Properties

Label 4925.2.a.r.1.5
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $1$
Dimension $49$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(1\)
Dimension: \(49\)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 4925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51668 q^{2} -3.09870 q^{3} +4.33369 q^{4} +7.79844 q^{6} -2.79664 q^{7} -5.87315 q^{8} +6.60194 q^{9} +1.50057 q^{11} -13.4288 q^{12} +6.67560 q^{13} +7.03826 q^{14} +6.11348 q^{16} +7.00147 q^{17} -16.6150 q^{18} -2.25120 q^{19} +8.66596 q^{21} -3.77645 q^{22} -1.49137 q^{23} +18.1991 q^{24} -16.8004 q^{26} -11.1613 q^{27} -12.1198 q^{28} -9.20215 q^{29} +6.53831 q^{31} -3.63937 q^{32} -4.64980 q^{33} -17.6205 q^{34} +28.6107 q^{36} -0.641758 q^{37} +5.66556 q^{38} -20.6857 q^{39} +8.67754 q^{41} -21.8095 q^{42} -12.3791 q^{43} +6.50299 q^{44} +3.75330 q^{46} -5.81406 q^{47} -18.9438 q^{48} +0.821218 q^{49} -21.6955 q^{51} +28.9300 q^{52} +1.72766 q^{53} +28.0895 q^{54} +16.4251 q^{56} +6.97580 q^{57} +23.1589 q^{58} +5.59101 q^{59} -2.73144 q^{61} -16.4549 q^{62} -18.4633 q^{63} -3.06781 q^{64} +11.7021 q^{66} -4.94365 q^{67} +30.3422 q^{68} +4.62130 q^{69} -5.79185 q^{71} -38.7742 q^{72} +9.22321 q^{73} +1.61510 q^{74} -9.75601 q^{76} -4.19655 q^{77} +52.0593 q^{78} -12.8954 q^{79} +14.7798 q^{81} -21.8386 q^{82} +5.00012 q^{83} +37.5556 q^{84} +31.1542 q^{86} +28.5147 q^{87} -8.81305 q^{88} -4.45129 q^{89} -18.6693 q^{91} -6.46312 q^{92} -20.2603 q^{93} +14.6321 q^{94} +11.2773 q^{96} -12.7344 q^{97} -2.06674 q^{98} +9.90665 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 49 q - 5 q^{2} - 22 q^{3} + 49 q^{4} + 2 q^{6} - 32 q^{7} - 15 q^{8} + 51 q^{9} - 2 q^{11} - 44 q^{12} - 32 q^{13} - 8 q^{14} + 49 q^{16} - 14 q^{17} - 25 q^{18} + 4 q^{19} + 10 q^{21} - 38 q^{22} - 24 q^{23}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51668 −1.77956 −0.889781 0.456387i \(-0.849143\pi\)
−0.889781 + 0.456387i \(0.849143\pi\)
\(3\) −3.09870 −1.78903 −0.894517 0.447033i \(-0.852481\pi\)
−0.894517 + 0.447033i \(0.852481\pi\)
\(4\) 4.33369 2.16684
\(5\) 0 0
\(6\) 7.79844 3.18370
\(7\) −2.79664 −1.05703 −0.528516 0.848923i \(-0.677251\pi\)
−0.528516 + 0.848923i \(0.677251\pi\)
\(8\) −5.87315 −2.07647
\(9\) 6.60194 2.20065
\(10\) 0 0
\(11\) 1.50057 0.452438 0.226219 0.974076i \(-0.427364\pi\)
0.226219 + 0.974076i \(0.427364\pi\)
\(12\) −13.4288 −3.87656
\(13\) 6.67560 1.85148 0.925739 0.378163i \(-0.123444\pi\)
0.925739 + 0.378163i \(0.123444\pi\)
\(14\) 7.03826 1.88106
\(15\) 0 0
\(16\) 6.11348 1.52837
\(17\) 7.00147 1.69811 0.849053 0.528308i \(-0.177173\pi\)
0.849053 + 0.528308i \(0.177173\pi\)
\(18\) −16.6150 −3.91619
\(19\) −2.25120 −0.516462 −0.258231 0.966083i \(-0.583139\pi\)
−0.258231 + 0.966083i \(0.583139\pi\)
\(20\) 0 0
\(21\) 8.66596 1.89107
\(22\) −3.77645 −0.805142
\(23\) −1.49137 −0.310972 −0.155486 0.987838i \(-0.549694\pi\)
−0.155486 + 0.987838i \(0.549694\pi\)
\(24\) 18.1991 3.71488
\(25\) 0 0
\(26\) −16.8004 −3.29482
\(27\) −11.1613 −2.14800
\(28\) −12.1198 −2.29042
\(29\) −9.20215 −1.70880 −0.854399 0.519618i \(-0.826074\pi\)
−0.854399 + 0.519618i \(0.826074\pi\)
\(30\) 0 0
\(31\) 6.53831 1.17432 0.587158 0.809472i \(-0.300247\pi\)
0.587158 + 0.809472i \(0.300247\pi\)
\(32\) −3.63937 −0.643356
\(33\) −4.64980 −0.809427
\(34\) −17.6205 −3.02189
\(35\) 0 0
\(36\) 28.6107 4.76846
\(37\) −0.641758 −0.105504 −0.0527522 0.998608i \(-0.516799\pi\)
−0.0527522 + 0.998608i \(0.516799\pi\)
\(38\) 5.66556 0.919076
\(39\) −20.6857 −3.31236
\(40\) 0 0
\(41\) 8.67754 1.35520 0.677602 0.735429i \(-0.263019\pi\)
0.677602 + 0.735429i \(0.263019\pi\)
\(42\) −21.8095 −3.36527
\(43\) −12.3791 −1.88779 −0.943897 0.330240i \(-0.892870\pi\)
−0.943897 + 0.330240i \(0.892870\pi\)
\(44\) 6.50299 0.980362
\(45\) 0 0
\(46\) 3.75330 0.553393
\(47\) −5.81406 −0.848068 −0.424034 0.905646i \(-0.639386\pi\)
−0.424034 + 0.905646i \(0.639386\pi\)
\(48\) −18.9438 −2.73431
\(49\) 0.821218 0.117317
\(50\) 0 0
\(51\) −21.6955 −3.03797
\(52\) 28.9300 4.01186
\(53\) 1.72766 0.237313 0.118656 0.992935i \(-0.462141\pi\)
0.118656 + 0.992935i \(0.462141\pi\)
\(54\) 28.0895 3.82250
\(55\) 0 0
\(56\) 16.4251 2.19490
\(57\) 6.97580 0.923968
\(58\) 23.1589 3.04091
\(59\) 5.59101 0.727888 0.363944 0.931421i \(-0.381430\pi\)
0.363944 + 0.931421i \(0.381430\pi\)
\(60\) 0 0
\(61\) −2.73144 −0.349725 −0.174862 0.984593i \(-0.555948\pi\)
−0.174862 + 0.984593i \(0.555948\pi\)
\(62\) −16.4549 −2.08977
\(63\) −18.4633 −2.32615
\(64\) −3.06781 −0.383476
\(65\) 0 0
\(66\) 11.7021 1.44043
\(67\) −4.94365 −0.603963 −0.301981 0.953314i \(-0.597648\pi\)
−0.301981 + 0.953314i \(0.597648\pi\)
\(68\) 30.3422 3.67953
