999 0.172559i \(-0.944797\pi\)
0.939314 + 0.343059i \(0.111463\pi\)
\(138\) −72.6282 + 73.3708i −0.526291 + 0.531673i
\(139\) 98.1741 + 56.6809i 0.706289 + 0.407776i 0.809685 0.586864i \(-0.199638\pi\)
−0.103397 + 0.994640i \(0.532971\pi\)
\(140\) 12.9746 + 112.292i 0.0926758 + 0.802087i
\(141\) 2.64035 + 4.51996i 0.0187259 + 0.0320565i
\(142\) 14.2505 53.1835i 0.100355 0.374532i
\(143\) 78.3266 78.3266i 0.547738 0.547738i
\(144\) −154.871 + 91.5284i −1.07550 + 0.635614i
\(145\) 24.2847 164.275i 0.167481 1.13293i
\(146\) −65.0459 112.663i −0.445520 0.771663i
\(147\) −191.236 + 52.2857i −1.30093 + 0.355685i
\(148\) −10.6441 39.7245i −0.0719199 0.268409i
\(149\) −136.216 78.6442i −0.914199 0.527813i −0.0324193 0.999474i \(-0.510321\pi\)
−0.881780 + 0.471661i \(0.843655\pi\)
\(150\) −134.507 + 127.523i −0.896712 + 0.850154i
\(151\) 9.10366 + 15.7680i 0.0602891 + 0.104424i 0.894595 0.446879i \(-0.147464\pi\)
−0.834306 + 0.551302i \(0.814131\pi\)
\(152\) 12.3548 + 12.3548i 0.0812815 + 0.0812815i
\(153\) 71.7741 73.2495i 0.469111 0.478755i
\(154\) 300.323i 1.95015i
\(155\) 28.2553 + 71.3979i 0.182292 + 0.460631i
\(156\) −31.1831 53.3817i −0.199891 0.342190i
\(157\) −163.467 + 43.8009i −1.04119 + 0.278987i −0.738607 0.674136i \(-0.764516\pi\)
−0.302585 + 0.953122i \(0.597850\pi\)
\(158\) −77.7890 290.313i −0.492336 1.83742i
\(159\) 0.978892 + 192.433i 0.00615655 + 1.21027i
\(160\) 60.9629 140.816i 0.381018 0.880099i
\(161\) 149.383 0.927842
\(162\) −47.8648 + 194.370i −0.295462 + 1.19981i
\(163\) −152.193 + 152.193i −0.933698 + 0.933698i −0.997935 0.0642365i \(-0.979539\pi\)
0.0642365 + 0.997935i \(0.479539\pi\)
\(164\) −17.7936 + 10.2732i −0.108498 + 0.0626412i
\(165\) 135.913 101.981i 0.823715 0.618067i
\(166\) 134.358 232.715i 0.809387 1.40190i
\(167\) 109.110 29.2359i 0.653353 0.175065i 0.0831087 0.996540i \(-0.473515\pi\)
0.570245 + 0.821475i \(0.306848\pi\)
\(168\) 145.594 + 38.2192i 0.866633 + 0.227495i
\(169\) 63.5494 36.6902i 0.376032 0.217102i
\(170\) −20.5906 + 139.286i −0.121121 + 0.819331i
\(171\) 33.6191 0.342045i 0.196603 0.00200026i
\(172\) −59.2135 59.2135i −0.344264 0.344264i
\(173\) 68.8666 + 18.4527i 0.398073 + 0.106663i 0.452301 0.891865i \(-0.350603\pi\)
−0.0542285 + 0.998529i \(0.517270\pi\)
\(174\) 213.868 + 122.030i 1.22912 + 0.701323i
\(175\) 268.059 + 8.50917i 1.53177 + 0.0486238i
\(176\) −113.214 + 196.092i −0.643261 + 1.11416i
\(177\) 34.2409 9.36175i 0.193451 0.0528913i
\(178\) −38.3769 10.2831i −0.215600 0.0577700i
\(179\) 46.2183i 0.258203i −0.991631 0.129101i \(-0.958791\pi\)
0.991631 0.129101i \(-0.0412092\pi\)
\(180\) −35.7919 87.8200i −0.198844 0.487889i
\(181\) −166.274 −0.918640 −0.459320 0.888271i \(-0.651907\pi\)
−0.459320 + 0.888271i \(0.651907\pi\)
\(182\) −67.0977 + 250.412i −0.368669 + 1.37589i
\(183\) −162.791 42.7333i −0.889566 0.233515i
\(184\) −56.4034 32.5645i −0.306540 0.176981i
\(185\) −96.9292 + 11.1995i −0.523942 + 0.0605379i
\(186\) −113.855 + 0.579174i −0.612126 + 0.00311384i
\(187\) 33.4080 124.680i 0.178652 0.666740i
\(188\) 2.60016 2.60016i 0.0138307 0.0138307i
\(189\) 248.605 148.636i 1.31537 0.786434i
\(190\) −37.0623 + 27.5158i −0.195065 + 0.144820i
\(191\) −58.2778 100.940i −0.305119 0.528482i 0.672169 0.740398i \(-0.265363\pi\)
−0.977288 + 0.211916i \(0.932030\pi\)
\(192\) −8.76551 8.67678i −0.0456537 0.0451916i
\(193\) 32.3443 + 120.711i 0.167587 + 0.625443i 0.997696 + 0.0678422i \(0.0216114\pi\)
−0.830109 + 0.557601i \(0.811722\pi\)
\(194\) 381.996 + 220.545i 1.96905 + 1.13683i
\(195\) −136.110 + 54.6672i −0.697999 + 0.280345i
\(196\) 69.6344 + 120.610i 0.355277 + 0.615358i
\(197\) 83.4305 + 83.4305i 0.423505 + 0.423505i 0.886409 0.462903i \(-0.153192\pi\)
−0.462903 + 0.886409i \(0.653192\pi\)
\(198\) 67.6832 + 242.693i 0.341834 + 1.22572i
\(199\) 271.461i 1.36412i 0.731294 + 0.682062i \(0.238917\pi\)
−0.731294 + 0.682062i \(0.761083\pi\)
\(200\) −99.3580 61.6482i −0.496790 0.308241i
\(201\) 72.9604 127.869i 0.362987 0.636164i
\(202\) −66.0980 + 17.7109i −0.327218 + 0.0876777i
\(203\) −92.2152 344.152i −0.454262 1.69533i
\(204\) −62.5711 35.7023i −0.306721 0.175011i
\(205\) 17.9380 + 45.3273i 0.0875027 + 0.221109i
\(206\) −377.210 −1.83112
\(207\) −120.717 + 33.6660i −0.583174 + 0.162638i
\(208\) 138.209 138.209i 0.664468 0.664468i
\(209\) 36.6478 21.1586i 0.175348 0.101237i
\(210\) −156.136 + 365.743i −0.743503 + 1.74163i
\(211\) −65.7689 + 113.915i −0.311701 + 0.539882i −0.978731 0.205149i \(-0.934232\pi\)
0.667030 + 0.745031i \(0.267565\pi\)
\(212\) 130.574 34.9872i 0.615916 0.165034i
\(213\) 47.0208 47.5017i 0.220755 0.223012i
\(214\) −327.744 + 189.223i −1.53151 + 0.884219i
\(215\) −159.523 + 118.433i −0.741968 + 0.550852i
\(216\) −126.269 + 1.92710i −0.584580 + 0.00892176i
\(217\) 116.494 + 116.494i 0.536839 + 0.536839i
\(218\) 439.315 + 117.714i 2.01520 + 0.539972i
\(219\) −0.803327 157.920i −0.00366816 0.721095i
\(220\) −93.5325 74.1571i −0.425148 0.337078i
\(221\) −55.7118 + 96.4956i −0.252089 + 0.436632i
\(222\) 36.7351 139.941i 0.165473 0.630364i
\(223\) 29.8918 + 8.00949i 0.134044 + 0.0359170i 0.325217 0.945639i \(-0.394563\pi\)
−0.191173 + 0.981556i \(0.561229\pi\)
\(224\) 329.226i 1.46976i
\(225\) −218.538 + 53.5356i −0.971281 + 0.237936i
\(226\) 416.107 1.84118
\(227\) 16.9273 63.1736i 0.0745697 0.278298i −0.918566 0.395268i \(-0.870652\pi\)
0.993135 + 0.116970i \(0.0373183\pi\)
\(228\) −6.22868 22.7816i −0.0273188 0.0999191i
\(229\) −240.813 139.033i −1.05158 0.607132i −0.128491 0.991711i \(-0.541013\pi\)
−0.923092 + 0.384579i \(0.874347\pi\)
\(230\) 106.898 134.828i 0.464775 0.586210i
\(231\) 180.677 316.651i 0.782151 1.37078i
\(232\) −40.2047 + 150.046i −0.173296 + 0.646750i
\(233\) −106.791 + 106.791i −0.458329 + 0.458329i −0.898107 0.439778i \(-0.855057\pi\)
0.439778 + 0.898107i \(0.355057\pi\)
\(234\) −2.21268 217.481i −0.00945590 0.929407i
\(235\) −5.20060 7.00493i −0.0221302 0.0298082i
\(236\) −12.4680 21.5952i −0.0528306 0.0915053i
\(237\) 92.6363 352.894i 0.390870 1.48900i
\(238\) 78.1876 + 291.800i 0.328520 + 1.22605i
\(239\) −136.295 78.6901i −0.570273 0.329247i 0.186985 0.982363i \(-0.440128\pi\)
−0.757258 + 0.653115i \(0.773462\pi\)
\(240\) 239.822 179.948i 0.999260 0.749785i
\(241\) −10.1579 17.5940i −0.0421489 0.0730040i 0.844181 0.536058i \(-0.180087\pi\)
