Properties

Label 5202.2.a.m.1.1
Level $5202$
Weight $2$
Character 5202.1
Self dual yes
Analytic conductor $41.538$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5202,2,Mod(1,5202)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5202, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5202.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5202.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5381791315\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1734)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 5202.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{10} +3.00000 q^{11} +6.00000 q^{13} +4.00000 q^{14} +1.00000 q^{16} +4.00000 q^{19} +1.00000 q^{20} +3.00000 q^{22} -6.00000 q^{23} -4.00000 q^{25} +6.00000 q^{26} +4.00000 q^{28} +7.00000 q^{29} -3.00000 q^{31} +1.00000 q^{32} +4.00000 q^{35} +8.00000 q^{37} +4.00000 q^{38} +1.00000 q^{40} -2.00000 q^{41} -4.00000 q^{43} +3.00000 q^{44} -6.00000 q^{46} +2.00000 q^{47} +9.00000 q^{49} -4.00000 q^{50} +6.00000 q^{52} -13.0000 q^{53} +3.00000 q^{55} +4.00000 q^{56} +7.00000 q^{58} -9.00000 q^{59} -10.0000 q^{61} -3.00000 q^{62} +1.00000 q^{64} +6.00000 q^{65} -6.00000 q^{67} +4.00000 q^{70} +12.0000 q^{71} -7.00000 q^{73} +8.00000 q^{74} +4.00000 q^{76} +12.0000 q^{77} -5.00000 q^{79} +1.00000 q^{80} -2.00000 q^{82} -12.0000 q^{83} -4.00000 q^{86} +3.00000 q^{88} -4.00000 q^{89} +24.0000 q^{91} -6.00000 q^{92} +2.00000 q^{94} +4.00000 q^{95} +3.00000 q^{97} +9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 4.00000 1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 3.00000 0.639602
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) 4.00000 0.755929
\(29\) 7.00000 1.29987 0.649934 0.759991i \(-0.274797\pi\)
0.649934 + 0.759991i \(0.274797\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) 6.00000 0.832050
\(53\) −13.0000 −1.78569 −0.892844 0.450367i \(-0.851293\pi\)
−0.892844 + 0.450367i \(0.851293\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 4.00000 0.534522
\(57\) 0 0
\(58\) 7.00000 0.919145
\(59\) −9.00000 −1.17170 −0.585850 0.810419i \(-0.699239\pi\)
−0.585850 + 0.810419i \(0.699239\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) −3.00000 −0.381000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 4.00000 0.478091
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 12.0000 1.36753
\(78\) 0 0
\(79\) −5.00000 −0.562544 −0.281272 0.959628i \(-0.590756\pi\)
−0.281272 + 0.959628i \(0.590756\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 3.00000 0.319801
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) 24.0000 2.51588
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) 2.00000 0.206284
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 3.00000 0.304604 0.152302 0.988334i \(-0.451331\pi\)
0.152302 + 0.988334i \(0.451331\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) −4.00000 −0.400000
\(101\) −17.0000 −1.69156 −0.845782 0.533529i \(-0.820865\pi\)
−0.845782 + 0.533529i \(0.820865\pi\)
\(102\) 0 0
\(103\) 13.0000 1.28093 0.640464 0.767988i \(-0.278742\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) −13.0000 −1.26267
\(107\) −15.0000 −1.45010 −0.725052 0.688694i \(-0.758184\pi\)
−0.725052 + 0.688694i \(0.758184\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 3.00000 0.286039
\(111\) 0 0
\(112\) 4.00000 0.377964
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 7.00000 0.649934
\(117\) 0 0
\(118\) −9.00000 −0.828517
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) −3.00000 −0.269408
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 6.00000 0.526235