\(69\) 4.62130 0.556339
\(70\) 0 0
\(71\) −5.79185 −0.687366 −0.343683 0.939086i \(-0.611675\pi\)
−0.343683 + 0.939086i \(0.611675\pi\)
\(72\) −38.7742 −4.56958
\(73\) 9.22321 1.07950 0.539748 0.841827i \(-0.318520\pi\)
0.539748 + 0.841827i \(0.318520\pi\)
\(74\) 1.61510 0.187752
\(75\) 0 0
\(76\) −9.75601 −1.11909
\(77\) −4.19655 −0.478241
\(78\) 52.0593 5.89455
\(79\) −12.8954 −1.45085 −0.725426 0.688300i \(-0.758357\pi\)
−0.725426 + 0.688300i \(0.758357\pi\)
\(80\) 0 0
\(81\) 14.7798 1.64220
\(82\) −21.8386 −2.41167
\(83\) 5.00012 0.548834 0.274417 0.961611i \(-0.411515\pi\)
0.274417 + 0.961611i \(0.411515\pi\)
\(84\) 37.5556 4.09765
\(85\) 0 0
\(86\) 31.1542 3.35945
\(87\) 28.5147 3.05710
\(88\) −8.81305 −0.939475
\(89\) −4.45129 −0.471836 −0.235918 0.971773i \(-0.575810\pi\)
−0.235918 + 0.971773i \(0.575810\pi\)
\(90\) 0 0
\(91\) −18.6693 −1.95707
\(92\) −6.46312 −0.673827
\(93\) −20.2603 −2.10089
\(94\) 14.6321 1.50919
\(95\) 0 0
\(96\) 11.2773 1.15099
\(97\) −12.7344 −1.29298 −0.646489 0.762923i \(-0.723763\pi\)
−0.646489 + 0.762923i \(0.723763\pi\)
\(98\) −2.06674 −0.208773
\(99\) 9.90665 0.995655
\(100\) 0 0
\(101\) −2.38567 −0.237383 −0.118691 0.992931i \(-0.537870\pi\)
−0.118691 + 0.992931i \(0.537870\pi\)
\(102\) 54.6006 5.40626
\(103\) 5.12451 0.504933 0.252467 0.967606i \(-0.418758\pi\)
0.252467 + 0.967606i \(0.418758\pi\)
\(104\) −39.2068 −3.84454
\(105\) 0 0
\(106\) −4.34798 −0.422313
\(107\) −2.00560 −0.193888 −0.0969442 0.995290i \(-0.530907\pi\)
−0.0969442 + 0.995290i \(0.530907\pi\)
\(108\) −48.3697 −4.65438
\(109\) −11.2834 −1.08075 −0.540376 0.841424i \(-0.681718\pi\)
−0.540376 + 0.841424i \(0.681718\pi\)
\(110\) 0 0
\(111\) 1.98861 0.188751
\(112\) −17.0972 −1.61553
\(113\) 5.35887 0.504121 0.252060 0.967712i \(-0.418892\pi\)
0.252060 + 0.967712i \(0.418892\pi\)
\(114\) −17.5559 −1.64426
\(115\) 0 0
\(116\) −39.8793 −3.70270
\(117\) 44.0719 4.07445
\(118\) −14.0708 −1.29532
\(119\) −19.5806 −1.79495
\(120\) 0 0
\(121\) −8.74830 −0.795300
\(122\) 6.87416 0.622357
\(123\) −26.8891 −2.42451
\(124\) 28.3350 2.54456
\(125\) 0 0
\(126\) 46.4662 4.13954
\(127\) 6.20549 0.550648 0.275324 0.961351i \(-0.411215\pi\)
0.275324 + 0.961351i \(0.411215\pi\)
\(128\) 14.9994 1.32578
\(129\) 38.3591 3.37733
\(130\) 0 0
\(131\) 12.3229 1.07666 0.538328 0.842736i \(-0.319056\pi\)
0.538328 + 0.842736i \(0.319056\pi\)
\(132\) −20.1508 −1.75390
\(133\) 6.29582 0.545916
\(134\) 12.4416 1.07479
\(135\) 0 0
\(136\) −41.1207 −3.52607
\(137\) −1.25500 −0.107222 −0.0536109 0.998562i \(-0.517073\pi\)
−0.0536109 + 0.998562i \(0.517073\pi\)
\(138\) −11.6303 −0.990040
\(139\) 3.33206 0.282622 0.141311 0.989965i \(-0.454868\pi\)
0.141311 + 0.989965i \(0.454868\pi\)
\(140\) 0 0
\(141\) 18.0160 1.51722
\(142\) 14.5762 1.22321
\(143\) 10.0172 0.837679
\(144\) 40.3608 3.36340
\(145\) 0 0
\(146\) −23.2119 −1.92103
\(147\) −2.54471 −0.209884
\(148\) −2.78118 −0.228611
\(149\) −14.1881 −1.16233 −0.581167 0.813784i \(-0.697404\pi\)
−0.581167 + 0.813784i \(0.697404\pi\)
\(150\) 0 0
\(151\) 1.14050 0.0928122 0.0464061 0.998923i \(-0.485223\pi\)
0.0464061 + 0.998923i \(0.485223\pi\)
\(152\) 13.2217 1.07242
\(153\) 46.2233 3.73693
\(154\) 10.5614 0.851060
\(155\) 0 0
\(156\) −89.6453 −7.17737
\(157\) 0.995495 0.0794492 0.0397246 0.999211i \(-0.487352\pi\)
0.0397246 + 0.999211i \(0.487352\pi\)
\(158\) 32.4537 2.58188
\(159\) −5.35350 −0.424561
\(160\) 0 0
\(161\) 4.17082 0.328707
\(162\) −37.1960 −2.92239
\(163\) −11.8235 −0.926087 −0.463044 0.886336i \(-0.653243\pi\)
−0.463044 + 0.886336i \(0.653243\pi\)
\(164\) 37.6058 2.93652
\(165\) 0 0
\(166\) −12.5837 −0.976685
\(167\) 8.97926 0.694836 0.347418 0.937710i \(-0.387058\pi\)
0.347418 + 0.937710i \(0.387058\pi\)
\(168\) −50.8965 −3.92675
\(169\) 31.5636 2.42797
\(170\) 0 0
\(171\) −14.8623 −1.13655
\(172\) −53.6471 −4.09055
\(173\) −7.00469 −0.532556 −0.266278 0.963896i \(-0.585794\pi\)
−0.266278 + 0.963896i \(0.585794\pi\)
\(174\) −71.7625 −5.44030
\(175\) 0 0
\(176\) 9.17368 0.691492
\(177\) −17.3249 −1.30222
\(178\) 11.2025 0.839662
\(179\) −18.7865 −1.40417 −0.702084 0.712094i \(-0.747747\pi\)
−0.702084 + 0.712094i \(0.747747\pi\)
\(180\) 0 0
\(181\) 7.49173 0.556856 0.278428 0.960457i \(-0.410187\pi\)
0.278428 + 0.960457i \(0.410187\pi\)
\(182\) 46.9846 3.48273
\(183\) 8.46390 0.625670
\(184\) 8.75902 0.645724
\(185\) 0 0
\(186\) 50.9887 3.73867
\(187\) 10.5062 0.768287
\(188\) −25.1963 −1.83763
\(189\) 31.2142 2.27050
\(190\) 0 0
\(191\) 12.5241 0.906211 0.453106 0.891457i \(-0.350316\pi\)
0.453106 + 0.891457i \(0.350316\pi\)
\(192\) 9.50621 0.686052
\(193\) −5.44211 −0.391732 −0.195866 0.980631i \(-0.562752\pi\)