−0.886330 + 0.463054i \(0.846754\pi\)
\(242\) 12.7953 + 12.7953i 0.0528731 + 0.0528731i
\(243\) −167.402 + 176.141i −0.688895 + 0.724861i
\(244\) 118.230i 0.484550i
\(245\) 307.241 121.589i 1.25405 0.496282i
\(246\) −72.2817 + 0.367692i −0.293828 + 0.00149468i
\(247\) −35.2844 + 9.45444i −0.142852 + 0.0382771i
\(248\) −18.5905 69.3805i −0.0749615 0.279760i
\(249\) 281.666 164.536i 1.13119 0.660787i
\(250\) 199.504 235.853i 0.798014 0.943412i
\(251\) −92.7758 −0.369625 −0.184812 0.982774i \(-0.559168\pi\)
−0.184812 + 0.982774i \(0.559168\pi\)
\(252\) −145.332 142.404i −0.576714 0.565097i
\(253\) −111.539 + 111.539i −0.440865 + 0.440865i
\(254\) −286.865 + 165.621i −1.12939 + 0.652053i
\(255\) −105.506 + 134.471i −0.413748 + 0.527338i
\(256\) −156.017 + 270.230i −0.609442 + 1.05559i
\(257\) 413.001 110.663i 1.60701 0.430596i 0.659858 0.751390i \(-0.270617\pi\)
0.947149 + 0.320794i \(0.103950\pi\)
\(258\) −77.6952 284.172i −0.301144 1.10144i
\(259\) −181.303 + 104.675i −0.700011 + 0.404152i
\(260\) 61.4201 + 82.7297i 0.236231 + 0.318191i
\(261\) 152.080 + 257.329i 0.582683 + 0.985935i
\(262\) 197.843 + 197.843i 0.755125 + 0.755125i
\(263\) 171.887 + 46.0569i 0.653562 + 0.175121i 0.570339 0.821410i \(-0.306812\pi\)
0.0832230 + 0.996531i \(0.473479\pi\)
\(264\) −137.247 + 80.1734i −0.519876 + 0.303687i
\(265\) −36.8128 318.606i −0.138916 1.20229i
\(266\) −49.5193 + 85.7699i −0.186163 + 0.322443i
\(267\) −34.2769 33.9299i −0.128378 0.127078i
\(268\) −99.8939 26.7665i −0.372738 0.0998749i
\(269\) 175.152i 0.651123i 0.945521 + 0.325562i \(0.105553\pi\)
−0.945521 + 0.325562i \(0.894447\pi\)
\(270\) 43.7476 330.747i 0.162028 1.22499i
\(271\) 463.337 1.70973 0.854865 0.518850i \(-0.173640\pi\)
0.854865 + 0.518850i \(0.173640\pi\)
\(272\) 58.9494 220.002i 0.216726 0.808831i
\(273\) −221.395 + 223.659i −0.810972 + 0.819265i
\(274\) 51.7562 + 29.8814i 0.188891 + 0.109056i
\(275\) −206.504 + 193.797i −0.750924 + 0.704717i
\(276\) 44.4054 + 76.0168i 0.160889 + 0.275423i
\(277\) 99.8186 372.528i 0.360356 1.34487i −0.513252 0.858238i \(-0.671559\pi\)
0.873608 0.486630i \(-0.161774\pi\)
\(278\) 198.098 198.098i 0.712583 0.712583i
\(279\) −120.394 67.8857i −0.431519 0.243318i
\(280\) −248.182 36.6885i −0.886363 0.131030i
\(281\) 39.8147 + 68.9610i 0.141689 + 0.245413i 0.928133 0.372249i \(-0.121413\pi\)
−0.786444 + 0.617662i \(0.788080\pi\)
\(282\) 12.4785 3.41172i 0.0442499 0.0120983i
\(283\) −61.9962 231.373i −0.219068 0.817573i −0.984695 0.174288i \(-0.944238\pi\)
0.765627 0.643285i \(-0.222429\pi\)
\(284\) −40.6617 23.4760i −0.143175 0.0826621i
\(285\) −55.6310 + 6.71473i −0.195196 + 0.0235604i
\(286\) −136.875 237.074i −0.478582 0.828929i
\(287\) 73.9569 + 73.9569i 0.257690 + 0.257690i
\(288\) 74.1969 + 266.050i 0.257628 + 0.923784i
\(289\) 159.160i 0.550728i
\(290\) −376.610 163.045i −1.29866 0.562223i
\(291\) 270.081 + 462.347i 0.928115 + 1.58882i
\(292\) −107.156 + 28.7122i −0.366971 + 0.0983296i
\(293\) 22.4817 + 83.9027i 0.0767292 + 0.286357i 0.993620 0.112781i \(-0.0359759\pi\)
−0.916891 + 0.399139i \(0.869309\pi\)
\(294\) 2.49232 + 489.946i 0.00847727 + 1.66648i
\(295\) −55.0115 + 21.7705i −0.186480 + 0.0737983i
\(296\) 91.2743 0.308359
\(297\) −74.6434 + 296.606i −0.251324 + 0.998674i
\(298\) −274.859 + 274.859i −0.922346 + 0.922346i
\(299\) 117.922 68.0822i 0.394388 0.227700i
\(300\) 75.3531 + 138.938i 0.251177 + 0.463125i
\(301\) −213.140 + 369.170i −0.708107 + 1.22648i
\(302\) 43.4629 11.6458i 0.143917 0.0385624i
\(303\) −80.3464 21.0913i −0.265170 0.0696083i
\(304\) 64.6660 37.3350i 0.212717 0.122812i
\(305\) 277.494 + 41.0217i 0.909817 + 0.134497i
\(306\) −128.946 218.185i −0.421393 0.713022i
\(307\) −220.805 220.805i −0.719234 0.719234i 0.249215 0.968448i \(-0.419828\pi\)
−0.968448 + 0.249215i \(0.919828\pi\)
\(308\) −247.374 66.2837i −0.803162 0.215207i
\(309\) −397.718 226.933i −1.28711 0.734410i
\(310\) 188.507 21.7808i 0.608088 0.0702605i
\(311\) 50.9290 88.2115i 0.163759 0.283638i −0.772455 0.635069i \(-0.780971\pi\)
0.936214 + 0.351431i \(0.114305\pi\)
\(312\) 132.350 36.1857i 0.424199 0.115980i
\(313\) 260.438 + 69.7840i 0.832069 + 0.222952i 0.649616 0.760262i \(-0.274930\pi\)
0.182453 + 0.983215i \(0.441596\pi\)
\(314\) 418.230i 1.33194i
\(315\) −384.658 + 291.694i −1.22114 + 0.926014i
\(316\) −256.297 −0.811066
\(317\) −19.7431 + 73.6824i −0.0622812 + 0.232437i −0.990049 0.140721i \(-0.955058\pi\)
0.927768 + 0.373157i \(0.121725\pi\)
\(318\) 459.984 + 120.748i 1.44649 + 0.379711i
\(319\) 325.820 + 188.112i 1.02138 + 0.589694i
\(320\) 16.1077 + 12.7710i 0.0503367 + 0.0399093i
\(321\) −459.400 + 2.33693i −1.43115 + 0.00728016i
\(322\) 95.5488 356.593i 0.296735 1.10743i
\(323\) −30.0992 + 30.0992i −0.0931864 + 0.0931864i
\(324\) 149.537 + 82.3248i 0.461534 + 0.254089i
\(325\) 215.483 115.453i 0.663024 0.355240i
\(326\) 265.955 + 460.647i 0.815812 + 1.41303i
\(327\) 392.381 + 388.409i 1.19994 + 1.18779i
\(328\) −11.8022 44.0466i −0.0359825 0.134288i
\(329\) −16.2109 9.35934i −0.0492731 0.0284479i
\(330\) −156.507 389.669i −0.474263 1.18081i
\(331\) −39.1180 67.7543i −0.118181 0.204696i 0.800866 0.598844i \(-0.204373\pi\)
−0.919047 + 0.394148i \(0.871040\pi\)
\(332\) −162.032 162.032i −0.488048 0.488048i
\(333\) 122.922 125.449i 0.369134 0.376722i
\(334\) 279.158i 0.835801i
\(335\) −97.4824 + 225.171i −0.290992 + 0.672151i
\(336\) 318.809 558.739i 0.948838 1.66291i
\(337\) −166.029 + 44.4872i −0.492667 + 0.132010i −0.496595 0.867983i \(-0.665416\pi\)
0.00392788 + 0.999992i \(0.498750\pi\)
\(338\) −46.9359 175.167i −0.138864 0.518246i
\(339\) 438.728 + 250.333i 1.29418 + 0.738445i
\(340\) 110.184 + 47.7018i 0.324072 + 0.140299i
\(341\) −173.964 −0.510159
\(342\) 20.6871 80.4713i 0.0604886 0.235296i
\(343\) 129.602 129.602i 0.377849 0.377849i
\(344\) 160.954 92.9266i 0.467888 0.270135i
\(345\) 193.824 77.8474i 0.561808 0.225645i
\(346\) 88.0974 152.589i 0.254617 0.441009i
\(347\) −625.254 + 167.536i −1.80188 + 0.482813i −0.994270 0.106899i \(-0.965908\pi\)
−0.807614 + 0.589712i \(0.799241\pi\)
\(348\) 147.718 149.228i 0.424476 0.428817i
\(349\) 74.5409 43.0362i 0.213584 0.123313i −0.389392 0.921072i \(-0.627315\pi\)
0.602976 + 0.797759i \(0.293981\pi\)
\(350\) 191.770 634.444i 0.547913 1.81270i
\(351\) 128.506 230.636i 0.366113 0.657083i
\(352\) 245.822 + 245.822i 0.698357 + 0.698357i
