Properties

Label 464.2.a.b.1.1
Level $464$
Weight $2$
Character 464.1
Self dual yes
Analytic conductor $3.705$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(1,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.70505865379\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 232)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 464.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.00000 q^{5} -2.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +1.00000 q^{5} -2.00000 q^{7} -2.00000 q^{9} -3.00000 q^{11} -1.00000 q^{13} -1.00000 q^{15} +2.00000 q^{21} -4.00000 q^{23} -4.00000 q^{25} +5.00000 q^{27} -1.00000 q^{29} -3.00000 q^{31} +3.00000 q^{33} -2.00000 q^{35} -8.00000 q^{37} +1.00000 q^{39} -6.00000 q^{41} +5.00000 q^{43} -2.00000 q^{45} -3.00000 q^{47} -3.00000 q^{49} +5.00000 q^{53} -3.00000 q^{55} +8.00000 q^{59} +4.00000 q^{63} -1.00000 q^{65} +12.0000 q^{67} +4.00000 q^{69} -6.00000 q^{71} -4.00000 q^{73} +4.00000 q^{75} +6.00000 q^{77} -1.00000 q^{79} +1.00000 q^{81} +12.0000 q^{83} +1.00000 q^{87} +6.00000 q^{89} +2.00000 q^{91} +3.00000 q^{93} +14.0000 q^{97} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.00000 0.686803 0.343401 0.939189i \(-0.388421\pi\)
0.343401 + 0.939189i \(0.388421\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 4.00000 0.503953
\(64\) 0 0
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 4.00000 0.461880
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.00000 0.107211
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 3.00000 0.311086
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 16.0000 1.59206 0.796030 0.605257i \(-0.206930\pi\)
0.796030 + 0.605257i \(0.206930\pi\)
\(102\) 0 0
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −5.00000 −0.440225
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 5.00000 0.430331
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 3.00000 0.252646
\(142\) 0 0
\(143\) 3.00000 0.250873
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) 3.00000 0.247436
\(148\) 0 0
\(149\) −1.00000 −0.0819232 −0.0409616 0.999161i \(-0.513042\pi\)
−0.0409616 + 0.999161i \(0.513042\pi\)
\(150\) 0 0
\(151\) −22.0000 −1.79033 −0.895167 0.445730i \(-0.852944\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.00000 −0.240966
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) −5.00000 −0.396526
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 9.00000 0.704934 0.352467 0.935824i \(-0.385343\pi\)
0.352467 + 0.935824i \(0.385343\pi\)
\(164\) 0 0
\(165\) 3.00000 0.233550
\(166\) 0 0
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.0000 0.760286 0.380143 0.924928i \(-0.375875\pi\)
0.380143 + 0.924928i \(0.375875\pi\)
\(174\) 0 0
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) −8.00000 −0.601317
\(178\) 0 0
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.00000 −0.588172
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −10.0000 −0.727393
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 1.00000 0.0716115
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 14.0000 0.992434 0.496217 0.868199i \(-0.334722\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) 8.00000 0.556038