−0.195866 + 0.980631i \(0.562752\pi\)
\(194\) 32.0483 2.30094
\(195\) 0 0
\(196\) 3.55890 0.254207
\(197\) 1.00000 0.0712470
\(198\) −24.9319 −1.77183
\(199\) 12.9094 0.915120 0.457560 0.889179i \(-0.348723\pi\)
0.457560 + 0.889179i \(0.348723\pi\)
\(200\) 0 0
\(201\) 15.3189 1.08051
\(202\) 6.00396 0.422437
\(203\) 25.7351 1.80625
\(204\) −94.0213 −6.58281
\(205\) 0 0
\(206\) −12.8968 −0.898561
\(207\) −9.84591 −0.684338
\(208\) 40.8111 2.82974
\(209\) −3.37808 −0.233667
\(210\) 0 0
\(211\) −12.2066 −0.840339 −0.420169 0.907446i \(-0.638029\pi\)
−0.420169 + 0.907446i \(0.638029\pi\)
\(212\) 7.48715 0.514219
\(213\) 17.9472 1.22972
\(214\) 5.04745 0.345036
\(215\) 0 0
\(216\) 65.5521 4.46026
\(217\) −18.2853 −1.24129
\(218\) 28.3967 1.92327
\(219\) −28.5800 −1.93125
\(220\) 0 0
\(221\) 46.7390 3.14401
\(222\) −5.00471 −0.335894
\(223\) 7.53212 0.504388 0.252194 0.967677i \(-0.418848\pi\)
0.252194 + 0.967677i \(0.418848\pi\)
\(224\) 10.1780 0.680048
\(225\) 0 0
\(226\) −13.4866 −0.897114
\(227\) 13.1744 0.874417 0.437209 0.899360i \(-0.355967\pi\)
0.437209 + 0.899360i \(0.355967\pi\)
\(228\) 30.2310 2.00209
\(229\) 2.45091 0.161960 0.0809802 0.996716i \(-0.474195\pi\)
0.0809802 + 0.996716i \(0.474195\pi\)
\(230\) 0 0
\(231\) 13.0038 0.855590
\(232\) 54.0456 3.54827
\(233\) 18.4140 1.20634 0.603172 0.797611i \(-0.293903\pi\)
0.603172 + 0.797611i \(0.293903\pi\)
\(234\) −110.915 −7.25074
\(235\) 0 0
\(236\) 24.2297 1.57722
\(237\) 39.9591 2.59562
\(238\) 49.2782 3.19423
\(239\) −14.5327 −0.940043 −0.470021 0.882655i \(-0.655754\pi\)
−0.470021 + 0.882655i \(0.655754\pi\)
\(240\) 0 0
\(241\) 7.99412 0.514946 0.257473 0.966285i \(-0.417110\pi\)
0.257473 + 0.966285i \(0.417110\pi\)
\(242\) 22.0167 1.41529
\(243\) −12.3141 −0.789950
\(244\) −11.8372 −0.757799
\(245\) 0 0
\(246\) 67.6713 4.31456
\(247\) −15.0281 −0.956217
\(248\) −38.4005 −2.43843
\(249\) −15.4939 −0.981884
\(250\) 0 0
\(251\) −2.72917 −0.172264 −0.0861319 0.996284i \(-0.527451\pi\)
−0.0861319 + 0.996284i \(0.527451\pi\)
\(252\) −80.0141 −5.04041
\(253\) −2.23790 −0.140695
\(254\) −15.6172 −0.979913
\(255\) 0 0
\(256\) −31.6132 −1.97583
\(257\) 1.43751 0.0896693 0.0448347 0.998994i \(-0.485724\pi\)
0.0448347 + 0.998994i \(0.485724\pi\)
\(258\) −96.5376 −6.01017
\(259\) 1.79477 0.111521
\(260\) 0 0
\(261\) −60.7521 −3.76046
\(262\) −31.0128 −1.91598
\(263\) 3.08666 0.190332 0.0951659 0.995461i \(-0.469662\pi\)
0.0951659 + 0.995461i \(0.469662\pi\)
\(264\) 27.3090 1.68075
\(265\) 0 0
\(266\) −15.8446 −0.971493
\(267\) 13.7932 0.844131
\(268\) −21.4242 −1.30869
\(269\) 27.6805 1.68771 0.843855 0.536572i \(-0.180281\pi\)
0.843855 + 0.536572i \(0.180281\pi\)
\(270\) 0 0
\(271\) 2.06718 0.125572 0.0627861 0.998027i \(-0.480001\pi\)
0.0627861 + 0.998027i \(0.480001\pi\)
\(272\) 42.8033 2.59533
\(273\) 57.8505 3.50127
\(274\) 3.15843 0.190808
\(275\) 0 0
\(276\) 20.0273 1.20550
\(277\) −16.8915 −1.01491 −0.507457 0.861677i \(-0.669414\pi\)
−0.507457 + 0.861677i \(0.669414\pi\)
\(278\) −8.38574 −0.502943
\(279\) 43.1655 2.58425
\(280\) 0 0
\(281\) 9.29490 0.554487 0.277244 0.960800i \(-0.410579\pi\)
0.277244 + 0.960800i \(0.410579\pi\)
\(282\) −45.3406 −2.70000
\(283\) −22.2508 −1.32268 −0.661338 0.750088i \(-0.730011\pi\)
−0.661338 + 0.750088i \(0.730011\pi\)
\(284\) −25.1001 −1.48941
\(285\) 0 0
\(286\) −25.2101 −1.49070
\(287\) −24.2680 −1.43249
\(288\) −24.0269 −1.41580
\(289\) 32.0206 1.88356
\(290\) 0 0
\(291\) 39.4600 2.31318
\(292\) 39.9705 2.33910
\(293\) −25.6859 −1.50059 −0.750295 0.661104i \(-0.770088\pi\)
−0.750295 + 0.661104i \(0.770088\pi\)
\(294\) 6.40422 0.373502
\(295\) 0 0
\(296\) 3.76914 0.219077
\(297\) −16.7483 −0.971835
\(298\) 35.7070 2.06845
\(299\) −9.95577 −0.575757
\(300\) 0 0
\(301\) 34.6199 1.99546
\(302\) −2.87027 −0.165165
\(303\) 7.39246 0.424686
\(304\) −13.7627 −0.789344
\(305\) 0 0
\(306\) −116.329 −6.65010
\(307\) −15.0185 −0.857149 −0.428574 0.903507i \(-0.640984\pi\)
−0.428574 + 0.903507i \(0.640984\pi\)
\(308\) −18.1865 −1.03627
\(309\) −15.8793 −0.903343
\(310\) 0 0
\(311\) 28.4554 1.61356 0.806779 0.590853i \(-0.201209\pi\)
0.806779 + 0.590853i \(0.201209\pi\)
\(312\) 121.490 6.87802
\(313\) −18.8702 −1.06660 −0.533302 0.845925i \(-0.679049\pi\)
−0.533302 + 0.845925i \(0.679049\pi\)
\(314\) −2.50535 −0.141385
\(315\) 0 0
\(316\) −55.8849 −3.14377
\(317\) 5.87594 0.330025 0.165013 0.986291i \(-0.447233\pi\)
0.165013 + 0.986291i \(0.447233\pi\)
\(318\) 13.4731 0.755532
\(319\) −13.8084 −0.773124
\(320\) 0 0
\(321\) 6.21474 0.346873
\(322\) −10.4966 −0.584955
\(323\) −15.7617 −0.877007
\(324\) 64.0509 3.55838
\(325\) 0 0
\(326\) 29.7560 1.64803
\(327\) 34.9638 1.93350
\(328\) −50.9645 −2.81404