\(353\) −614.682 164.703i −1.74131 0.466582i −0.758571 0.651590i \(-0.774102\pi\)
−0.982737 + 0.185008i \(0.940769\pi\)
\(354\) −0.446249 87.7247i −0.00126059 0.247810i
\(355\) −69.2080 + 87.2903i −0.194952 + 0.245888i
\(356\) −16.9401 + 29.3412i −0.0475847 + 0.0824191i
\(357\) −93.1110 + 354.702i −0.260815 + 0.993564i
\(358\) −110.328 29.5623i −0.308179 0.0825763i
\(359\) 651.608i 1.81506i −0.419983 0.907532i \(-0.637964\pi\)
0.419983 0.907532i \(-0.362036\pi\)
\(360\) 208.826 26.2839i 0.580071 0.0730109i
\(361\) 347.045 0.961343
\(362\) −106.353 + 396.914i −0.293792 + 1.09645i
\(363\) 5.79317 + 21.1887i 0.0159591 + 0.0583710i
\(364\) 191.454 + 110.536i 0.525971 + 0.303670i
\(365\) 30.2104 + 261.464i 0.0827681 + 0.716339i
\(366\) −206.134 + 361.266i −0.563207 + 0.987065i
\(367\) −25.0954 + 93.6571i −0.0683797 + 0.255197i −0.991651 0.128953i \(-0.958838\pi\)
0.923271 + 0.384149i \(0.125505\pi\)
\(368\) −196.814 + 196.814i −0.534819 + 0.534819i
\(369\) −76.4326 43.0976i −0.207134 0.116796i
\(370\) −35.2638 + 238.544i −0.0953075 + 0.644714i
\(371\) −344.067 595.942i −0.927404 1.60631i
\(372\) −24.6517 + 93.9097i −0.0662680 + 0.252445i
\(373\) −123.092 459.385i −0.330005 1.23160i −0.909184 0.416395i \(-0.863293\pi\)
0.579179 0.815200i \(-0.303373\pi\)
\(374\) −276.257 159.497i −0.738656 0.426463i
\(375\) 352.241 128.652i 0.939309 0.343073i
\(376\) 4.08056 + 7.06774i 0.0108526 + 0.0187972i
\(377\) −229.644 229.644i −0.609135 0.609135i
\(378\) −195.797 688.518i −0.517981 1.82148i
\(379\) 556.768i 1.46905i −0.678584 0.734523i \(-0.737406\pi\)
0.678584 0.734523i \(-0.262594\pi\)
\(380\) 14.4846 + 36.6009i 0.0381174 + 0.0963182i
\(381\) −402.099 + 2.04545i −1.05538 + 0.00536864i
\(382\) −278.231 + 74.5517i −0.728353 + 0.195162i
\(383\) 189.503 + 707.233i 0.494785 + 1.84656i 0.531233 + 0.847226i \(0.321729\pi\)
−0.0364479 + 0.999336i \(0.511604\pi\)
\(384\) −344.309 + 201.129i −0.896638 + 0.523774i
\(385\) −241.402 + 557.606i −0.627019 + 1.44833i
\(386\) 308.838 0.800097
\(387\) 89.0411 346.363i 0.230080 0.894996i
\(388\) 265.971 265.971i 0.685492 0.685492i
\(389\) −180.704 + 104.330i −0.464535 + 0.268200i −0.713949 0.700197i \(-0.753095\pi\)
0.249414 + 0.968397i \(0.419762\pi\)
\(390\) 43.4374 + 359.876i 0.111378 + 0.922758i
\(391\) 79.3349 137.412i 0.202903 0.351437i
\(392\) −298.560 + 79.9989i −0.761633 + 0.204079i
\(393\) 89.5748 + 327.622i 0.227926 + 0.833645i
\(394\) 252.522 145.794i 0.640919 0.370035i
\(395\) −88.9261 + 601.546i −0.225129 + 1.52290i
\(396\) 214.843 2.18584i 0.542532 0.00551979i
\(397\) 109.933 + 109.933i 0.276910 + 0.276910i 0.831874 0.554964i \(-0.187268\pi\)
−0.554964 + 0.831874i \(0.687268\pi\)
\(398\) 648.007 + 173.633i 1.62816 + 0.436264i
\(399\) −103.811 + 60.6417i −0.260179 + 0.151984i
\(400\) −364.382 + 341.961i −0.910956 + 0.854901i
\(401\) 311.573 539.660i 0.776989 1.34578i −0.156680 0.987649i \(-0.550079\pi\)
0.933670 0.358135i \(-0.116587\pi\)
\(402\) −258.570 255.953i −0.643209 0.636698i
\(403\) 145.053 + 38.8668i 0.359933 + 0.0964437i
\(404\) 58.3533i 0.144439i
\(405\) 245.106 322.410i 0.605200 0.796073i
\(406\) −880.511 −2.16875
\(407\) 57.2152 213.530i 0.140578 0.524644i
\(408\) 112.480 113.630i 0.275685 0.278504i
\(409\) 446.525 + 257.801i 1.09175 + 0.630321i 0.934041 0.357165i \(-0.116257\pi\)
0.157707 + 0.987486i \(0.449590\pi\)
\(410\) 119.675 13.8276i 0.291890 0.0337259i
\(411\) 36.5930 + 62.6429i 0.0890341 + 0.152416i
\(412\) −83.2532 + 310.705i −0.202071 + 0.754139i
\(413\) −89.7578 + 89.7578i −0.217331 + 0.217331i
\(414\) 3.15091 + 309.699i 0.00761089 + 0.748064i
\(415\) −436.519 + 324.080i −1.05185 + 0.780917i
\(416\) −150.047 259.889i −0.360690 0.624734i
\(417\) 328.045 89.6904i 0.786679 0.215085i
\(418\) −27.0671 101.016i −0.0647539 0.241665i
\(419\) 127.314 + 73.5049i 0.303852 + 0.175429i 0.644172 0.764880i \(-0.277202\pi\)
−0.340320 + 0.940310i \(0.610535\pi\)
\(420\) 266.799 + 209.330i 0.635237 + 0.498405i
\(421\) −317.026 549.106i −0.753032 1.30429i −0.946347 0.323152i \(-0.895257\pi\)
0.193315 0.981137i \(-0.438076\pi\)
\(422\) 229.860 + 229.860i 0.544693 + 0.544693i
\(423\) 15.2094 + 3.90994i 0.0359560 + 0.00924337i
\(424\) 300.018i 0.707590i
\(425\) 150.190 242.060i 0.353387 0.569552i
\(426\) −83.3160 142.627i −0.195578 0.334805i
\(427\) 581.342 155.770i 1.36146 0.364801i
\(428\) 83.5259 + 311.723i 0.195154 + 0.728325i
\(429\) −1.69042 332.307i −0.00394038 0.774609i
\(430\) 180.678 + 456.552i 0.420181 + 1.06175i
\(431\) 735.767 1.70712 0.853559 0.520997i \(-0.174440\pi\)
0.853559 + 0.520997i \(0.174440\pi\)
\(432\) −131.710 + 523.370i −0.304885 + 1.21150i
\(433\) 69.9073 69.9073i 0.161449 0.161449i −0.621760 0.783208i \(-0.713582\pi\)
0.783208 + 0.621760i \(0.213582\pi\)
\(434\) 352.597 203.572i 0.812435 0.469060i
\(435\) −298.996 398.480i −0.687347 0.916047i
\(436\) 193.920 335.880i 0.444771 0.770366i
\(437\) 50.2459 13.4633i 0.114979 0.0308086i
\(438\) −377.486 99.0917i −0.861840 0.226237i
\(439\) −290.918 + 167.962i −0.662683 + 0.382600i −0.793299 0.608833i \(-0.791638\pi\)
0.130615 + 0.991433i \(0.458305\pi\)
\(440\) 212.703 157.915i 0.483415 0.358897i
\(441\) −292.127 + 518.081i −0.662420 + 1.17479i
\(442\) 194.711 + 194.711i 0.440523 + 0.440523i
\(443\) −298.222 79.9082i −0.673187 0.180380i −0.0939967 0.995573i \(-0.529964\pi\)
−0.579190 + 0.815193i \(0.696631\pi\)
\(444\) −107.160 61.1444i −0.241352 0.137713i
\(445\) 62.9881 + 49.9400i 0.141546 + 0.112225i
\(446\) 38.2391 66.2320i 0.0857379 0.148502i
\(447\) −455.159 + 124.445i −1.01825 + 0.278400i
\(448\) 42.6016 + 11.4151i 0.0950929 + 0.0254801i
\(449\) 391.868i 0.872757i 0.899763 + 0.436378i \(0.143739\pi\)
−0.899763 + 0.436378i \(0.856261\pi\)
\(450\) −11.9870 + 555.917i −0.0266378 + 1.23537i
\(451\) −110.442 −0.244883
\(452\) 91.8379 342.744i 0.203181 0.758283i
\(453\) 52.8320 + 13.8686i 0.116627 + 0.0306151i
\(454\) −139.975 80.8148i −0.308316 0.178006i
\(455\) 325.863 411.003i 0.716182 0.903302i
\(456\) 52.4163 0.266638i 0.114948 0.000584732i
\(457\) −44.1215 + 164.664i −0.0965459 + 0.360314i −0.997249 0.0741204i \(-0.976385\pi\)
0.900703 + 0.434434i \(0.143052\pi\)
\(458\) −485.917 + 485.917i −1.06095 + 1.06095i
\(459\) −4.69487 307.622i −0.0102285 0.670200i
\(460\) −87.4637 117.809i −0.190138 0.256107i