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −3.00000 −0.206529 −0.103264 0.994654i \(-0.532929\pi\)
−0.103264 + 0.994654i \(0.532929\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) 5.00000 0.340997
\(216\) 0 0
\(217\) 6.00000 0.407307
\(218\) 0 0
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −26.0000 −1.74109 −0.870544 0.492090i \(-0.836233\pi\)
−0.870544 + 0.492090i \(0.836233\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) −6.00000 −0.398234 −0.199117 0.979976i \(-0.563807\pi\)
−0.199117 + 0.979976i \(0.563807\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) −6.00000 −0.394771
\(232\) 0 0
\(233\) −17.0000 −1.11371 −0.556854 0.830611i \(-0.687992\pi\)
−0.556854 + 0.830611i \(0.687992\pi\)
\(234\) 0 0
\(235\) −3.00000 −0.195698
\(236\) 0 0
\(237\) 1.00000 0.0649570
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −31.0000 −1.99689 −0.998443 0.0557856i \(-0.982234\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.00000 −0.187135 −0.0935674 0.995613i \(-0.529827\pi\)
−0.0935674 + 0.995613i \(0.529827\pi\)
\(258\) 0 0
\(259\) 16.0000 0.994192
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 25.0000 1.54157 0.770783 0.637098i \(-0.219865\pi\)
0.770783 + 0.637098i \(0.219865\pi\)
\(264\) 0 0
\(265\) 5.00000 0.307148
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) −29.0000 −1.76162 −0.880812 0.473466i \(-0.843003\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) 14.0000 0.841178 0.420589 0.907251i \(-0.361823\pi\)
0.420589 + 0.907251i \(0.361823\pi\)
\(278\) 0 0
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) −5.00000 −0.298275 −0.149137 0.988816i \(-0.547650\pi\)
−0.149137 + 0.988816i \(0.547650\pi\)
\(282\) 0 0
\(283\) −12.0000 −0.713326 −0.356663 0.934233i \(-0.616086\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 0 0
\(297\) −15.0000 −0.870388
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) −10.0000 −0.576390
\(302\) 0 0
\(303\) −16.0000 −0.919176
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −23.0000 −1.31268 −0.656340 0.754466i \(-0.727896\pi\)
−0.656340 + 0.754466i \(0.727896\pi\)
\(308\) 0 0
\(309\) 10.0000 0.568880
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 9.00000 0.508710 0.254355 0.967111i \(-0.418137\pi\)
0.254355 + 0.967111i \(0.418137\pi\)
\(314\) 0 0
\(315\) 4.00000 0.225374
\(316\) 0 0
\(317\) −28.0000 −1.57264 −0.786318 0.617822i \(-0.788015\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) 3.00000 0.167968
\(320\) 0 0
\(321\) 18.0000 1.00466
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) 11.0000 0.608301
\(328\) 0 0
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) −7.00000 −0.384755 −0.192377 0.981321i \(-0.561620\pi\)
−0.192377 + 0.981321i \(0.561620\pi\)
\(332\) 0 0
\(333\) 16.0000 0.876795
\(334\) 0 0
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) 24.0000 1.30736 0.653682 0.756770i \(-0.273224\pi\)
0.653682 + 0.756770i \(0.273224\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) 9.00000 0.487377
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 4.00000 0.215353
\(346\) 0 0
\(347\) −10.0000 −0.536828 −0.268414 0.963304i \(-0.586500\pi\)
−0.268414 + 0.963304i \(0.586500\pi\)
\(348\) 0 0
