Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [51,7,Mod(35,51)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(51, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 7, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("51.35");
S:= CuspForms(chi, 7);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 51 = 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 51.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.7327582646\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
35.1 | − | 14.7209i | −19.0657 | + | 19.1180i | −152.704 | 46.7702i | 281.434 | + | 280.664i | −79.2824 | 1305.80i | −1.99511 | − | 728.997i | 688.499 | |||||||||||
35.2 | − | 14.2771i | −8.35589 | − | 25.6745i | −139.834 | 127.328i | −366.556 | + | 119.298i | 222.133 | 1082.69i | −589.358 | + | 429.066i | 1817.87 | |||||||||||
35.3 | − | 13.9722i | 23.6370 | + | 13.0496i | −131.222 | 76.5124i | 182.331 | − | 330.261i | −548.925 | 939.239i | 388.417 | + | 616.906i | 1069.05 | |||||||||||
35.4 | − | 13.8546i | 20.4999 | − | 17.5713i | −127.950 | − | 188.083i | −243.444 | − | 284.019i | 207.865 | 886.004i | 111.495 | − | 720.423i | −2605.82 | ||||||||||
35.5 | − | 12.5103i | 10.7847 | + | 24.7526i | −92.5084 | − | 102.267i | 309.663 | − | 134.920i | 385.286 | 356.650i | −496.380 | + | 533.899i | −1279.40 | ||||||||||
35.6 | − | 11.7246i | −22.8808 | − | 14.3342i | −73.4666 | − | 127.663i | −168.063 | + | 268.269i | −425.386 | 110.992i | 318.063 | + | 655.955i | −1496.80 | ||||||||||
35.7 | − | 9.79650i | 26.5144 | − | 5.09762i | −31.9714 | 157.131i | −49.9388 | − | 259.748i | 301.822 | − | 313.768i | 677.029 | − | 270.321i | 1539.33 | ||||||||||
35.8 | − | 8.98275i | −26.9994 | − | 0.177085i | −16.6898 | 127.230i | −1.59071 | + | 242.529i | 363.441 | − | 424.976i | 728.937 | + | 9.56240i | 1142.88 | ||||||||||
35.9 | − | 8.88211i | −19.4565 | + | 18.7201i | −14.8920 | − | 143.656i | 166.274 | + | 172.815i | 49.5075 | − | 436.183i | 28.1129 | − | 728.458i | −1275.97 | |||||||||
35.10 | − | 7.50579i | 8.40901 | − | 25.6571i | 7.66314 | 24.7073i | −192.577 | − | 63.1162i | −318.597 | − | 537.888i | −587.577 | − | 431.502i | 185.448 | ||||||||||
35.11 | − | 6.35177i | −6.87539 | + | 26.1099i | 23.6551 | 214.273i | 165.844 | + | 43.6709i | −487.138 | − | 556.764i | −634.458 | − | 359.032i | 1361.01 | ||||||||||
35.12 | − | 6.15394i | 8.83860 | + | 25.5123i | 26.1290 | 10.7972i | 157.001 | − | 54.3922i | 137.101 | − | 554.649i | −572.758 | + | 450.987i | 66.4455 | ||||||||||
35.13 | − | 4.81455i | 26.1801 | + | 6.60322i | 40.8201 | − | 186.576i | 31.7916 | − | 126.045i | −455.638 | − | 504.662i | 641.795 | + | 345.746i | −898.281 | |||||||||
35.14 | − | 4.48185i | −14.6696 | − | 22.6672i | 43.9130 | − | 175.097i | −101.591 | + | 65.7468i | 666.818 | − | 483.650i | −298.607 | + | 665.037i | −784.758 | |||||||||
35.15 | − | 0.853586i | −12.6020 | − | 23.8786i | 63.2714 | 153.242i | −20.3825 | + | 10.7569i | −31.3758 | − | 108.637i | −411.378 | + | 601.838i | 130.806 | ||||||||||
35.16 | − | 0.461474i | 22.0416 | − | 15.5939i | 63.7870 | − | 70.0200i | −7.19617 | − | 10.1716i | 296.369 | − | 58.9705i | 242.663 | − | 687.427i | −32.3124 | |||||||||
35.17 | 0.461474i | 22.0416 | + | 15.5939i | 63.7870 | 70.0200i | −7.19617 | + | 10.1716i | 296.369 | 58.9705i | 242.663 | + | 687.427i | −32.3124 | ||||||||||||
35.18 | 0.853586i | −12.6020 | + | 23.8786i | 63.2714 | − | 153.242i | −20.3825 | − | 10.7569i | −31.3758 | 108.637i | −411.378 | − | 601.838i | 130.806 | |||||||||||
35.19 | 4.48185i | −14.6696 | + | 22.6672i | 43.9130 | 175.097i | −101.591 | − | 65.7468i | 666.818 | 483.650i | −298.607 | − | 665.037i | −784.758 | ||||||||||||
35.20 | 4.81455i | 26.1801 | − | 6.60322i | 40.8201 | 186.576i | 31.7916 | + | 126.045i | −455.638 | 504.662i | 641.795 | − | 345.746i | −898.281 | ||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 51.7.b.a | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 51.7.b.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
51.7.b.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
51.7.b.a | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(51, [\chi])\).