\(461\) 378.908 + 656.288i 0.821926 + 1.42362i 0.904246 + 0.427012i \(0.140434\pi\)
−0.0823197 + 0.996606i \(0.526233\pi\)
\(462\) −640.314 633.833i −1.38596 1.37193i
\(463\) −45.1054 168.336i −0.0974199 0.363576i 0.899955 0.435982i \(-0.143599\pi\)
−0.997375 + 0.0724060i \(0.976932\pi\)
\(464\) 574.919 + 331.930i 1.23905 + 0.715366i
\(465\) 211.859 + 90.4426i 0.455611 + 0.194500i
\(466\) 186.615 + 323.227i 0.400462 + 0.693620i
\(467\) −191.561 191.561i −0.410194 0.410194i 0.471612 0.881806i \(-0.343672\pi\)
−0.881806 + 0.471612i \(0.843672\pi\)
\(468\) −179.626 46.1772i −0.383816 0.0986693i
\(469\) 526.447i 1.12249i
\(470\) −20.0480 + 7.93388i −0.0426552 + 0.0168806i
\(471\) −251.611 + 440.968i −0.534205 + 0.936237i
\(472\) 53.4571 14.3238i 0.113257 0.0303470i
\(473\) −116.502 434.791i −0.246304 0.919219i
\(474\) −783.145 446.853i −1.65220 0.942727i
\(475\) 90.9305 21.2971i 0.191433 0.0448361i
\(476\) 257.610 0.541198
\(477\) 412.349 + 404.043i 0.864463 + 0.847050i
\(478\) −275.020 + 275.020i −0.575355 + 0.575355i
\(479\) −135.340 + 78.1383i −0.282546 + 0.163128i −0.634575 0.772861i \(-0.718825\pi\)
0.352029 + 0.935989i \(0.385492\pi\)
\(480\) −171.569 427.170i −0.357435 0.889938i
\(481\) −95.4130 + 165.260i −0.198364 + 0.343576i
\(482\) −48.4960 + 12.9945i −0.100614 + 0.0269595i
\(483\) 315.272 318.496i 0.652738 0.659413i
\(484\) 13.3634 7.71537i 0.0276104 0.0159408i
\(485\) −531.969 716.535i −1.09684 1.47739i
\(486\) 313.394 + 512.270i 0.644845 + 1.05405i
\(487\) −451.121 451.121i −0.926326 0.926326i 0.0711400 0.997466i \(-0.477336\pi\)
−0.997466 + 0.0711400i \(0.977336\pi\)
\(488\) −253.458 67.9139i −0.519381 0.139168i
\(489\) 3.28458 + 645.691i 0.00671694 + 1.32043i
\(490\) −93.7276 811.190i −0.191281 1.65549i
\(491\) 200.071 346.533i 0.407476 0.705769i −0.587130 0.809493i \(-0.699742\pi\)
0.994606 + 0.103723i \(0.0330756\pi\)
\(492\) −15.6503 + 59.6191i −0.0318095 + 0.121177i
\(493\) −365.548 97.9482i −0.741476 0.198678i
\(494\) 90.2752i 0.182743i
\(495\) 69.4126 505.009i 0.140228 1.02022i
\(496\) −306.965 −0.618881
\(497\) −61.8601 + 230.865i −0.124467 + 0.464517i
\(498\) −212.605 777.609i −0.426918 1.56146i
\(499\) −236.699 136.658i −0.474347 0.273864i 0.243711 0.969848i \(-0.421635\pi\)
−0.718058 + 0.695984i \(0.754969\pi\)
\(500\) −150.238 216.384i −0.300477 0.432768i
\(501\) 167.943 294.334i 0.335216 0.587493i
\(502\) −59.3417 + 221.466i −0.118211 + 0.441168i
\(503\) 297.206 297.206i 0.590867 0.590867i −0.346999 0.937866i \(-0.612799\pi\)
0.937866 + 0.346999i \(0.112799\pi\)
\(504\) 388.764 229.758i 0.771357 0.455869i
\(505\) 136.959 + 20.2466i 0.271206 + 0.0400922i
\(506\) 194.913 + 337.599i 0.385203 + 0.667191i
\(507\) 55.8944 212.927i 0.110245 0.419975i
\(508\) 73.1079 + 272.842i 0.143913 + 0.537091i
\(509\) 60.1552 + 34.7306i 0.118183 + 0.0682330i 0.557926 0.829891i \(-0.311597\pi\)
−0.439743 + 0.898124i \(0.644931\pi\)
\(510\) 253.513 + 337.865i 0.497085 + 0.662480i
\(511\) 282.358 + 489.059i 0.552560 + 0.957062i
\(512\) 169.331 + 169.331i 0.330724 + 0.330724i
\(513\) 70.2239 72.4007i 0.136889 0.141132i
\(514\) 1056.66i 2.05576i
\(515\) 700.361 + 303.205i 1.35992 + 0.588747i
\(516\) −251.218 + 1.27793i −0.486857 + 0.00247661i
\(517\) 19.0924 5.11579i 0.0369292 0.00989515i
\(518\) 133.906 + 499.743i 0.258505 + 0.964754i
\(519\) 184.686 107.885i 0.355849 0.207870i
\(520\) −212.634 + 84.1489i −0.408912 + 0.161825i
\(521\) −532.558 −1.02218 −0.511092 0.859526i \(-0.670759\pi\)
−0.511092 + 0.859526i \(0.670759\pi\)
\(522\) 711.547 198.439i 1.36312 0.380151i
\(523\) 322.137 322.137i 0.615941 0.615941i −0.328547 0.944488i \(-0.606559\pi\)
0.944488 + 0.328547i \(0.106559\pi\)
\(524\) 206.627 119.296i 0.394326 0.227664i
\(525\) 583.882 553.566i 1.11216 1.05441i
\(526\) 219.886 380.853i 0.418034 0.724056i
\(527\) 169.027 45.2907i 0.320735 0.0859407i
\(528\) 179.147 + 655.235i 0.339294 + 1.24098i
\(529\) 290.204 167.549i 0.548590 0.316728i
\(530\) −784.094 115.912i −1.47942 0.218702i
\(531\) 52.3054 92.7624i 0.0985035 0.174694i
\(532\) 59.7188 + 59.7188i 0.112253 + 0.112253i
\(533\) 92.0876 + 24.6748i 0.172772 + 0.0462942i
\(534\) −102.919 + 60.1203i −0.192732 + 0.112585i
\(535\) 760.616 87.8840i 1.42171 0.164269i
\(536\) 114.762 198.774i 0.214109 0.370847i
\(537\) −98.5412 97.5438i −0.183503 0.181646i
\(538\) 418.108 + 112.032i 0.777152 + 0.208237i
\(539\) 748.608i 1.38888i
\(540\) −262.779 109.033i −0.486627 0.201913i
\(541\) 201.002 0.371538 0.185769 0.982593i \(-0.440522\pi\)
0.185769 + 0.982593i \(0.440522\pi\)
\(542\) 296.362 1106.04i 0.546792 2.04066i
\(543\) −350.921 + 354.510i −0.646264 + 0.652872i
\(544\) −302.844 174.847i −0.556698 0.321410i
\(545\) −721.049 571.683i −1.32303 1.04896i
\(546\) 392.290 + 671.553i 0.718479 + 1.22995i
\(547\) −161.649 + 603.281i −0.295519 + 1.10289i 0.645286 + 0.763941i \(0.276738\pi\)
−0.940804 + 0.338950i \(0.889928\pi\)
\(548\) 36.0361 36.0361i 0.0657593 0.0657593i
\(549\) −434.681 + 256.895i −0.791768 + 0.467932i
\(550\) 330.530 + 616.906i 0.600964 + 1.12165i
\(551\) −62.0344 107.447i −0.112585 0.195003i
\(552\) −188.470 + 51.5293i −0.341431 + 0.0933502i
\(553\) 337.675 + 1260.22i 0.610624 + 2.27888i
\(554\) −825.420 476.556i −1.48993 0.860210i
\(555\) −180.691 + 230.298i −0.325569 + 0.414951i
\(556\) −119.450 206.894i −0.214838 0.372111i
\(557\) −227.470 227.470i −0.408384 0.408384i 0.472791 0.881175i \(-0.343247\pi\)
−0.881175 + 0.472791i \(0.843247\pi\)
\(558\) −239.057 + 243.972i −0.428418 + 0.437225i
\(559\) 388.561i 0.695100i
\(560\) −425.961 + 983.911i −0.760645 + 1.75698i
\(561\) −195.321 334.367i −0.348166 0.596019i
\(562\) 190.084 50.9328i 0.338228 0.0906278i
\(563\) −14.1724 52.8921i −0.0251730 0.0939469i 0.952196 0.305486i \(-0.0988190\pi\)
−0.977369 + 0.211539i \(0.932152\pi\)
\(564\) −0.0561160 11.0314i −9.94965e−5 0.0195593i
\(565\) −772.579 334.470i −1.36740 0.591982i
\(566\) −591.967 −1.04588
\(567\) 207.777 843.743i 0.366449 1.48808i
\(568\) 73.6841 73.6841i 0.129726 0.129726i
\(569\) −211.299 + 121.993i −0.371351 + 0.214399i −0.674048 0.738687i \(-0.735446\pi\)
0.302698 + 0.953087i \(0.402113\pi\)
\(570\) −19.5541 + 137.092i −0.0343055 + 0.240513i
\(571\) −284.750 + 493.202i −0.498687 + 0.863751i −0.999999 0.00151580i \(-0.999518\pi\)
0.501312 + 0.865267i \(0.332851\pi\)
\(572\) −225.485 + 60.4185i −0.394205 + 0.105627i