\(349\) 1.00000 0.0535288 0.0267644 0.999642i \(-0.491480\pi\)
0.0267644 + 0.999642i \(0.491480\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 22.0000 1.17094 0.585471 0.810693i \(-0.300910\pi\)
0.585471 + 0.810693i \(0.300910\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.0000 −1.31945 −0.659725 0.751507i \(-0.729327\pi\)
−0.659725 + 0.751507i \(0.729327\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 2.00000 0.104973
\(364\) 0 0
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 0 0
\(369\) 12.0000 0.624695
\(370\) 0 0
\(371\) −10.0000 −0.519174
\(372\) 0 0
\(373\) 27.0000 1.39801 0.699004 0.715118i \(-0.253627\pi\)
0.699004 + 0.715118i \(0.253627\pi\)
\(374\) 0 0
\(375\) 9.00000 0.464758
\(376\) 0 0
\(377\) 1.00000 0.0515026
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) −26.0000 −1.32854 −0.664269 0.747494i \(-0.731257\pi\)
−0.664269 + 0.747494i \(0.731257\pi\)
\(384\) 0 0
\(385\) 6.00000 0.305788
\(386\) 0 0
\(387\) −10.0000 −0.508329
\(388\) 0 0
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) −1.00000 −0.0503155
\(396\) 0 0
\(397\) −1.00000 −0.0501886 −0.0250943 0.999685i \(-0.507989\pi\)
−0.0250943 + 0.999685i \(0.507989\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.00000 −0.249688 −0.124844 0.992176i \(-0.539843\pi\)
−0.124844 + 0.992176i \(0.539843\pi\)
\(402\) 0 0
\(403\) 3.00000 0.149441
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) 22.0000 1.07477 0.537385 0.843337i \(-0.319412\pi\)
0.537385 + 0.843337i \(0.319412\pi\)
\(420\) 0 0
\(421\) 16.0000 0.779792 0.389896 0.920859i \(-0.372511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(422\) 0 0
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.00000 −0.144841
\(430\) 0 0
\(431\) 40.0000 1.92673 0.963366 0.268190i \(-0.0864254\pi\)
0.963366 + 0.268190i \(0.0864254\pi\)
\(432\) 0 0
\(433\) −8.00000 −0.384455 −0.192228 0.981350i \(-0.561571\pi\)
−0.192228 + 0.981350i \(0.561571\pi\)
\(434\) 0 0
\(435\) 1.00000 0.0479463
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 0 0
\(447\) 1.00000 0.0472984
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) 18.0000 0.847587
\(452\) 0 0
\(453\) 22.0000 1.03365
\(454\) 0 0
\(455\) 2.00000 0.0937614
\(456\) 0 0
\(457\) −34.0000 −1.59045 −0.795226 0.606313i \(-0.792648\pi\)
−0.795226 + 0.606313i \(0.792648\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) −12.0000 −0.557687 −0.278844 0.960337i \(-0.589951\pi\)
−0.278844 + 0.960337i \(0.589951\pi\)
\(464\) 0 0
\(465\) 3.00000 0.139122
\(466\) 0 0
\(467\) −27.0000 −1.24941 −0.624705 0.780860i \(-0.714781\pi\)
−0.624705 + 0.780860i \(0.714781\pi\)
\(468\) 0 0
\(469\) −24.0000 −1.10822
\(470\) 0 0
\(471\) 14.0000 0.645086
\(472\) 0 0
\(473\) −15.0000 −0.689701
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −10.0000 −0.457869
\(478\) 0 0
\(479\) 27.0000 1.23366 0.616831 0.787096i \(-0.288416\pi\)
0.616831 + 0.787096i \(0.288416\pi\)
\(480\) 0 0
\(481\) 8.00000 0.364769
\(482\) 0 0
\(483\) −8.00000 −0.364013
\(484\) 0 0
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) 0 0
\(489\) −9.00000 −0.406994
\(490\) 0 0
\(491\) 15.0000 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 6.00000 0.269680