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 0 0
\(133\) 16.0000 1.38738
\(134\) −6.00000 −0.518321
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) 18.0000 1.50524
\(144\) 0 0
\(145\) 7.00000 0.581318
\(146\) −7.00000 −0.579324
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 0 0
\(151\) −9.00000 −0.732410 −0.366205 0.930534i \(-0.619343\pi\)
−0.366205 + 0.930534i \(0.619343\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) 12.0000 0.966988
\(155\) −3.00000 −0.240966
\(156\) 0 0
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) −5.00000 −0.397779
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 6.00000 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(164\) −2.00000 −0.156174
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 13.0000 0.988372 0.494186 0.869356i \(-0.335466\pi\)
0.494186 + 0.869356i \(0.335466\pi\)
\(174\) 0 0
\(175\) −16.0000 −1.20949
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) −4.00000 −0.299813
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 24.0000 1.77900
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) 0 0
\(188\) 2.00000 0.145865
\(189\) 0 0
\(190\) 4.00000 0.290191
\(191\) −14.0000 −1.01300 −0.506502 0.862239i \(-0.669062\pi\)
−0.506502 + 0.862239i \(0.669062\pi\)
\(192\) 0 0
\(193\) 9.00000 0.647834 0.323917 0.946085i \(-0.395000\pi\)
0.323917 + 0.946085i \(0.395000\pi\)
\(194\) 3.00000 0.215387
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) 0 0
\(199\) −1.00000 −0.0708881 −0.0354441 0.999372i \(-0.511285\pi\)
−0.0354441 + 0.999372i \(0.511285\pi\)
\(200\) −4.00000 −0.282843
\(201\) 0 0
\(202\) −17.0000 −1.19612
\(203\) 28.0000 1.96521
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 13.0000 0.905753
\(207\) 0 0
\(208\) 6.00000 0.416025
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) −13.0000 −0.892844
\(213\) 0 0
\(214\) −15.0000 −1.02538
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) −12.0000 −0.814613
\(218\) 10.0000 0.677285
\(219\) 0 0
\(220\) 3.00000 0.202260
\(221\) 0 0
\(222\) 0 0
\(223\) 17.0000 1.13840 0.569202 0.822198i \(-0.307252\pi\)
0.569202 + 0.822198i \(0.307252\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) 10.0000 0.665190
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) −6.00000 −0.395628
\(231\) 0 0
\(232\) 7.00000 0.459573
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) 0 0
\(235\) 2.00000 0.130466
\(236\) −9.00000 −0.585850
\(237\) 0 0
\(238\) 0 0
\(239\) 26.0000 1.68180 0.840900 0.541190i \(-0.182026\pi\)
0.840900 + 0.541190i \(0.182026\pi\)
\(240\) 0 0
\(241\) 15.0000 0.966235 0.483117 0.875556i \(-0.339504\pi\)
0.483117 + 0.875556i \(0.339504\pi\)
\(242\) −2.00000 −0.128565
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 9.00000 0.574989
\(246\) 0 0
\(247\) 24.0000 1.52708
\(248\) −3.00000 −0.190500
\(249\) 0 0
\(250\) −9.00000 −0.569210
\(251\) 15.0000 0.946792 0.473396 0.880850i \(-0.343028\pi\)
0.473396 + 0.880850i \(0.343028\pi\)
\(252\) 0 0
\(253\) −18.0000 −1.13165
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 32.0000 1.98838
\(260\) 6.00000 0.372104
\(261\) 0 0
\(262\) −20.0000 −1.23560
\(263\) 18.0000 1.10993 0.554964 0.831875i \(-0.312732\pi\)
0.554964 + 0.831875i \(0.312732\pi\)
\(264\) 0 0
\(265\) −13.0000 −0.798584
\(266\) 16.0000 0.981023
\(267\) 0 0
\(268\) −6.00000 −0.366508
\(269\) −9.00000 −0.548740 −0.274370 0.961624i \(-0.588469\pi\)
−0.274370 + 0.961624i \(0.588469\pi\)
\(270\) 0 0
\(271\) 5.00000 0.303728 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −12.0000 −0.724947
\(275\) −12.0000 −0.723627