\(573\) −338.208 88.7811i −0.590241 0.154941i
\(574\) 223.848 129.239i 0.389979 0.225155i
\(575\) −306.853 + 164.408i −0.533657 + 0.285926i
\(576\) −36.9992 + 0.376435i −0.0642348 + 0.000653532i
\(577\) −258.911 258.911i −0.448719 0.448719i 0.446209 0.894929i \(-0.352774\pi\)
−0.894929 + 0.446209i \(0.852774\pi\)
\(578\) −379.933 101.803i −0.657324 0.176129i
\(579\) 325.628 + 185.799i 0.562397 + 0.320897i
\(580\) −217.419 + 274.226i −0.374861 + 0.472803i
\(581\) −583.237 + 1010.20i −1.00385 + 1.73872i
\(582\) 1276.42 348.986i 2.19317 0.599632i
\(583\) 701.872 + 188.066i 1.20390 + 0.322583i
\(584\) 246.210i 0.421592i
\(585\) −170.705 + 405.573i −0.291804 + 0.693287i
\(586\) 214.665 0.366322
\(587\) −229.139 + 855.160i −0.390357 + 1.45683i 0.439190 + 0.898394i \(0.355266\pi\)
−0.829547 + 0.558437i \(0.811401\pi\)
\(588\) 404.115 + 106.082i 0.687270 + 0.180411i
\(589\) 49.6828 + 28.6844i 0.0843512 + 0.0487002i
\(590\) 16.7819 + 145.243i 0.0284439 + 0.246175i
\(591\) 353.961 1.80057i 0.598919 0.00304666i
\(592\) 100.958 376.780i 0.170537 0.636452i
\(593\) 638.841 638.841i 1.07730 1.07730i 0.0805534 0.996750i \(-0.474331\pi\)
0.996750 0.0805534i \(-0.0256688\pi\)
\(594\) 660.288 + 367.898i 1.11160 + 0.619358i
\(595\) 89.3818 604.629i 0.150221 1.01618i
\(596\) 165.736 + 287.063i 0.278080 + 0.481649i
\(597\) 578.777 + 572.919i 0.969476 + 0.959663i
\(598\) −87.0941 325.040i −0.145642 0.543544i
\(599\) 350.554 + 202.393i 0.585233 + 0.337884i 0.763210 0.646150i \(-0.223622\pi\)
−0.177977 + 0.984035i \(0.556955\pi\)
\(600\) −341.134 + 81.7310i −0.568557 + 0.136218i
\(601\) −419.760 727.046i −0.698437 1.20973i −0.969008 0.247028i \(-0.920546\pi\)
0.270572 0.962700i \(-0.412787\pi\)
\(602\) 744.919 + 744.919i 1.23741 + 1.23741i
\(603\) −118.644 425.425i −0.196756 0.705514i
\(604\) 38.3704i 0.0635271i
\(605\) −13.4719 34.0418i −0.0222675 0.0562675i
\(606\) −101.739 + 178.305i −0.167886 + 0.294233i
\(607\) −313.071 + 83.8870i −0.515767 + 0.138199i −0.507308 0.861765i \(-0.669359\pi\)
−0.00845910 + 0.999964i \(0.502693\pi\)
\(608\) −29.6720 110.737i −0.0488027 0.182134i
\(609\) −928.381 529.722i −1.52443 0.869823i
\(610\) 275.415 636.171i 0.451501 1.04290i
\(611\) −17.0624 −0.0279253
\(612\) −208.177 + 58.0570i −0.340158 + 0.0948644i
\(613\) −164.098 + 164.098i −0.267697 + 0.267697i −0.828171 0.560475i \(-0.810619\pi\)
0.560475 + 0.828171i \(0.310619\pi\)
\(614\) −668.317 + 385.853i −1.08846 + 0.628425i
\(615\) 134.500 + 57.4180i 0.218699 + 0.0933626i
\(616\) 284.194 492.238i 0.461353 0.799088i
\(617\) 146.741 39.3191i 0.237830 0.0637263i −0.137935 0.990441i \(-0.544047\pi\)
0.375765 + 0.926715i \(0.377380\pi\)
\(618\) −796.103 + 804.244i −1.28819 + 1.30137i
\(619\) −371.036 + 214.218i −0.599412 + 0.346071i −0.768810 0.639477i \(-0.779151\pi\)
0.169398 + 0.985548i \(0.445818\pi\)
\(620\) 23.6644 160.079i 0.0381684 0.258192i
\(621\) −182.995 + 328.431i −0.294678 + 0.528875i
\(622\) −177.995 177.995i −0.286166 0.286166i
\(623\) 166.591 + 44.6378i 0.267401 + 0.0716498i
\(624\) −2.98280 586.365i −0.00478012 0.939688i
\(625\) −559.996 + 277.542i −0.895994 + 0.444067i
\(626\) 333.164 577.058i 0.532211 0.921817i
\(627\) 32.2333 122.791i 0.0514088 0.195840i
\(628\) 344.493 + 92.3067i 0.548556 + 0.146985i
\(629\) 222.366i 0.353523i
\(630\) 450.270 + 1104.80i 0.714715 + 1.75364i
\(631\) −1077.98 −1.70837 −0.854185 0.519969i \(-0.825943\pi\)
−0.854185 + 0.519969i \(0.825943\pi\)
\(632\) 147.222 549.441i 0.232947 0.869369i
\(633\) 104.071 + 380.643i 0.164409 + 0.601331i
\(634\) 163.260 + 94.2581i 0.257508 + 0.148672i
\(635\) 665.745 76.9224i 1.04842 0.121138i
\(636\) 200.981 352.236i 0.316008 0.553830i
\(637\) 167.253 624.196i 0.262563 0.979899i
\(638\) 657.447 657.447i 1.03048 1.03048i
\(639\) −2.03996 200.505i −0.00319242 0.313779i
\(640\) 533.602 396.157i 0.833753 0.618995i
\(641\) −434.510 752.593i −0.677862 1.17409i −0.975623 0.219451i \(-0.929573\pi\)
0.297761 0.954640i \(-0.403760\pi\)
\(642\) −288.265 + 1098.13i −0.449010 + 1.71049i
\(643\) −31.9596 119.275i −0.0497039 0.185497i 0.936611 0.350372i \(-0.113945\pi\)
−0.986315 + 0.164874i \(0.947278\pi\)
\(644\) −272.634 157.406i −0.423345 0.244419i
\(645\) −84.1646 + 590.070i −0.130488 + 0.914837i
\(646\) 52.5979 + 91.1023i 0.0814209 + 0.141025i
\(647\) 303.440 + 303.440i 0.468996 + 0.468996i 0.901589 0.432593i \(-0.142401\pi\)
−0.432593 + 0.901589i \(0.642401\pi\)
\(648\) −262.383 + 273.284i −0.404911 + 0.421734i
\(649\) 134.038i 0.206530i
\(650\) −137.771 588.228i −0.211955 0.904966i
\(651\) 494.236 2.51414i 0.759196 0.00386197i
\(652\) 438.130 117.397i 0.671978 0.180056i
\(653\) 195.153 + 728.322i 0.298856 + 1.11535i 0.938106 + 0.346348i \(0.112578\pi\)
−0.639250 + 0.768999i \(0.720755\pi\)
\(654\) 1178.15 688.220i 1.80145 1.05232i
\(655\) −208.304 526.359i −0.318021 0.803602i
\(656\) −194.878 −0.297071
\(657\) −338.394 331.577i −0.515059 0.504684i
\(658\) −32.7106 + 32.7106i −0.0497122 + 0.0497122i
\(659\) 1030.08 594.718i 1.56310 0.902456i 0.566158 0.824296i \(-0.308429\pi\)
0.996941 0.0781594i \(-0.0249043\pi\)
\(660\) −355.510 + 42.9104i −0.538651 + 0.0650158i
\(661\) 384.281 665.595i 0.581364 1.00695i −0.413954 0.910298i \(-0.635853\pi\)
0.995318 0.0966537i \(-0.0308139\pi\)
\(662\) −186.758 + 50.0416i −0.282112 + 0.0755916i
\(663\) 88.1569 + 322.436i 0.132967 + 0.486329i
\(664\) 440.433 254.284i 0.663303 0.382958i
\(665\) 160.884 119.444i 0.241931 0.179615i
\(666\) −220.836 373.667i −0.331585 0.561062i
\(667\) 327.018 + 327.018i 0.490282 + 0.490282i
\(668\) −229.940 61.6122i −0.344222 0.0922339i
\(669\) 80.1637 46.8278i 0.119826 0.0699968i
\(670\) 475.155 + 376.726i 0.709187 + 0.562277i
\(671\) −317.760 + 550.376i −0.473562 + 0.820233i
\(672\) −701.937 694.832i −1.04455 1.03398i
\(673\) 280.935 + 75.2762i 0.417436 + 0.111852i 0.461423 0.887180i \(-0.347339\pi\)
−0.0439863 + 0.999032i \(0.514006\pi\)
\(674\) 424.784i 0.630243i
\(675\) −347.083 + 578.929i −0.514197 + 0.857672i
\(676\) −154.643 −0.228762
\(677\) −234.261 + 874.273i −0.346028 + 1.29139i 0.545379 + 0.838190i \(0.316386\pi\)
−0.891407 + 0.453204i \(0.850281\pi\)
\(678\) 878.194 887.174i 1.29527 1.30852i
\(679\) −1658.21 957.368i −2.44214 1.40997i
\(680\) −165.554 + 208.809i −0.243462 + 0.307072i
\(681\) −98.9663 169.419i −0.145325 0.248779i
\(682\) −111.272 + 415.272i −0.163155 + 0.608903i