\(496\) 0 0
\(497\) 12.0000 0.538274
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 2.00000 0.0893534
\(502\) 0 0
\(503\) 19.0000 0.847168 0.423584 0.905857i \(-0.360772\pi\)
0.423584 + 0.905857i \(0.360772\pi\)
\(504\) 0 0
\(505\) 16.0000 0.711991
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) 1.00000 0.0443242 0.0221621 0.999754i \(-0.492945\pi\)
0.0221621 + 0.999754i \(0.492945\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.0000 −0.440653
\(516\) 0 0
\(517\) 9.00000 0.395820
\(518\) 0 0
\(519\) −10.0000 −0.438951
\(520\) 0 0
\(521\) −45.0000 −1.97149 −0.985743 0.168259i \(-0.946186\pi\)
−0.985743 + 0.168259i \(0.946186\pi\)
\(522\) 0 0
\(523\) 24.0000 1.04945 0.524723 0.851273i \(-0.324169\pi\)
0.524723 + 0.851273i \(0.324169\pi\)
\(524\) 0 0
\(525\) −8.00000 −0.349149
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −16.0000 −0.694341
\(532\) 0 0
\(533\) 6.00000 0.259889
\(534\) 0 0
\(535\) −18.0000 −0.778208
\(536\) 0 0
\(537\) −6.00000 −0.258919
\(538\) 0 0
\(539\) 9.00000 0.387657
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) 0 0
\(543\) 25.0000 1.07285
\(544\) 0 0
\(545\) −11.0000 −0.471188
\(546\) 0 0
\(547\) 14.0000 0.598597 0.299298 0.954160i \(-0.403247\pi\)
0.299298 + 0.954160i \(0.403247\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 2.00000 0.0850487
\(554\) 0 0
\(555\) 8.00000 0.339581
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.0000 −1.13791 −0.568957 0.822367i \(-0.692653\pi\)
−0.568957 + 0.822367i \(0.692653\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) −8.00000 −0.334205
\(574\) 0 0
\(575\) 16.0000 0.667246
\(576\) 0 0
\(577\) −8.00000 −0.333044 −0.166522 0.986038i \(-0.553254\pi\)
−0.166522 + 0.986038i \(0.553254\pi\)
\(578\) 0 0
\(579\) −14.0000 −0.581820
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) −15.0000 −0.621237
\(584\) 0 0
\(585\) 2.00000 0.0826898
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −2.00000 −0.0822690
\(592\) 0 0
\(593\) 7.00000 0.287456 0.143728 0.989617i \(-0.454091\pi\)
0.143728 + 0.989617i \(0.454091\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −14.0000 −0.572982
\(598\) 0 0
\(599\) 27.0000 1.10319 0.551595 0.834112i \(-0.314019\pi\)
0.551595 + 0.834112i \(0.314019\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) −24.0000 −0.977356
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) −45.0000 −1.82649 −0.913247 0.407407i \(-0.866433\pi\)
−0.913247 + 0.407407i \(0.866433\pi\)
\(608\) 0 0
\(609\) −2.00000 −0.0810441
\(610\) 0 0
\(611\) 3.00000 0.121367
\(612\) 0 0
\(613\) 1.00000 0.0403896 0.0201948 0.999796i \(-0.493571\pi\)
0.0201948 + 0.999796i \(0.493571\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −4.00000 −0.161034 −0.0805170 0.996753i \(-0.525657\pi\)
−0.0805170 + 0.996753i \(0.525657\pi\)
\(618\) 0 0
\(619\) −35.0000 −1.40677 −0.703384 0.710810i \(-0.748329\pi\)
−0.703384 + 0.710810i \(0.748329\pi\)
\(620\) 0 0
\(621\) −20.0000 −0.802572
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −6.00000 −0.238856 −0.119428 0.992843i \(-0.538106\pi\)
−0.119428 + 0.992843i \(0.538106\pi\)
\(632\) 0 0
\(633\) 3.00000 0.119239
\(634\) 0 0