\(329\) 16.2599 0.896435
\(330\) 0 0
\(331\) 13.0218 0.715744 0.357872 0.933771i \(-0.383502\pi\)
0.357872 + 0.933771i \(0.383502\pi\)
\(332\) 21.6690 1.18924
\(333\) −4.23685 −0.232178
\(334\) −22.5979 −1.23650
\(335\) 0 0
\(336\) 52.9791 2.89025
\(337\) −8.22154 −0.447856 −0.223928 0.974606i \(-0.571888\pi\)
−0.223928 + 0.974606i \(0.571888\pi\)
\(338\) −79.4356 −4.32073
\(339\) −16.6055 −0.901889
\(340\) 0 0
\(341\) 9.81118 0.531305
\(342\) 37.4037 2.02256
\(343\) 17.2799 0.933024
\(344\) 72.7043 3.91995
\(345\) 0 0
\(346\) 17.6286 0.947718
\(347\) −14.9607 −0.803130 −0.401565 0.915831i \(-0.631534\pi\)
−0.401565 + 0.915831i \(0.631534\pi\)
\(348\) 123.574 6.62425
\(349\) −17.8589 −0.955968 −0.477984 0.878369i \(-0.658632\pi\)
−0.477984 + 0.878369i \(0.658632\pi\)
\(350\) 0 0
\(351\) −74.5085 −3.97697
\(352\) −5.46112 −0.291079
\(353\) −23.4918 −1.25034 −0.625171 0.780488i \(-0.714971\pi\)
−0.625171 + 0.780488i \(0.714971\pi\)
\(354\) 43.6012 2.31738
\(355\) 0 0
\(356\) −19.2905 −1.02239
\(357\) 60.6745 3.21123
\(358\) 47.2796 2.49881
\(359\) 12.6629 0.668323 0.334162 0.942516i \(-0.391547\pi\)
0.334162 + 0.942516i \(0.391547\pi\)
\(360\) 0 0
\(361\) −13.9321 −0.733267
\(362\) −18.8543 −0.990961
\(363\) 27.1084 1.42282
\(364\) −80.9068 −4.24067
\(365\) 0 0
\(366\) −21.3009 −1.11342
\(367\) −17.6279 −0.920171 −0.460085 0.887875i \(-0.652181\pi\)
−0.460085 + 0.887875i \(0.652181\pi\)
\(368\) −9.11744 −0.475279
\(369\) 57.2886 2.98232
\(370\) 0 0
\(371\) −4.83166 −0.250847
\(372\) −87.8017 −4.55231
\(373\) −4.63168 −0.239819 −0.119910 0.992785i \(-0.538260\pi\)
−0.119910 + 0.992785i \(0.538260\pi\)
\(374\) −26.4407 −1.36722
\(375\) 0 0
\(376\) 34.1469 1.76099
\(377\) −61.4299 −3.16380
\(378\) −78.5563 −4.04050
\(379\) −20.0728 −1.03107 −0.515535 0.856869i \(-0.672407\pi\)
−0.515535 + 0.856869i \(0.672407\pi\)
\(380\) 0 0
\(381\) −19.2289 −0.985129
\(382\) −31.5191 −1.61266
\(383\) −13.6174 −0.695814 −0.347907 0.937529i \(-0.613108\pi\)
−0.347907 + 0.937529i \(0.613108\pi\)
\(384\) −46.4788 −2.37186
\(385\) 0 0
\(386\) 13.6961 0.697111
\(387\) −81.7260 −4.15437
\(388\) −55.1867 −2.80168
\(389\) 16.3340 0.828166 0.414083 0.910239i \(-0.364102\pi\)
0.414083 + 0.910239i \(0.364102\pi\)
\(390\) 0 0
\(391\) −10.4418 −0.528063
\(392\) −4.82314 −0.243605
\(393\) −38.1849 −1.92617
\(394\) −2.51668 −0.126789
\(395\) 0 0
\(396\) 42.9323 2.15743
\(397\) −5.84689 −0.293447 −0.146723 0.989178i \(-0.546873\pi\)
−0.146723 + 0.989178i \(0.546873\pi\)
\(398\) −32.4888 −1.62851
\(399\) −19.5088 −0.976664
\(400\) 0 0
\(401\) −36.7175 −1.83359 −0.916793 0.399363i \(-0.869231\pi\)
−0.916793 + 0.399363i \(0.869231\pi\)
\(402\) −38.5527 −1.92284
\(403\) 43.6472 2.17422
\(404\) −10.3387 −0.514371
\(405\) 0 0
\(406\) −64.7672 −3.21434
\(407\) −0.963000 −0.0477342
\(408\) 127.421 6.30826
\(409\) 21.2972 1.05308 0.526540 0.850150i \(-0.323489\pi\)
0.526540 + 0.850150i \(0.323489\pi\)
\(410\) 0 0
\(411\) 3.88886 0.191823
\(412\) 22.2080 1.09411
\(413\) −15.6361 −0.769401
\(414\) 24.7790 1.21782
\(415\) 0 0
\(416\) −24.2950 −1.19116
\(417\) −10.3251 −0.505621
\(418\) 8.50155 0.415825
\(419\) 32.6019 1.59271 0.796354 0.604831i \(-0.206759\pi\)
0.796354 + 0.604831i \(0.206759\pi\)
\(420\) 0 0
\(421\) −18.9139 −0.921809 −0.460904 0.887450i \(-0.652475\pi\)
−0.460904 + 0.887450i \(0.652475\pi\)
\(422\) 30.7202 1.49544
\(423\) −38.3841 −1.86630
\(424\) −10.1468 −0.492773
\(425\) 0 0
\(426\) −45.1674 −2.18837
\(427\) 7.63886 0.369670
\(428\) −8.69163 −0.420126
\(429\) −31.0402 −1.49864
\(430\) 0 0
\(431\) −8.91965 −0.429644 −0.214822 0.976653i \(-0.568917\pi\)
−0.214822 + 0.976653i \(0.568917\pi\)
\(432\) −68.2345 −3.28293
\(433\) −38.5494 −1.85257 −0.926283 0.376828i \(-0.877015\pi\)
−0.926283 + 0.376828i \(0.877015\pi\)
\(434\) 46.0184 2.20895
\(435\) 0 0
\(436\) −48.8987 −2.34182
\(437\) 3.35737 0.160605
\(438\) 71.9267 3.43679
\(439\) 0.871605 0.0415994 0.0207997 0.999784i \(-0.493379\pi\)
0.0207997 + 0.999784i \(0.493379\pi\)
\(440\) 0 0
\(441\) 5.42163 0.258173
\(442\) −117.627 −5.59496
\(443\) 21.9551 1.04312 0.521558 0.853216i \(-0.325351\pi\)
0.521558 + 0.853216i \(0.325351\pi\)
\(444\) 8.61804 0.408994
\(445\) 0 0
\(446\) −18.9559 −0.897590
\(447\) 43.9647 2.07946
\(448\) 8.57957 0.405346
\(449\) −34.0961 −1.60909 −0.804547 0.593889i \(-0.797592\pi\)
−0.804547 + 0.593889i \(0.797592\pi\)
\(450\) 0 0
\(451\) 13.0212 0.613146
\(452\) 23.2237 1.09235
\(453\) −3.53405 −0.166044
\(454\) −33.1558 −1.55608
\(455\) 0 0
\(456\) −40.9699 −1.91859
\(457\) 17.7967 0.832494 0.416247 0.909252i \(-0.363345\pi\)
0.416247 + 0.909252i \(0.363345\pi\)
\(458\) −6.16815 −0.288219