\(683\) 579.270 579.270i 0.848125 0.848125i −0.141774 0.989899i \(-0.545281\pi\)
0.989899 + 0.141774i \(0.0452805\pi\)
\(684\) −61.7178 34.8004i −0.0902307 0.0508779i
\(685\) −72.0759 97.0824i −0.105220 0.141726i
\(686\) −226.478 392.271i −0.330143 0.571824i
\(687\) −804.666 + 220.003i −1.17128 + 0.320237i
\(688\) −205.571 767.200i −0.298795 1.11512i
\(689\) −543.210 313.622i −0.788403 0.455185i
\(690\) −61.8559 512.472i −0.0896463 0.742712i
\(691\) 479.893 + 831.199i 0.694491 + 1.20289i 0.970352 + 0.241696i \(0.0777036\pi\)
−0.275861 + 0.961197i \(0.588963\pi\)
\(692\) −106.243 106.243i −0.153530 0.153530i
\(693\) −293.807 1053.51i −0.423963 1.52022i
\(694\) 1599.71i 2.30506i
\(695\) −527.038 + 208.573i −0.758329 + 0.300105i
\(696\) 235.059 + 402.392i 0.337728 + 0.578150i
\(697\) 107.308 28.7531i 0.153957 0.0412526i
\(698\) −55.0540 205.464i −0.0788739 0.294361i
\(699\) 2.30473 + 453.069i 0.00329718 + 0.648167i
\(700\) −480.262 297.986i −0.686089 0.425694i
\(701\) 1285.91 1.83439 0.917197 0.398434i \(-0.130446\pi\)
0.917197 + 0.398434i \(0.130446\pi\)
\(702\) −468.358 454.277i −0.667177 0.647119i
\(703\) −51.5485 + 51.5485i −0.0733264 + 0.0733264i
\(704\) −40.3324 + 23.2859i −0.0572903 + 0.0330766i
\(705\) −25.9110 3.69581i −0.0367531 0.00524228i
\(706\) −786.331 + 1361.96i −1.11378 + 1.92913i
\(707\) 286.925 76.8814i 0.405835 0.108743i
\(708\) −72.3567 18.9939i −0.102199 0.0268276i
\(709\) 433.296 250.163i 0.611137 0.352840i −0.162274 0.986746i \(-0.551883\pi\)
0.773410 + 0.633906i \(0.218549\pi\)
\(710\) 164.105 + 221.040i 0.231133 + 0.311324i
\(711\) −556.891 942.292i −0.783250 1.32531i
\(712\) −53.1700 53.1700i −0.0746769 0.0746769i
\(713\) −206.559 55.3473i −0.289704 0.0776259i
\(714\) 787.158 + 449.142i 1.10246 + 0.629051i
\(715\) 63.5710 + 550.192i 0.0889105 + 0.769499i
\(716\) −48.7005 + 84.3518i −0.0680175 + 0.117810i
\(717\) −455.425 + 124.517i −0.635182 + 0.173664i
\(718\) −1555.46 416.784i −2.16638 0.580479i
\(719\) 111.332i 0.154843i −0.996998 0.0774217i \(-0.975331\pi\)
0.996998 0.0774217i \(-0.0246688\pi\)
\(720\) 122.481 891.103i 0.170112 1.23764i
\(721\) 1637.44 2.27106
\(722\) 221.978 828.434i 0.307449 1.14742i
\(723\) −58.9501 15.4747i −0.0815353 0.0214034i
\(724\) 303.462 + 175.204i 0.419147 + 0.241994i
\(725\) 568.190 + 605.445i 0.783710 + 0.835097i
\(726\) 54.2852 0.276145i 0.0747730 0.000380365i
\(727\) −159.253 + 594.341i −0.219055 + 0.817526i 0.765644 + 0.643264i \(0.222420\pi\)
−0.984699 + 0.174261i \(0.944246\pi\)
\(728\) −346.938 + 346.938i −0.476563 + 0.476563i
\(729\) 22.2466 + 728.660i 0.0305166 + 0.999534i
\(730\) 643.466 + 95.1230i 0.881460 + 0.130305i
\(731\) 226.391 + 392.121i 0.309701 + 0.536417i
\(732\) 252.077 + 249.525i 0.344367 + 0.340881i
\(733\) 301.741 + 1126.11i 0.411652 + 1.53631i 0.791447 + 0.611237i \(0.209328\pi\)
−0.379795 + 0.925071i \(0.624005\pi\)
\(734\) 207.518 + 119.811i 0.282723 + 0.163230i
\(735\) 389.195 911.678i 0.529517 1.24038i
\(736\) 213.671 + 370.089i 0.290314 + 0.502838i
\(737\) −393.080 393.080i −0.533351 0.533351i
\(738\) −151.767 + 154.887i −0.205646 + 0.209874i
\(739\) 318.962i 0.431612i 0.976436 + 0.215806i \(0.0692379\pi\)
−0.976436 + 0.215806i \(0.930762\pi\)
\(740\) 188.704 + 81.6950i 0.255005 + 0.110399i
\(741\) −54.3102 + 95.1830i −0.0732932 + 0.128452i
\(742\) −1642.65 + 440.147i −2.21382 + 0.593190i
\(743\) 121.466 + 453.316i 0.163480 + 0.610116i 0.998229 + 0.0594856i \(0.0189460\pi\)
−0.834749 + 0.550631i \(0.814387\pi\)
\(744\) −187.160 106.791i −0.251559 0.143537i
\(745\) 731.261 289.393i 0.981558 0.388446i
\(746\) −1175.34 −1.57552
\(747\) 243.652 947.789i 0.326174 1.26879i
\(748\) −192.349 + 192.349i −0.257151 + 0.257151i
\(749\) 1422.71 821.400i 1.89947 1.09666i
\(750\) −81.8057 923.127i −0.109074 1.23084i
\(751\) 76.0823 131.778i 0.101308 0.175471i −0.810916 0.585163i \(-0.801031\pi\)
0.912224 + 0.409692i \(0.134364\pi\)
\(752\) 33.6891 9.02696i 0.0447993 0.0120039i
\(753\) −195.804 + 197.806i −0.260031 + 0.262690i
\(754\) −695.071 + 401.299i −0.921845 + 0.532227i
\(755\) −90.0579 13.3132i −0.119282 0.0176333i
\(756\) −610.341 + 9.31493i −0.807330 + 0.0123213i
\(757\) 488.444 + 488.444i 0.645236 + 0.645236i 0.951838 0.306602i \(-0.0991919\pi\)
−0.306602 + 0.951838i \(0.599192\pi\)
\(758\) −1329.07 356.123i −1.75339 0.469819i
\(759\) 2.40720 + 473.213i 0.00317154 + 0.623469i
\(760\) −86.7842 + 10.0273i −0.114190 + 0.0131939i
\(761\) 88.9996 154.152i 0.116951 0.202565i −0.801607 0.597851i \(-0.796021\pi\)
0.918558 + 0.395286i \(0.129355\pi\)
\(762\) −252.310 + 961.164i −0.331115 + 1.26137i
\(763\) −1907.03 510.986i −2.49938 0.669706i
\(764\) 245.631i 0.321506i
\(765\) 64.0338 + 508.748i 0.0837043 + 0.665031i
\(766\) 1809.45 2.36221
\(767\) −29.9466 + 111.762i −0.0390438 + 0.145713i
\(768\) 246.878 + 902.962i 0.321456 + 1.17573i
\(769\) 179.757 + 103.783i 0.233754 + 0.134958i 0.612303 0.790623i \(-0.290243\pi\)
−0.378548 + 0.925581i \(0.623577\pi\)
\(770\) 1176.66 + 932.912i 1.52813 + 1.21157i
\(771\) 635.696 1114.11i 0.824508 1.44502i
\(772\) 68.1628 254.387i 0.0882938 0.329517i
\(773\) −199.628 + 199.628i −0.258251 + 0.258251i −0.824342 0.566091i \(-0.808455\pi\)
0.566091 + 0.824342i \(0.308455\pi\)
\(774\) −769.855 434.093i −0.994644 0.560844i
\(775\) −367.506 111.084i −0.474202 0.143334i
\(776\) 417.401 + 722.960i 0.537888 + 0.931649i
\(777\) −159.464 + 607.470i −0.205230 + 0.781815i
\(778\) 133.464 + 498.093i 0.171547 + 0.640222i
\(779\) 31.5414 + 18.2104i 0.0404896 + 0.0233767i
\(780\) 306.014 + 43.6483i 0.392325 + 0.0559593i
\(781\) −126.190 218.568i −0.161575 0.279856i
\(782\) −277.273 277.273i −0.354569 0.354569i
\(783\) 869.613 + 218.845i 1.11062 + 0.279496i
\(784\) 1320.94i 1.68487i
\(785\) 336.177 776.522i 0.428251 0.989200i
\(786\) 839.365 4.26979i 1.06789 0.00543230i
\(787\) 1250.87 335.169i 1.58941 0.425882i 0.647589 0.761990i \(-0.275777\pi\)
0.941823 + 0.336108i \(0.109111\pi\)
\(788\) −64.3556 240.178i −0.0816695 0.304795i
\(789\) 460.964 269.274i 0.584239 0.341285i
\(790\) 1379.08 + 597.040i 1.74567 + 0.755747i
\(791\) −1806.28 −2.28354
\(792\) −118.724 + 461.829i −0.149904 + 0.583117i
\(793\) 387.915 387.915i 0.489174 0.489174i
\(794\) 332.739 192.107i 0.419067 0.241948i
\(795\) −756.988 593.930i −0.952186 0.747082i
\(796\) 286.040 495.436i 0.359347 0.622407i