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 3.00000 0.118864
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 0 0
\(643\) 2.00000 0.0788723 0.0394362 0.999222i \(-0.487444\pi\)
0.0394362 + 0.999222i \(0.487444\pi\)
\(644\) 0 0
\(645\) −5.00000 −0.196875
\(646\) 0 0
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) −24.0000 −0.942082
\(650\) 0 0
\(651\) −6.00000 −0.235159
\(652\) 0 0
\(653\) −10.0000 −0.391330 −0.195665 0.980671i \(-0.562687\pi\)
−0.195665 + 0.980671i \(0.562687\pi\)
\(654\) 0 0
\(655\) −4.00000 −0.156293
\(656\) 0 0
\(657\) 8.00000 0.312110
\(658\) 0 0
\(659\) −1.00000 −0.0389545 −0.0194772 0.999810i \(-0.506200\pi\)
−0.0194772 + 0.999810i \(0.506200\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.00000 0.154881
\(668\) 0 0
\(669\) 26.0000 1.00522
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 9.00000 0.346925 0.173462 0.984841i \(-0.444505\pi\)
0.173462 + 0.984841i \(0.444505\pi\)
\(674\) 0 0
\(675\) −20.0000 −0.769800
\(676\) 0 0
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) 0 0
\(679\) −28.0000 −1.07454
\(680\) 0 0
\(681\) 6.00000 0.229920
\(682\) 0 0
\(683\) 16.0000 0.612223 0.306111 0.951996i \(-0.400972\pi\)
0.306111 + 0.951996i \(0.400972\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) −5.00000 −0.190485
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) −12.0000 −0.455842
\(694\) 0 0
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 17.0000 0.642999
\(700\) 0 0
\(701\) −5.00000 −0.188847 −0.0944237 0.995532i \(-0.530101\pi\)
−0.0944237 + 0.995532i \(0.530101\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 3.00000 0.112987
\(706\) 0 0
\(707\) −32.0000 −1.20348
\(708\) 0 0
\(709\) −33.0000 −1.23934 −0.619671 0.784862i \(-0.712734\pi\)
−0.619671 + 0.784862i \(0.712734\pi\)
\(710\) 0 0
\(711\) 2.00000 0.0750059
\(712\) 0 0
\(713\) 12.0000 0.449404
\(714\) 0 0
\(715\) 3.00000 0.112194
\(716\) 0 0
\(717\) −16.0000 −0.597531
\(718\) 0 0
\(719\) −42.0000 −1.56634 −0.783168 0.621810i \(-0.786397\pi\)
−0.783168 + 0.621810i \(0.786397\pi\)
\(720\) 0 0
\(721\) 20.0000 0.744839
\(722\) 0 0
\(723\) 31.0000 1.15290
\(724\) 0 0
\(725\) 4.00000 0.148556
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 3.00000 0.110657
\(736\) 0 0
\(737\) −36.0000 −1.32608
\(738\) 0 0
\(739\) 43.0000 1.58178 0.790890 0.611958i \(-0.209618\pi\)
0.790890 + 0.611958i \(0.209618\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.0000 0.440237 0.220119 0.975473i \(-0.429356\pi\)
0.220119 + 0.975473i \(0.429356\pi\)
\(744\) 0 0
\(745\) −1.00000 −0.0366372
\(746\) 0 0
\(747\) −24.0000 −0.878114
\(748\) 0 0
\(749\) 36.0000 1.31541
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 21.0000 0.765283
\(754\) 0 0
\(755\) −22.0000 −0.800662
\(756\) 0 0
\(757\) 8.00000 0.290765 0.145382 0.989376i \(-0.453559\pi\)
0.145382 + 0.989376i \(0.453559\pi\)
\(758\) 0 0
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 22.0000 0.796453
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) 20.0000 0.721218 0.360609 0.932717i \(-0.382569\pi\)
0.360609 + 0.932717i \(0.382569\pi\)
\(770\) 0 0
\(771\) 3.00000 0.108042
\(772\) 0 0
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 12.0000 0.431053
\(776\) 0 0