\(459\) −78.1457 −3.64753
\(460\) 0 0
\(461\) −10.2487 −0.477328 −0.238664 0.971102i \(-0.576709\pi\)
−0.238664 + 0.971102i \(0.576709\pi\)
\(462\) −32.7265 −1.52258
\(463\) 18.6577 0.867096 0.433548 0.901131i \(-0.357262\pi\)
0.433548 + 0.901131i \(0.357262\pi\)
\(464\) −56.2571 −2.61167
\(465\) 0 0
\(466\) −46.3423 −2.14676
\(467\) −5.79159 −0.268003 −0.134001 0.990981i \(-0.542783\pi\)
−0.134001 + 0.990981i \(0.542783\pi\)
\(468\) 190.994 8.82869
\(469\) 13.8256 0.638408
\(470\) 0 0
\(471\) −3.08474 −0.142137
\(472\) −32.8369 −1.51144
\(473\) −18.5757 −0.854109
\(474\) −100.564 −4.61908
\(475\) 0 0
\(476\) −84.8563 −3.88938
\(477\) 11.4059 0.522241
\(478\) 36.5742 1.67287
\(479\) −26.4049 −1.20647 −0.603236 0.797562i \(-0.706122\pi\)
−0.603236 + 0.797562i \(0.706122\pi\)
\(480\) 0 0
\(481\) −4.28412 −0.195339
\(482\) −20.1187 −0.916379
\(483\) −12.9241 −0.588068
\(484\) −37.9124 −1.72329
\(485\) 0 0
\(486\) 30.9907 1.40577
\(487\) −13.7452 −0.622856 −0.311428 0.950270i \(-0.600807\pi\)
−0.311428 + 0.950270i \(0.600807\pi\)
\(488\) 16.0421 0.726193
\(489\) 36.6374 1.65680
\(490\) 0 0
\(491\) 35.9494 1.62238 0.811188 0.584786i \(-0.198822\pi\)
0.811188 + 0.584786i \(0.198822\pi\)
\(492\) −116.529 −5.25353
\(493\) −64.4286 −2.90172
\(494\) 37.8210 1.70165
\(495\) 0 0
\(496\) 39.9718 1.79479
\(497\) 16.1977 0.726568
\(498\) 38.9931 1.74732
\(499\) −13.8967 −0.622102 −0.311051 0.950393i \(-0.600681\pi\)
−0.311051 + 0.950393i \(0.600681\pi\)
\(500\) 0 0
\(501\) −27.8240 −1.24309
\(502\) 6.86846 0.306554
\(503\) 2.34843 0.104711 0.0523557 0.998629i \(-0.483327\pi\)
0.0523557 + 0.998629i \(0.483327\pi\)
\(504\) 108.438 4.83019
\(505\) 0 0
\(506\) 5.63207 0.250376
\(507\) −97.8062 −4.34373
\(508\) 26.8927 1.19317
\(509\) 32.3485 1.43382 0.716911 0.697165i \(-0.245556\pi\)
0.716911 + 0.697165i \(0.245556\pi\)
\(510\) 0 0
\(511\) −25.7940 −1.14106
\(512\) 49.5615 2.19033
\(513\) 25.1264 1.10936
\(514\) −3.61775 −0.159572
\(515\) 0 0
\(516\) 166.236 7.31815
\(517\) −8.72439 −0.383698
\(518\) −4.51686 −0.198459
\(519\) 21.7054 0.952762
\(520\) 0 0
\(521\) −38.6437 −1.69301 −0.846505 0.532381i \(-0.821297\pi\)
−0.846505 + 0.532381i \(0.821297\pi\)
\(522\) 152.894 6.69197
\(523\) −35.5348 −1.55383 −0.776914 0.629607i \(-0.783216\pi\)
−0.776914 + 0.629607i \(0.783216\pi\)
\(524\) 53.4035 2.33294
\(525\) 0 0
\(526\) −7.76815 −0.338708
\(527\) 45.7778 1.99411
\(528\) −28.4265 −1.23710
\(529\) −20.7758 −0.903297
\(530\) 0 0
\(531\) 36.9115 1.60182
\(532\) 27.2841 1.18292
\(533\) 57.9278 2.50913
\(534\) −34.7131 −1.50218
\(535\) 0 0
\(536\) 29.0348 1.25411
\(537\) 58.2137 2.51211
\(538\) −69.6630 −3.00339
\(539\) 1.23229 0.0530786
\(540\) 0 0
\(541\) 17.7932 0.764990 0.382495 0.923958i \(-0.375065\pi\)
0.382495 + 0.923958i \(0.375065\pi\)
\(542\) −5.20244 −0.223464
\(543\) −23.2146 −0.996235
\(544\) −25.4810 −1.09249
\(545\) 0 0
\(546\) −145.591 −6.23073
\(547\) −17.9853 −0.768994 −0.384497 0.923126i \(-0.625625\pi\)
−0.384497 + 0.923126i \(0.625625\pi\)
\(548\) −5.43877 −0.232333
\(549\) −18.0328 −0.769620
\(550\) 0 0
\(551\) 20.7159 0.882528
\(552\) −27.1416 −1.15522
\(553\) 36.0640 1.53360
\(554\) 42.5106 1.80610
\(555\) 0 0
\(556\) 14.4401 0.612398
\(557\) 13.1986 0.559241 0.279620 0.960111i \(-0.409791\pi\)
0.279620 + 0.960111i \(0.409791\pi\)
\(558\) −108.634 −4.59884
\(559\) −82.6379 −3.49521
\(560\) 0 0
\(561\) −32.5555 −1.37449
\(562\) −23.3923 −0.986745
\(563\) 7.69263 0.324206 0.162103 0.986774i \(-0.448172\pi\)
0.162103 + 0.986774i \(0.448172\pi\)
\(564\) 78.0759 3.28759
\(565\) 0 0
\(566\) 55.9983 2.35378
\(567\) −41.3338 −1.73585
\(568\) 34.0164 1.42730
\(569\) −6.89152 −0.288907 −0.144454 0.989512i \(-0.546142\pi\)
−0.144454 + 0.989512i \(0.546142\pi\)
\(570\) 0 0
\(571\) 1.56325 0.0654198 0.0327099 0.999465i \(-0.489586\pi\)
0.0327099 + 0.999465i \(0.489586\pi\)
\(572\) 43.4113 1.81512
\(573\) −38.8084 −1.62124
\(574\) 61.0748 2.54921
\(575\) 0 0
\(576\) −20.2535 −0.843895
\(577\) 21.1132 0.878955 0.439477 0.898254i \(-0.355164\pi\)
0.439477 + 0.898254i \(0.355164\pi\)
\(578\) −80.5857 −3.35192
\(579\) 16.8635 0.700822
\(580\) 0 0
\(581\) −13.9836 −0.580135
\(582\) −99.3081 −4.11646
\(583\) 2.59247 0.107369
\(584\) −54.1693 −2.24154
\(585\) 0 0
\(586\) 64.6434 2.67039
\(587\) 39.6950 1.63839 0.819194 0.573517i \(-0.194421\pi\)
0.819194 + 0.573517i \(0.194421\pi\)
\(588\) −11.0280 −0.454786
\(589\) −14.7191 −0.606489
\(590\) 0 0
\(591\) −3.09870 −0.127463
\(592\) −3.92337 −0.161250
\(593\) 25.9310 1.06486 0.532429 0.846475i \(-0.321279\pi\)
0.532429 + 0.846475i \(0.321279\pi\)
\(594\) 42.1502 1.72944
\(595\) 0 0
\(596\) −61.4868 −2.51860
\(597\) −40.0022 −1.63718