\(797\) 485.714 130.147i 0.609428 0.163296i 0.0591106 0.998251i \(-0.481174\pi\)
0.550317 + 0.834956i \(0.314507\pi\)
\(798\) 78.3581 + 286.597i 0.0981931 + 0.359144i
\(799\) −17.2187 + 9.94121i −0.0215503 + 0.0124421i
\(800\) 362.340 + 676.276i 0.452925 + 0.845345i
\(801\) −144.683 + 1.47202i −0.180628 + 0.00183773i
\(802\) −1088.94 1088.94i −1.35778 1.35778i
\(803\) −575.991 154.336i −0.717299 0.192200i
\(804\) −267.895 + 156.491i −0.333202 + 0.194641i
\(805\) −464.036 + 585.277i −0.576442 + 0.727053i
\(806\) 185.559 321.397i 0.230222 0.398756i
\(807\) 373.439 + 369.659i 0.462750 + 0.458066i
\(808\) −125.096 33.5194i −0.154822 0.0414844i
\(809\) 329.434i 0.407212i −0.979053 0.203606i \(-0.934734\pi\)
0.979053 0.203606i \(-0.0652661\pi\)
\(810\) −612.852 791.316i −0.756607 0.976934i
\(811\) −736.236 −0.907812 −0.453906 0.891049i \(-0.649970\pi\)
−0.453906 + 0.891049i \(0.649970\pi\)
\(812\) −194.336 + 725.270i −0.239330 + 0.893190i
\(813\) 977.873 987.873i 1.20280 1.21510i
\(814\) −473.123 273.158i −0.581233 0.335575i
\(815\) −123.522 1069.05i −0.151561 1.31172i
\(816\) −344.650 590.000i −0.422365 0.723039i
\(817\) −38.4192 + 143.382i −0.0470247 + 0.175499i
\(818\) 901.008 901.008i 1.10148 1.10148i
\(819\) 9.60505 + 944.067i 0.0117278 + 1.15271i
\(820\) 15.0235 101.627i 0.0183213 0.123936i
\(821\) 235.531 + 407.952i 0.286883 + 0.496896i 0.973064 0.230535i \(-0.0740475\pi\)
−0.686181 + 0.727431i \(0.740714\pi\)
\(822\) 172.941 47.2836i 0.210391 0.0575227i
\(823\) −225.744 842.487i −0.274294 1.02368i −0.956313 0.292344i \(-0.905565\pi\)
0.682019 0.731334i \(-0.261102\pi\)
\(824\) −618.258 356.951i −0.750313 0.433194i
\(825\) −22.6357 + 849.294i −0.0274372 + 1.02945i
\(826\) 156.850 + 271.673i 0.189892 + 0.328902i
\(827\) 796.631 + 796.631i 0.963278 + 0.963278i 0.999349 0.0360709i \(-0.0114842\pi\)
−0.0360709 + 0.999349i \(0.511484\pi\)
\(828\) 255.792 + 65.7575i 0.308927 + 0.0794173i
\(829\) 860.599i 1.03812i −0.854739 0.519059i \(-0.826283\pi\)
0.854739 0.519059i \(-0.173717\pi\)
\(830\) 494.407 + 1249.31i 0.595672 + 1.50519i
\(831\) −583.594 999.043i −0.702279 1.20222i
\(832\) 38.8320 10.4050i 0.0466731 0.0125060i
\(833\) −194.896 727.363i −0.233969 0.873185i
\(834\) −4.27530 840.448i −0.00512626 1.00773i
\(835\) −224.389 + 518.308i −0.268730 + 0.620728i
\(836\) −89.1799 −0.106675
\(837\) −398.829 + 113.417i −0.476498 + 0.135504i
\(838\) 256.897 256.897i 0.306560 0.306560i
\(839\) −878.746 + 507.344i −1.04737 + 0.604701i −0.921913 0.387398i \(-0.873374\pi\)
−0.125460 + 0.992099i \(0.540041\pi\)
\(840\) −602.010 + 451.713i −0.716679 + 0.537753i
\(841\) 131.022 226.938i 0.155794 0.269842i
\(842\) −1513.55 + 405.555i −1.79757 + 0.481657i
\(843\) 231.060 + 60.6542i 0.274092 + 0.0719504i
\(844\) 240.066 138.602i 0.284439 0.164221i
\(845\) −53.6558 + 362.958i −0.0634979 + 0.429536i
\(846\) 19.0618 33.8056i 0.0225316 0.0399593i
\(847\) −55.5433 55.5433i −0.0655765 0.0655765i
\(848\) 1238.47 + 331.848i 1.46046 + 0.391330i
\(849\) −624.150 356.132i −0.735159 0.419473i
\(850\) −481.758 513.346i −0.566774 0.603937i
\(851\) 135.870 235.334i 0.159660 0.276539i
\(852\) −135.869 + 37.1479i −0.159471 + 0.0436008i
\(853\) −338.408 90.6761i −0.396726 0.106303i 0.0549394 0.998490i \(-0.482503\pi\)
−0.451666 + 0.892187i \(0.649170\pi\)
\(854\) 1487.36i 1.74164i
\(855\) −103.093 + 132.781i −0.120577 + 0.155300i
\(856\) −716.241 −0.836730
\(857\) 279.033 1041.37i 0.325593 1.21513i −0.588121 0.808773i \(-0.700132\pi\)
0.913714 0.406358i \(-0.133201\pi\)
\(858\) −794.335 208.516i −0.925798 0.243026i
\(859\) 508.578 + 293.627i 0.592058 + 0.341825i 0.765911 0.642947i \(-0.222288\pi\)
−0.173853 + 0.984772i \(0.555622\pi\)
\(860\) 415.935 48.0586i 0.483646 0.0558820i
\(861\) 313.769 1.59612i 0.364423 0.00185380i
\(862\) 470.615 1756.36i 0.545957 2.03754i
\(863\) −659.791 + 659.791i −0.764532 + 0.764532i −0.977138 0.212606i \(-0.931805\pi\)
0.212606 + 0.977138i \(0.431805\pi\)
\(864\) 723.833 + 403.304i 0.837770 + 0.466788i
\(865\) −286.222 + 212.497i −0.330892 + 0.245661i
\(866\) −122.162 211.591i −0.141065 0.244331i
\(867\) −339.343 335.908i −0.391399 0.387437i
\(868\) −89.8598 335.361i −0.103525 0.386361i
\(869\) −1193.09 688.833i −1.37295 0.792674i
\(870\) −1142.46 + 458.858i −1.31317 + 0.527423i
\(871\) 239.932 + 415.575i 0.275467 + 0.477123i
\(872\) 608.657 + 608.657i 0.698001 + 0.698001i
\(873\) 1555.77 + 399.948i 1.78210 + 0.458131i
\(874\) 128.554i 0.147087i
\(875\) −866.027 + 1023.82i −0.989746 + 1.17008i
\(876\) −164.935 + 289.062i −0.188282 + 0.329979i
\(877\) 12.2913 3.29344i 0.0140152 0.00375535i −0.251805 0.967778i \(-0.581024\pi\)
0.265820 + 0.964023i \(0.414357\pi\)
\(878\) 214.865 + 801.886i 0.244721 + 0.913309i
\(879\) 226.335 + 129.144i 0.257492 + 0.146922i
\(880\) −416.602 1052.70i −0.473411 1.19625i
\(881\) 933.779 1.05991 0.529954 0.848026i \(-0.322209\pi\)
0.529954 + 0.848026i \(0.322209\pi\)
\(882\) 1049.87 + 1028.72i 1.19032 + 1.16635i
\(883\) −463.817 + 463.817i −0.525274 + 0.525274i −0.919159 0.393886i \(-0.871131\pi\)
0.393886 + 0.919159i \(0.371131\pi\)
\(884\) 203.356 117.408i 0.230041 0.132814i
\(885\) −69.6853 + 163.236i −0.0787405 + 0.184447i
\(886\) −381.500 + 660.777i −0.430586 + 0.745798i
\(887\) −259.076 + 69.4192i −0.292081 + 0.0782630i −0.401884 0.915690i \(-0.631645\pi\)
0.109803 + 0.993953i \(0.464978\pi\)
\(888\) 192.635 194.604i 0.216931 0.219149i
\(889\) 1245.25 718.948i 1.40074 0.808715i
\(890\) 159.501 118.417i 0.179215 0.133053i
\(891\) 474.854 + 785.134i 0.532945 + 0.881183i
\(892\) −46.1152 46.1152i −0.0516986 0.0516986i
\(893\) −6.29616 1.68705i −0.00705057 0.00188920i
\(894\) 5.93193 + 1166.11i 0.00663527 + 1.30438i
\(895\) 181.082 + 143.571i 0.202326 + 0.160414i
\(896\) 712.950 1234.87i 0.795703 1.37820i
\(897\) 103.717 395.107i 0.115627 0.440476i
\(898\) 935.432 + 250.648i 1.04168 + 0.279118i
\(899\) 510.042i 0.567344i
\(900\) 455.259 + 132.569i 0.505844 + 0.147299i
\(901\) −730.915 −0.811227
\(902\) −70.6415 + 263.638i −0.0783165 + 0.292281i
\(903\) 337.268 + 1233.57i 0.373497 + 1.36608i
\(904\) 682.010 + 393.759i 0.754436 + 0.435574i
\(905\) 516.506 651.457i 0.570725 0.719842i
\(906\) 66.8986 117.245i 0.0738395 0.129410i
\(907\) 48.8935 182.473i 0.0539069 0.201183i −0.933720 0.358003i \(-0.883458\pi\)
0.987627 + 0.156820i \(0.0501243\pi\)