\(777\) −16.0000 −0.573997
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 0 0
\(783\) −5.00000 −0.178685
\(784\) 0 0
\(785\) −14.0000 −0.499681
\(786\) 0 0
\(787\) 18.0000 0.641631 0.320815 0.947142i \(-0.396043\pi\)
0.320815 + 0.947142i \(0.396043\pi\)
\(788\) 0 0
\(789\) −25.0000 −0.890024
\(790\) 0 0
\(791\) −36.0000 −1.28001
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −5.00000 −0.177332
\(796\) 0 0
\(797\) 24.0000 0.850124 0.425062 0.905164i \(-0.360252\pi\)
0.425062 + 0.905164i \(0.360252\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) 0 0
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) 8.00000 0.281963
\(806\) 0 0
\(807\) 24.0000 0.844840
\(808\) 0 0
\(809\) −32.0000 −1.12506 −0.562530 0.826777i \(-0.690172\pi\)
−0.562530 + 0.826777i \(0.690172\pi\)
\(810\) 0 0
\(811\) 6.00000 0.210688 0.105344 0.994436i \(-0.466406\pi\)
0.105344 + 0.994436i \(0.466406\pi\)
\(812\) 0 0
\(813\) 29.0000 1.01707
\(814\) 0 0
\(815\) 9.00000 0.315256
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 15.0000 0.523504 0.261752 0.965135i \(-0.415700\pi\)
0.261752 + 0.965135i \(0.415700\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) 0 0
\(825\) −12.0000 −0.417786
\(826\) 0 0
\(827\) −35.0000 −1.21707 −0.608535 0.793527i \(-0.708242\pi\)
−0.608535 + 0.793527i \(0.708242\pi\)
\(828\) 0 0
\(829\) −40.0000 −1.38926 −0.694629 0.719368i \(-0.744431\pi\)
−0.694629 + 0.719368i \(0.744431\pi\)
\(830\) 0 0
\(831\) −14.0000 −0.485655
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.00000 −0.0692129
\(836\) 0 0
\(837\) −15.0000 −0.518476
\(838\) 0 0
\(839\) −35.0000 −1.20833 −0.604167 0.796858i \(-0.706494\pi\)
−0.604167 + 0.796858i \(0.706494\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 5.00000 0.172209
\(844\) 0 0
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) 0 0
\(849\) 12.0000 0.411839
\(850\) 0 0
\(851\) 32.0000 1.09695
\(852\) 0 0
\(853\) −2.00000 −0.0684787 −0.0342393 0.999414i \(-0.510901\pi\)
−0.0342393 + 0.999414i \(0.510901\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.0000 0.717346 0.358673 0.933463i \(-0.383229\pi\)
0.358673 + 0.933463i \(0.383229\pi\)
\(858\) 0 0
\(859\) 55.0000 1.87658 0.938288 0.345855i \(-0.112411\pi\)
0.938288 + 0.345855i \(0.112411\pi\)
\(860\) 0 0
\(861\) −12.0000 −0.408959
\(862\) 0 0
\(863\) 18.0000 0.612727 0.306364 0.951915i \(-0.400888\pi\)
0.306364 + 0.951915i \(0.400888\pi\)
\(864\) 0 0
\(865\) 10.0000 0.340010
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) 3.00000 0.101768
\(870\) 0 0
\(871\) −12.0000 −0.406604
\(872\) 0 0
\(873\) −28.0000 −0.947656
\(874\) 0 0
\(875\) 18.0000 0.608511
\(876\) 0 0
\(877\) 29.0000 0.979260 0.489630 0.871930i \(-0.337132\pi\)
0.489630 + 0.871930i \(0.337132\pi\)
\(878\) 0 0
\(879\) −22.0000 −0.742042
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 38.0000 1.27880 0.639401 0.768874i \(-0.279182\pi\)
0.639401 + 0.768874i \(0.279182\pi\)
\(884\) 0 0
\(885\) −8.00000 −0.268917
\(886\) 0 0
\(887\) −15.0000 −0.503651 −0.251825 0.967773i \(-0.581031\pi\)
−0.251825 + 0.967773i \(0.581031\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 6.00000 0.200558
\(896\) 0 0
\(897\) −4.00000 −0.133556