\(598\) 25.0555 1.02460
\(599\) 12.6863 0.518346 0.259173 0.965831i \(-0.416550\pi\)
0.259173 + 0.965831i \(0.416550\pi\)
\(600\) 0 0
\(601\) −43.2012 −1.76221 −0.881107 0.472918i \(-0.843201\pi\)
−0.881107 + 0.472918i \(0.843201\pi\)
\(602\) −87.1273 −3.55104
\(603\) −32.6376 −1.32911
\(604\) 4.94255 0.201110
\(605\) 0 0
\(606\) −18.6045 −0.755755
\(607\) 36.2528 1.47146 0.735728 0.677278i \(-0.236840\pi\)
0.735728 + 0.677278i \(0.236840\pi\)
\(608\) 8.19297 0.332269
\(609\) −79.7455 −3.23145
\(610\) 0 0
\(611\) −38.8124 −1.57018
\(612\) 200.317 8.09735
\(613\) −21.3720 −0.863206 −0.431603 0.902064i \(-0.642052\pi\)
−0.431603 + 0.902064i \(0.642052\pi\)
\(614\) 37.7967 1.52535
\(615\) 0 0
\(616\) 24.6470 0.993055
\(617\) −38.6984 −1.55794 −0.778969 0.627063i \(-0.784257\pi\)
−0.778969 + 0.627063i \(0.784257\pi\)
\(618\) 39.9632 1.60756
\(619\) −32.5065 −1.30655 −0.653274 0.757122i \(-0.726605\pi\)
−0.653274 + 0.757122i \(0.726605\pi\)
\(620\) 0 0
\(621\) 16.6456 0.667966
\(622\) −71.6132 −2.87143
\(623\) 12.4487 0.498746
\(624\) −126.461 −5.06251
\(625\) 0 0
\(626\) 47.4902 1.89809
\(627\) 10.4677 0.418038
\(628\) 4.31417 0.172154
\(629\) −4.49325 −0.179158
\(630\) 0 0
\(631\) −10.6698 −0.424758 −0.212379 0.977187i \(-0.568121\pi\)
−0.212379 + 0.977187i \(0.568121\pi\)
\(632\) 75.7369 3.01265
\(633\) 37.8247 1.50340
\(634\) −14.7879 −0.587301
\(635\) 0 0
\(636\) −23.2004 −0.919956
\(637\) 5.48212 0.217210
\(638\) 34.7515 1.37582
\(639\) −38.2374 −1.51265
\(640\) 0 0
\(641\) 19.5872 0.773646 0.386823 0.922154i \(-0.373572\pi\)
0.386823 + 0.922154i \(0.373572\pi\)
\(642\) −15.6405 −0.617282
\(643\) −24.6413 −0.971760 −0.485880 0.874026i \(-0.661501\pi\)
−0.485880 + 0.874026i \(0.661501\pi\)
\(644\) 18.0750 0.712257
\(645\) 0 0
\(646\) 39.6673 1.56069
\(647\) −5.53370 −0.217552 −0.108776 0.994066i \(-0.534693\pi\)
−0.108776 + 0.994066i \(0.534693\pi\)
\(648\) −86.8038 −3.40998
\(649\) 8.38969 0.329324
\(650\) 0 0
\(651\) 56.6608 2.22071
\(652\) −51.2393 −2.00669
\(653\) 18.3451 0.717898 0.358949 0.933357i \(-0.383135\pi\)
0.358949 + 0.933357i \(0.383135\pi\)
\(654\) −87.9928 −3.44079
\(655\) 0 0
\(656\) 53.0499 2.07125
\(657\) 60.8911 2.37559
\(658\) −40.9209 −1.59526
\(659\) −25.6105 −0.997642 −0.498821 0.866705i \(-0.666233\pi\)
−0.498821 + 0.866705i \(0.666233\pi\)
\(660\) 0 0
\(661\) −2.11336 −0.0822003 −0.0411002 0.999155i \(-0.513086\pi\)
−0.0411002 + 0.999155i \(0.513086\pi\)
\(662\) −32.7718 −1.27371
\(663\) −144.830 −5.62474
\(664\) −29.3664 −1.13964
\(665\) 0 0
\(666\) 10.6628 0.413175
\(667\) 13.7238 0.531387
\(668\) 38.9133 1.50560
\(669\) −23.3398 −0.902367
\(670\) 0 0
\(671\) −4.09870 −0.158229
\(672\) −31.5387 −1.21663
\(673\) −6.51416 −0.251102 −0.125551 0.992087i \(-0.540070\pi\)
−0.125551 + 0.992087i \(0.540070\pi\)
\(674\) 20.6910 0.796987
\(675\) 0 0
\(676\) 136.787 5.26104
\(677\) −30.9997 −1.19141 −0.595707 0.803202i \(-0.703128\pi\)
−0.595707 + 0.803202i \(0.703128\pi\)
\(678\) 41.7909 1.60497
\(679\) 35.6135 1.36672
\(680\) 0 0
\(681\) −40.8236 −1.56436
\(682\) −24.6916 −0.945491
\(683\) 8.62247 0.329930 0.164965 0.986299i \(-0.447249\pi\)
0.164965 + 0.986299i \(0.447249\pi\)
\(684\) −64.4086 −2.46272
\(685\) 0 0
\(686\) −43.4879 −1.66038
\(687\) −7.59462 −0.289753
\(688\) −75.6793 −2.88525
\(689\) 11.5332 0.439379
\(690\) 0 0
\(691\) −12.1350 −0.461639 −0.230819 0.972997i \(-0.574141\pi\)
−0.230819 + 0.972997i \(0.574141\pi\)
\(692\) −30.3561 −1.15397
\(693\) −27.7054 −1.05244
\(694\) 37.6512 1.42922
\(695\) 0 0
\(696\) −167.471 −6.34798
\(697\) 60.7555 2.30128
\(698\) 44.9453 1.70120
\(699\) −57.0596 −2.15819
\(700\) 0 0
\(701\) 32.6236 1.23218 0.616089 0.787677i \(-0.288716\pi\)
0.616089 + 0.787677i \(0.288716\pi\)
\(702\) 187.514 7.07727
\(703\) 1.44473 0.0544889
\(704\) −4.60345 −0.173499
\(705\) 0 0
\(706\) 59.1213 2.22506
\(707\) 6.67186 0.250921
\(708\) −75.0806 −2.82170
\(709\) −7.57943 −0.284651 −0.142326 0.989820i \(-0.545458\pi\)
−0.142326 + 0.989820i \(0.545458\pi\)
\(710\) 0 0
\(711\) −85.1350 −3.19281
\(712\) 26.1431 0.979754
\(713\) −9.75103 −0.365179
\(714\) −152.698 −5.71459
\(715\) 0 0
\(716\) −81.4148 −3.04261
\(717\) 45.0325 1.68177
\(718\) −31.8685 −1.18932
\(719\) 32.1975 1.20076 0.600382 0.799714i \(-0.295015\pi\)
0.600382 + 0.799714i \(0.295015\pi\)
\(720\) 0 0
\(721\) −14.3314 −0.533731
\(722\) 35.0626 1.30490
\(723\) −24.7714 −0.921257
\(724\) 32.4668 1.20662
\(725\) 0 0
\(726\) −68.2231 −2.53200
\(727\) −50.8989 −1.88773 −0.943867 0.330324i \(-0.892842\pi\)
−0.943867 + 0.330324i \(0.892842\pi\)
\(728\) 109.647 4.06381
\(729\) −6.18162 −0.228949
\(730\) 0 0
\(731\) −86.6719 −3.20567
\(732\) 36.6799 1.35573