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 8.00000 0.479808
\(279\) 0 0
\(280\) 4.00000 0.239046
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 18.0000 1.06436
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) 0 0
\(290\) 7.00000 0.411054
\(291\) 0 0
\(292\) −7.00000 −0.409644
\(293\) 19.0000 1.10999 0.554996 0.831853i \(-0.312720\pi\)
0.554996 + 0.831853i \(0.312720\pi\)
\(294\) 0 0
\(295\) −9.00000 −0.524000
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) −15.0000 −0.868927
\(299\) −36.0000 −2.08193
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) −9.00000 −0.517892
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) −10.0000 −0.572598
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 12.0000 0.683763
\(309\) 0 0
\(310\) −3.00000 −0.170389
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 12.0000 0.677199
\(315\) 0 0
\(316\) −5.00000 −0.281272
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) 21.0000 1.17577
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −24.0000 −1.33747
\(323\) 0 0
\(324\) 0 0
\(325\) −24.0000 −1.33128
\(326\) 6.00000 0.332309
\(327\) 0 0
\(328\) −2.00000 −0.110432
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) −22.0000 −1.20923 −0.604615 0.796518i \(-0.706673\pi\)
−0.604615 + 0.796518i \(0.706673\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 8.00000 0.437741
\(335\) −6.00000 −0.327815
\(336\) 0 0
\(337\) 30.0000 1.63420 0.817102 0.576493i \(-0.195579\pi\)
0.817102 + 0.576493i \(0.195579\pi\)
\(338\) 23.0000 1.25104
\(339\) 0 0
\(340\) 0 0
\(341\) −9.00000 −0.487377
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 13.0000 0.698884
\(347\) −17.0000 −0.912608 −0.456304 0.889824i \(-0.650827\pi\)
−0.456304 + 0.889824i \(0.650827\pi\)
\(348\) 0 0
\(349\) 12.0000 0.642345 0.321173 0.947021i \(-0.395923\pi\)
0.321173 + 0.947021i \(0.395923\pi\)
\(350\) −16.0000 −0.855236
\(351\) 0 0
\(352\) 3.00000 0.159901
\(353\) 4.00000 0.212899 0.106449 0.994318i \(-0.466052\pi\)
0.106449 + 0.994318i \(0.466052\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) −4.00000 −0.212000
\(357\) 0 0
\(358\) 0 0
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) 24.0000 1.25794
\(365\) −7.00000 −0.366397
\(366\) 0 0
\(367\) −17.0000 −0.887393 −0.443696 0.896177i \(-0.646333\pi\)
−0.443696 + 0.896177i \(0.646333\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) 8.00000 0.415900
\(371\) −52.0000 −2.69971
\(372\) 0 0
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 2.00000 0.103142
\(377\) 42.0000 2.16311
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 4.00000 0.205196
\(381\) 0 0
\(382\) −14.0000 −0.716302
\(383\) 2.00000 0.102195 0.0510976 0.998694i \(-0.483728\pi\)
0.0510976 + 0.998694i \(0.483728\pi\)
\(384\) 0 0
\(385\) 12.0000 0.611577
\(386\) 9.00000 0.458088
\(387\) 0 0
\(388\) 3.00000 0.152302
\(389\) 5.00000 0.253510 0.126755 0.991934i \(-0.459544\pi\)
0.126755 + 0.991934i \(0.459544\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) 10.0000 0.503793
\(395\) −5.00000 −0.251577
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) −1.00000 −0.0501255
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) 0 0
\(403\) −18.0000 −0.896644
\(404\) −17.0000 −0.845782
\(405\) 0 0
\(406\) 28.0000 1.38962
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 19.0000 0.939490 0.469745 0.882802i \(-0.344346\pi\)
0.469745 + 0.882802i \(0.344346\pi\)
\(410\) −2.00000 −0.0987730
\(411\) 0 0
\(412\) 13.0000 0.640464
\(413\) −36.0000 −1.77144
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 6.00000 0.294174
\(417\) 0 0
\(418\) 12.0000 0.586939