\(908\) −97.4601 + 97.4601i −0.107335 + 0.107335i
\(909\) −214.540 + 126.792i −0.236017 + 0.139485i
\(910\) −772.679 1040.76i −0.849097 1.14369i
\(911\) −432.982 749.947i −0.475282 0.823213i 0.524317 0.851523i \(-0.324321\pi\)
−0.999599 + 0.0283104i \(0.990987\pi\)
\(912\) 56.8766 216.669i 0.0623646 0.237576i
\(913\) −318.796 1189.76i −0.349174 1.30313i
\(914\) 364.849 + 210.646i 0.399178 + 0.230466i
\(915\) 673.114 505.065i 0.735644 0.551983i
\(916\) 293.001 + 507.492i 0.319870 + 0.554031i
\(917\) −858.818 858.818i −0.936551 0.936551i
\(918\) −737.330 185.555i −0.803191 0.202130i
\(919\) 864.507i 0.940704i −0.882479 0.470352i \(-0.844127\pi\)
0.882479 0.470352i \(-0.155873\pi\)
\(920\) 302.796 119.830i 0.329126 0.130250i
\(921\) −936.783 + 4.76535i −1.01714 + 0.00517410i
\(922\) 1808.99 484.717i 1.96203 0.525724i
\(923\) 56.3864 + 210.437i 0.0610903 + 0.227992i
\(924\) −663.406 + 387.530i −0.717972 + 0.419405i
\(925\) 257.218 414.556i 0.278073 0.448169i
\(926\) −430.687 −0.465104
\(927\) −1323.22 + 369.025i −1.42743 + 0.398086i
\(928\) 720.719 720.719i 0.776637 0.776637i
\(929\) −884.539 + 510.689i −0.952142 + 0.549719i −0.893746 0.448574i \(-0.851932\pi\)
−0.0583960 + 0.998293i \(0.518599\pi\)
\(930\) 351.407 447.882i 0.377857 0.481593i
\(931\) 123.435 213.796i 0.132584 0.229642i
\(932\) 307.427 82.3748i 0.329857 0.0883850i
\(933\) −80.5887 294.755i −0.0863759 0.315922i
\(934\) −579.804 + 334.750i −0.620775 + 0.358404i
\(935\) 384.717 + 518.194i 0.411462 + 0.554218i
\(936\) 202.174 358.552i 0.215998 0.383068i
\(937\) 776.808 + 776.808i 0.829037 + 0.829037i 0.987384 0.158347i \(-0.0506163\pi\)
−0.158347 + 0.987384i \(0.550616\pi\)
\(938\) 1256.69 + 336.728i 1.33975 + 0.358985i
\(939\) 698.439 407.995i 0.743812 0.434500i
\(940\) 2.11033 + 18.2644i 0.00224503 + 0.0194302i
\(941\) −851.116 + 1474.18i −0.904480 + 1.56661i −0.0828659 + 0.996561i \(0.526407\pi\)
−0.821614 + 0.570044i \(0.806926\pi\)
\(942\) 891.702 + 882.676i 0.946605 + 0.937023i
\(943\) −131.135 35.1375i −0.139061 0.0372614i
\(944\) 236.514i 0.250545i
\(945\) −189.904 + 1435.74i −0.200957 + 1.51931i
\(946\) −1112.41 −1.17591
\(947\) 188.456 703.326i 0.199003 0.742688i −0.792192 0.610273i \(-0.791060\pi\)
0.991194 0.132416i \(-0.0422734\pi\)
\(948\) −540.915 + 546.447i −0.570586 + 0.576420i
\(949\) 445.784 + 257.374i 0.469741 + 0.271205i
\(950\) 7.32272 230.683i 0.00770813 0.242825i
\(951\) 115.429 + 197.601i 0.121377 + 0.207782i
\(952\) −147.977 + 552.257i −0.155438 + 0.580102i
\(953\) −783.686 + 783.686i −0.822336 + 0.822336i −0.986443 0.164106i \(-0.947526\pi\)
0.164106 + 0.986443i \(0.447526\pi\)
\(954\) 1228.24 725.887i 1.28747 0.760887i
\(955\) 576.512 + 85.2253i 0.603678 + 0.0892412i
\(956\) 165.833 + 287.231i 0.173465 + 0.300450i
\(957\) 1088.72 297.664i 1.13763 0.311039i
\(958\) 99.9583 + 373.050i 0.104341 + 0.389405i
\(959\) −224.669 129.713i −0.234274 0.135258i
\(960\) 61.2242 7.38984i 0.0637752 0.00769774i
\(961\) 362.580 + 628.006i 0.377294 + 0.653492i
\(962\) 333.466 + 333.466i 0.346638 + 0.346638i
\(963\) −964.581 + 984.411i −1.00164 + 1.02223i
\(964\) 42.8137i 0.0444126i
\(965\) −573.414 248.246i −0.594211 0.257250i
\(966\) −558.630 956.308i −0.578292 0.989967i
\(967\) −1182.77 + 316.923i −1.22314 + 0.327738i −0.811903 0.583792i \(-0.801568\pi\)
−0.411233 + 0.911530i \(0.634902\pi\)
\(968\) 8.86374 + 33.0799i 0.00915676 + 0.0341735i
\(969\) 0.649593 + 127.698i 0.000670374 + 0.131784i
\(970\) −2050.71 + 811.557i −2.11413 + 0.836656i
\(971\) −313.188 −0.322542 −0.161271 0.986910i \(-0.551559\pi\)
−0.161271 + 0.986910i \(0.551559\pi\)
\(972\) 491.122 145.079i 0.505269 0.149258i
\(973\) −859.926 + 859.926i −0.883788 + 0.883788i
\(974\) −1365.42 + 788.327i −1.40187 + 0.809371i
\(975\) 208.622 703.091i 0.213971 0.721119i
\(976\) −560.696 + 971.155i −0.574484 + 0.995035i
\(977\) −1491.43 + 399.627i −1.52654 + 0.409035i −0.921889 0.387455i \(-0.873354\pi\)
−0.604652 + 0.796490i \(0.706688\pi\)
\(978\) 1543.44 + 405.159i 1.57816 + 0.414273i
\(979\) −157.717 + 91.0580i −0.161100 + 0.0930112i
\(980\) −688.857 101.833i −0.702916 0.103911i
\(981\) 1656.24 16.8508i 1.68832 0.0171771i
\(982\) −699.242 699.242i −0.712059 0.712059i
\(983\) 661.825 + 177.336i 0.673271 + 0.180402i 0.579228 0.815166i \(-0.303354\pi\)
0.0940430 + 0.995568i \(0.470021\pi\)
\(984\) −118.820 67.7970i −0.120752 0.0688994i
\(985\) −586.044 + 67.7135i −0.594969 + 0.0687446i
\(986\) −467.626 + 809.953i −0.474266 + 0.821453i
\(987\) −54.1680 + 14.8100i −0.0548814 + 0.0150051i
\(988\) 74.3590 + 19.9244i 0.0752621 + 0.0201664i
\(989\) 553.320i 0.559474i
\(990\) −1161.11 488.712i −1.17284 0.493648i
\(991\) 888.305 0.896373 0.448186 0.893940i \(-0.352070\pi\)
0.448186 + 0.893940i \(0.352070\pi\)
\(992\) −121.980 + 455.237i −0.122964 + 0.458909i
\(993\) −227.016 59.5928i −0.228617 0.0600129i
\(994\) 511.533 + 295.334i 0.514620 + 0.297116i
\(995\) −1063.58 843.255i −1.06892 0.847493i
\(996\) −687.434 + 3.49693i −0.690195 + 0.00351097i
\(997\) −52.8555 + 197.259i −0.0530146 + 0.197853i −0.987354 0.158532i \(-0.949324\pi\)
0.934339 + 0.356385i \(0.115991\pi\)
\(998\) −477.617 + 477.617i −0.478574 + 0.478574i
\(999\) −8.04052 526.839i −0.00804857 0.527366i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.3.k.a.22.8 yes 40
3.2 odd 2 135.3.l.a.37.3 40
5.2 odd 4 225.3.o.b.193.8 40
5.3 odd 4 inner 45.3.k.a.13.3 yes 40
5.4 even 2 225.3.o.b.157.3 40
9.2 odd 6 135.3.l.a.127.8 40
9.4 even 3 405.3.g.h.82.8 20
9.5 odd 6 405.3.g.g.82.3 20
9.7 even 3 inner 45.3.k.a.7.3 40
15.8 even 4 135.3.l.a.118.8 40
45.7 odd 12 225.3.o.b.43.3 40
45.13 odd 12 405.3.g.h.163.8 20
45.23 even 12 405.3.g.g.163.3 20
45.34 even 6 225.3.o.b.7.8 40
45.38 even 12 135.3.l.a.73.3 40
45.43 odd 12 inner 45.3.k.a.43.8 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.3 40 9.7 even 3 inner
45.3.k.a.13.3 yes 40 5.3 odd 4 inner
45.3.k.a.22.8 yes 40 1.1 even 1 trivial
45.3.k.a.43.8 yes 40 45.43 odd 12 inner
135.3.l.a.37.3 40 3.2 odd 2
135.3.l.a.73.3 40 45.38 even 12
135.3.l.a.118.8 40 15.8 even 4
135.3.l.a.127.8 40 9.2 odd 6
225.3.o.b.7.8 40 45.34 even 6
225.3.o.b.43.3 40 45.7 odd 12
225.3.o.b.157.3 40 5.4 even 2
225.3.o.b.193.8 40 5.2 odd 4
405.3.g.g.82.3 20 9.5 odd 6
405.3.g.g.163.3 20 45.23 even 12
405.3.g.h.82.8 20 9.4 even 3
405.3.g.h.163.8 20 45.13 odd 12