\(733\) 25.8335 0.954180 0.477090 0.878854i \(-0.341691\pi\)
0.477090 + 0.878854i \(0.341691\pi\)
\(734\) 44.3639 1.63750
\(735\) 0 0
\(736\) 5.42764 0.200066
\(737\) −7.41827 −0.273255
\(738\) −144.177 −5.30723
\(739\) −18.0128 −0.662613 −0.331307 0.943523i \(-0.607489\pi\)
−0.331307 + 0.943523i \(0.607489\pi\)
\(740\) 0 0
\(741\) 46.5677 1.71071
\(742\) 12.1597 0.446398
\(743\) −37.3102 −1.36878 −0.684388 0.729118i \(-0.739931\pi\)
−0.684388 + 0.729118i \(0.739931\pi\)
\(744\) 118.992 4.36244
\(745\) 0 0
\(746\) 11.6565 0.426773
\(747\) 33.0105 1.20779
\(748\) 45.5305 1.66476
\(749\) 5.60894 0.204946
\(750\) 0 0
\(751\) 21.0651 0.768676 0.384338 0.923192i \(-0.374430\pi\)
0.384338 + 0.923192i \(0.374430\pi\)
\(752\) −35.5441 −1.29616
\(753\) 8.45689 0.308186
\(754\) 154.600 5.63018
\(755\) 0 0
\(756\) 135.273 4.91982
\(757\) −10.8971 −0.396063 −0.198032 0.980196i \(-0.563455\pi\)
−0.198032 + 0.980196i \(0.563455\pi\)
\(758\) 50.5168 1.83485
\(759\) 6.93457 0.251709
\(760\) 0 0
\(761\) 24.0495 0.871793 0.435897 0.899997i \(-0.356431\pi\)
0.435897 + 0.899997i \(0.356431\pi\)
\(762\) 48.3931 1.75310
\(763\) 31.5556 1.14239
\(764\) 54.2755 1.96362
\(765\) 0 0
\(766\) 34.2705 1.23825
\(767\) 37.3234 1.34767
\(768\) 97.9598 3.53482
\(769\) 37.7607 1.36169 0.680843 0.732429i \(-0.261613\pi\)
0.680843 + 0.732429i \(0.261613\pi\)
\(770\) 0 0
\(771\) −4.45441 −0.160422
\(772\) −23.5844 −0.848821
\(773\) 4.04749 0.145578 0.0727891 0.997347i \(-0.476810\pi\)
0.0727891 + 0.997347i \(0.476810\pi\)
\(774\) 205.678 7.39296
\(775\) 0 0
\(776\) 74.7908 2.68483
\(777\) −5.56145 −0.199516
\(778\) −41.1074 −1.47377
\(779\) −19.5349 −0.699911
\(780\) 0 0
\(781\) −8.69105 −0.310990
\(782\) 26.2786 0.939721
\(783\) 102.708 3.67049
\(784\) 5.02049 0.179303
\(785\) 0 0
\(786\) 96.0993 3.42775
\(787\) −26.4661 −0.943416 −0.471708 0.881755i \(-0.656362\pi\)
−0.471708 + 0.881755i \(0.656362\pi\)
\(788\) 4.33369 0.154381
\(789\) −9.56464 −0.340510
\(790\) 0 0
\(791\) −14.9869 −0.532872
\(792\) −58.1832 −2.06745
\(793\) −18.2340 −0.647508
\(794\) 14.7148 0.522207
\(795\) 0 0
\(796\) 55.9451 1.98292
\(797\) 38.7017 1.37088 0.685442 0.728127i \(-0.259609\pi\)
0.685442 + 0.728127i \(0.259609\pi\)
\(798\) 49.0975 1.73803
\(799\) −40.7070 −1.44011
\(800\) 0 0
\(801\) −29.3871 −1.03834
\(802\) 92.4063 3.26298
\(803\) 13.8400 0.488404
\(804\) 66.3872 2.34130
\(805\) 0 0
\(806\) −109.846 −3.86916
\(807\) −85.7735 −3.01937
\(808\) 14.0114 0.492919
\(809\) 29.1778 1.02584 0.512919 0.858437i \(-0.328564\pi\)
0.512919 + 0.858437i \(0.328564\pi\)
\(810\) 0 0
\(811\) 55.7601 1.95800 0.979002 0.203852i \(-0.0653461\pi\)
0.979002 + 0.203852i \(0.0653461\pi\)
\(812\) 111.528 3.91387
\(813\) −6.40557 −0.224653
\(814\) 2.42357 0.0849459
\(815\) 0 0
\(816\) −132.635 −4.64314
\(817\) 27.8679 0.974973
\(818\) −53.5984 −1.87402
\(819\) −123.253 −4.30682
\(820\) 0 0
\(821\) 12.7088 0.443541 0.221771 0.975099i \(-0.428816\pi\)
0.221771 + 0.975099i \(0.428816\pi\)
\(822\) −9.78703 −0.341362
\(823\) 18.3680 0.640268 0.320134 0.947372i \(-0.396272\pi\)
0.320134 + 0.947372i \(0.396272\pi\)
\(824\) −30.0970 −1.04848
\(825\) 0 0
\(826\) 39.3510 1.36920
\(827\) 54.8658 1.90787 0.953936 0.300009i \(-0.0969898\pi\)
0.953936 + 0.300009i \(0.0969898\pi\)
\(828\) −42.6691 −1.48285
\(829\) 9.41303 0.326928 0.163464 0.986549i \(-0.447733\pi\)
0.163464 + 0.986549i \(0.447733\pi\)
\(830\) 0 0
\(831\) 52.3418 1.81572
\(832\) −20.4795 −0.709998
\(833\) 5.74973 0.199216
\(834\) 25.9849 0.899783
\(835\) 0 0
\(836\) −14.6395 −0.506319
\(837\) −72.9762 −2.52243
\(838\) −82.0487 −2.83432
\(839\) −15.8786 −0.548191 −0.274095 0.961702i \(-0.588378\pi\)
−0.274095 + 0.961702i \(0.588378\pi\)
\(840\) 0 0
\(841\) 55.6796 1.91999
\(842\) 47.6004 1.64042
\(843\) −28.8021 −0.991997
\(844\) −52.8997 −1.82088
\(845\) 0 0
\(846\) 96.6005 3.32120
\(847\) 24.4659 0.840658
\(848\) 10.5620 0.362701
\(849\) 68.9487 2.36631
\(850\) 0 0
\(851\) 0.957097 0.0328089
\(852\) 77.7776 2.66462
\(853\) 30.0839 1.03005 0.515027 0.857174i \(-0.327782\pi\)
0.515027 + 0.857174i \(0.327782\pi\)
\(854\) −19.2246 −0.657851
\(855\) 0 0
\(856\) 11.7792 0.402604
\(857\) −42.8903 −1.46511 −0.732553 0.680710i \(-0.761671\pi\)
−0.732553 + 0.680710i \(0.761671\pi\)
\(858\) 78.1184 2.66692
\(859\) 18.2769 0.623601 0.311801 0.950148i \(-0.399068\pi\)
0.311801 + 0.950148i \(0.399068\pi\)
\(860\) 0 0
\(861\) 75.1992 2.56278
\(862\) 22.4479 0.764579
\(863\) 16.2652 0.553673 0.276836 0.960917i \(-0.410714\pi\)
0.276836 + 0.960917i \(0.410714\pi\)
\(864\) 40.6202 1.38193
\(865\) 0 0
\(866\) 97.0166 3.29676
\(867\) −99.2222 −3.36976
\(868\) −79.2430 −2.68968
\(869\) −19.3505 −0.656420