\(898\) 0 0
\(899\) 3.00000 0.100056
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 10.0000 0.332779
\(904\) 0 0
\(905\) −25.0000 −0.831028
\(906\) 0 0
\(907\) 44.0000 1.46100 0.730498 0.682915i \(-0.239288\pi\)
0.730498 + 0.682915i \(0.239288\pi\)
\(908\) 0 0
\(909\) −32.0000 −1.06137
\(910\) 0 0
\(911\) −13.0000 −0.430709 −0.215355 0.976536i \(-0.569091\pi\)
−0.215355 + 0.976536i \(0.569091\pi\)
\(912\) 0 0
\(913\) −36.0000 −1.19143
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.00000 0.264183
\(918\) 0 0
\(919\) 6.00000 0.197922 0.0989609 0.995091i \(-0.468448\pi\)
0.0989609 + 0.995091i \(0.468448\pi\)
\(920\) 0 0
\(921\) 23.0000 0.757876
\(922\) 0 0
\(923\) 6.00000 0.197492
\(924\) 0 0
\(925\) 32.0000 1.05215
\(926\) 0 0
\(927\) 20.0000 0.656886
\(928\) 0 0
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 8.00000 0.261908
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −18.0000 −0.588034 −0.294017 0.955800i \(-0.594992\pi\)
−0.294017 + 0.955800i \(0.594992\pi\)
\(938\) 0 0
\(939\) −9.00000 −0.293704
\(940\) 0 0
\(941\) 5.00000 0.162995 0.0814977 0.996674i \(-0.474030\pi\)
0.0814977 + 0.996674i \(0.474030\pi\)
\(942\) 0 0
\(943\) 24.0000 0.781548
\(944\) 0 0
\(945\) −10.0000 −0.325300
\(946\) 0 0
\(947\) −15.0000 −0.487435 −0.243717 0.969846i \(-0.578367\pi\)
−0.243717 + 0.969846i \(0.578367\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 28.0000 0.907962
\(952\) 0 0
\(953\) 47.0000 1.52248 0.761240 0.648471i \(-0.224591\pi\)
0.761240 + 0.648471i \(0.224591\pi\)
\(954\) 0 0
\(955\) 8.00000 0.258874
\(956\) 0 0
\(957\) −3.00000 −0.0969762
\(958\) 0 0
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) 36.0000 1.16008
\(964\) 0 0
\(965\) 14.0000 0.450676
\(966\) 0 0
\(967\) 29.0000 0.932577 0.466289 0.884633i \(-0.345591\pi\)
0.466289 + 0.884633i \(0.345591\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 8.00000 0.256468
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) −35.0000 −1.11975 −0.559875 0.828577i \(-0.689151\pi\)
−0.559875 + 0.828577i \(0.689151\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) 22.0000 0.702406
\(982\) 0 0
\(983\) 1.00000 0.0318950 0.0159475 0.999873i \(-0.494924\pi\)
0.0159475 + 0.999873i \(0.494924\pi\)
\(984\) 0 0
\(985\) 2.00000 0.0637253
\(986\) 0 0
\(987\) −6.00000 −0.190982
\(988\) 0 0
\(989\) −20.0000 −0.635963
\(990\) 0 0
\(991\) 38.0000 1.20711 0.603555 0.797321i \(-0.293750\pi\)
0.603555 + 0.797321i \(0.293750\pi\)
\(992\) 0 0
\(993\) 7.00000 0.222138
\(994\) 0 0
\(995\) 14.0000 0.443830
\(996\) 0 0
\(997\) −32.0000 −1.01345 −0.506725 0.862108i \(-0.669144\pi\)
−0.506725 + 0.862108i \(0.669144\pi\)
\(998\) 0 0
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.a.b.1.1 1
3.2 odd 2 4176.2.a.l.1.1 1
4.3 odd 2 232.2.a.b.1.1 1
8.3 odd 2 1856.2.a.e.1.1 1
8.5 even 2 1856.2.a.j.1.1 1
12.11 even 2 2088.2.a.d.1.1 1
20.19 odd 2 5800.2.a.e.1.1 1
116.115 odd 2 6728.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
232.2.a.b.1.1 1 4.3 odd 2
464.2.a.b.1.1 1 1.1 even 1 trivial
1856.2.a.e.1.1 1 8.3 odd 2
1856.2.a.j.1.1 1 8.5 even 2
2088.2.a.d.1.1 1 12.11 even 2
4176.2.a.l.1.1 1 3.2 odd 2
5800.2.a.e.1.1 1 20.19 odd 2
6728.2.a.b.1.1 1 116.115 odd 2