\(870\) 0 0
\(871\) −33.0018 −1.11822
\(872\) 66.2690 2.24415
\(873\) −84.0714 −2.84539
\(874\) −8.44944 −0.285806
\(875\) 0 0
\(876\) −123.857 −4.18473
\(877\) −25.2468 −0.852524 −0.426262 0.904600i \(-0.640170\pi\)
−0.426262 + 0.904600i \(0.640170\pi\)
\(878\) −2.19355 −0.0740288
\(879\) 79.5930 2.68461
\(880\) 0 0
\(881\) −7.19132 −0.242282 −0.121141 0.992635i \(-0.538655\pi\)
−0.121141 + 0.992635i \(0.538655\pi\)
\(882\) −13.6445 −0.459435
\(883\) 28.5295 0.960095 0.480048 0.877242i \(-0.340619\pi\)
0.480048 + 0.877242i \(0.340619\pi\)
\(884\) 202.552 6.81257
\(885\) 0 0
\(886\) −55.2539 −1.85629
\(887\) −34.0551 −1.14346 −0.571730 0.820442i \(-0.693727\pi\)
−0.571730 + 0.820442i \(0.693727\pi\)
\(888\) −11.6794 −0.391936
\(889\) −17.3545 −0.582053
\(890\) 0 0
\(891\) 22.1780 0.742992
\(892\) 32.6418 1.09293
\(893\) 13.0886 0.437995
\(894\) −110.645 −3.70053
\(895\) 0 0
\(896\) −41.9481 −1.40139
\(897\) 30.8499 1.03005
\(898\) 85.8090 2.86348
\(899\) −60.1666 −2.00667
\(900\) 0 0
\(901\) 12.0962 0.402982
\(902\) −32.7703 −1.09113
\(903\) −107.277 −3.56995
\(904\) −31.4735 −1.04679
\(905\) 0 0
\(906\) 8.89409 0.295486
\(907\) 15.7373 0.522547 0.261274 0.965265i \(-0.415858\pi\)
0.261274 + 0.965265i \(0.415858\pi\)
\(908\) 57.0938 1.89473
\(909\) −15.7500 −0.522395
\(910\) 0 0
\(911\) −29.2026 −0.967525 −0.483763 0.875199i \(-0.660730\pi\)
−0.483763 + 0.875199i \(0.660730\pi\)
\(912\) 42.6464 1.41216
\(913\) 7.50301 0.248313
\(914\) −44.7886 −1.48148
\(915\) 0 0
\(916\) 10.6215 0.350943
\(917\) −34.4627 −1.13806
\(918\) 196.668 6.49101
\(919\) −33.6084 −1.10864 −0.554320 0.832304i \(-0.687022\pi\)
−0.554320 + 0.832304i \(0.687022\pi\)
\(920\) 0 0
\(921\) 46.5377 1.53347
\(922\) 25.7926 0.849435
\(923\) −38.6641 −1.27264
\(924\) 56.3546 1.85393
\(925\) 0 0
\(926\) −46.9554 −1.54305
\(927\) 33.8317 1.11118
\(928\) 33.4901 1.09937
\(929\) −1.72906 −0.0567286 −0.0283643 0.999598i \(-0.509030\pi\)
−0.0283643 + 0.999598i \(0.509030\pi\)
\(930\) 0 0
\(931\) −1.84873 −0.0605896
\(932\) 79.8007 2.61396
\(933\) −88.1747 −2.88671
\(934\) 14.5756 0.476928
\(935\) 0 0
\(936\) −258.841 −8.46048
\(937\) −46.5505 −1.52074 −0.760369 0.649491i \(-0.774982\pi\)
−0.760369 + 0.649491i \(0.774982\pi\)
\(938\) −34.7947 −1.13609
\(939\) 58.4729 1.90819
\(940\) 0 0
\(941\) −26.9576 −0.878794 −0.439397 0.898293i \(-0.644808\pi\)
−0.439397 + 0.898293i \(0.644808\pi\)
\(942\) 7.76331 0.252942
\(943\) −12.9414 −0.421430
\(944\) 34.1805 1.11248
\(945\) 0 0
\(946\) 46.7490 1.51994
\(947\) 11.6919 0.379936 0.189968 0.981790i \(-0.439162\pi\)
0.189968 + 0.981790i \(0.439162\pi\)
\(948\) 173.170 5.62431
\(949\) 61.5705 1.99866
\(950\) 0 0
\(951\) −18.2078 −0.590427
\(952\) 115.000 3.72717
\(953\) −29.7229 −0.962821 −0.481410 0.876495i \(-0.659875\pi\)
−0.481410 + 0.876495i \(0.659875\pi\)
\(954\) −28.7051 −0.929361
\(955\) 0 0
\(956\) −62.9802 −2.03693
\(957\) 42.7882 1.38315
\(958\) 66.4529 2.14699
\(959\) 3.50978 0.113337
\(960\) 0 0
\(961\) 11.7496 0.379018
\(962\) 10.7818 0.347618
\(963\) −13.2408 −0.426680
\(964\) 34.6440 1.11581
\(965\) 0 0
\(966\) 32.5259 1.04650
\(967\) 5.42656 0.174506 0.0872532 0.996186i \(-0.472191\pi\)
0.0872532 + 0.996186i \(0.472191\pi\)
\(968\) 51.3801 1.65142
\(969\) 48.8409 1.56900
\(970\) 0 0
\(971\) 2.85780 0.0917112 0.0458556 0.998948i \(-0.485399\pi\)
0.0458556 + 0.998948i \(0.485399\pi\)
\(972\) −53.3655 −1.71170
\(973\) −9.31860 −0.298740
\(974\) 34.5924 1.10841
\(975\) 0 0
\(976\) −16.6986 −0.534508
\(977\) −15.5772 −0.498358 −0.249179 0.968457i \(-0.580161\pi\)
−0.249179 + 0.968457i \(0.580161\pi\)
\(978\) −92.2048 −2.94838
\(979\) −6.67946 −0.213476
\(980\) 0 0
\(981\) −74.4922 −2.37835
\(982\) −90.4733 −2.88712
\(983\) 40.2118 1.28256 0.641278 0.767308i \(-0.278404\pi\)
0.641278 + 0.767308i \(0.278404\pi\)
\(984\) 157.924 5.03442
\(985\) 0 0
\(986\) 162.146 5.16379
\(987\) −50.3844 −1.60375
\(988\) −65.1273 −2.07197
\(989\) 18.4618 0.587050
\(990\) 0 0
\(991\) −38.0438 −1.20850 −0.604250 0.796795i \(-0.706527\pi\)
−0.604250 + 0.796795i \(0.706527\pi\)
\(992\) −23.7954 −0.755504
\(993\) −40.3507 −1.28049
\(994\) −40.7646 −1.29297
\(995\) 0 0
\(996\) −67.1456 −2.12759
\(997\) −6.39660 −0.202582 −0.101291 0.994857i \(-0.532297\pi\)
−0.101291 + 0.994857i \(0.532297\pi\)
\(998\) 34.9736 1.10707
\(999\) 7.16287 0.226623
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.r.1.5 49
5.2 odd 4 985.2.b.a.789.8 98
5.3 odd 4 985.2.b.a.789.91 yes 98
5.4 even 2 4925.2.a.s.1.45 49
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.b.a.789.8 98 5.2 odd 4
985.2.b.a.789.91 yes 98 5.3 odd 4
4925.2.a.r.1.5 49 1.1 even 1 trivial
4925.2.a.s.1.45 49 5.4 even 2