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 8.00000 0.389434
\(423\) 0 0
\(424\) −13.0000 −0.631336
\(425\) 0 0
\(426\) 0 0
\(427\) −40.0000 −1.93574
\(428\) −15.0000 −0.725052
\(429\) 0 0
\(430\) −4.00000 −0.192897
\(431\) 10.0000 0.481683 0.240842 0.970564i \(-0.422577\pi\)
0.240842 + 0.970564i \(0.422577\pi\)
\(432\) 0 0
\(433\) −3.00000 −0.144171 −0.0720854 0.997398i \(-0.522965\pi\)
−0.0720854 + 0.997398i \(0.522965\pi\)
\(434\) −12.0000 −0.576018
\(435\) 0 0
\(436\) 10.0000 0.478913
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 3.00000 0.143019
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) −4.00000 −0.189618
\(446\) 17.0000 0.804973
\(447\) 0 0
\(448\) 4.00000 0.188982
\(449\) −4.00000 −0.188772 −0.0943858 0.995536i \(-0.530089\pi\)
−0.0943858 + 0.995536i \(0.530089\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 10.0000 0.470360
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) 24.0000 1.12514
\(456\) 0 0
\(457\) −17.0000 −0.795226 −0.397613 0.917553i \(-0.630161\pi\)
−0.397613 + 0.917553i \(0.630161\pi\)
\(458\) −14.0000 −0.654177
\(459\) 0 0
\(460\) −6.00000 −0.279751
\(461\) −35.0000 −1.63011 −0.815056 0.579382i \(-0.803294\pi\)
−0.815056 + 0.579382i \(0.803294\pi\)
\(462\) 0 0
\(463\) 5.00000 0.232370 0.116185 0.993228i \(-0.462933\pi\)
0.116185 + 0.993228i \(0.462933\pi\)
\(464\) 7.00000 0.324967
\(465\) 0 0
\(466\) −24.0000 −1.11178
\(467\) 3.00000 0.138823 0.0694117 0.997588i \(-0.477888\pi\)
0.0694117 + 0.997588i \(0.477888\pi\)
\(468\) 0 0
\(469\) −24.0000 −1.10822
\(470\) 2.00000 0.0922531
\(471\) 0 0
\(472\) −9.00000 −0.414259
\(473\) −12.0000 −0.551761
\(474\) 0 0
\(475\) −16.0000 −0.734130
\(476\) 0 0
\(477\) 0 0
\(478\) 26.0000 1.18921
\(479\) 14.0000 0.639676 0.319838 0.947472i \(-0.396371\pi\)
0.319838 + 0.947472i \(0.396371\pi\)
\(480\) 0 0
\(481\) 48.0000 2.18861
\(482\) 15.0000 0.683231
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 3.00000 0.136223
\(486\) 0 0
\(487\) 25.0000 1.13286 0.566429 0.824110i \(-0.308325\pi\)
0.566429 + 0.824110i \(0.308325\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) 9.00000 0.406579
\(491\) 23.0000 1.03798 0.518988 0.854782i \(-0.326309\pi\)
0.518988 + 0.854782i \(0.326309\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 24.0000 1.07981
\(495\) 0 0
\(496\) −3.00000 −0.134704
\(497\) 48.0000 2.15309
\(498\) 0 0
\(499\) 8.00000 0.358129 0.179065 0.983837i \(-0.442693\pi\)
0.179065 + 0.983837i \(0.442693\pi\)
\(500\) −9.00000 −0.402492
\(501\) 0 0
\(502\) 15.0000 0.669483
\(503\) 2.00000 0.0891756 0.0445878 0.999005i \(-0.485803\pi\)
0.0445878 + 0.999005i \(0.485803\pi\)
\(504\) 0 0
\(505\) −17.0000 −0.756490
\(506\) −18.0000 −0.800198
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) 31.0000 1.37405 0.687025 0.726633i \(-0.258916\pi\)
0.687025 + 0.726633i \(0.258916\pi\)
\(510\) 0 0
\(511\) −28.0000 −1.23865
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0 0
\(515\) 13.0000 0.572848
\(516\) 0 0
\(517\) 6.00000 0.263880
\(518\) 32.0000 1.40600
\(519\) 0 0
\(520\) 6.00000 0.263117
\(521\) −20.0000 −0.876216 −0.438108 0.898922i \(-0.644351\pi\)
−0.438108 + 0.898922i \(0.644351\pi\)
\(522\) 0 0
\(523\) −26.0000 −1.13690 −0.568450 0.822718i \(-0.692457\pi\)
−0.568450 + 0.822718i \(0.692457\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) 18.0000 0.784837
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −13.0000 −0.564684
\(531\) 0 0
\(532\) 16.0000 0.693688
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) −15.0000 −0.648507
\(536\) −6.00000 −0.259161
\(537\) 0 0
\(538\) −9.00000 −0.388018
\(539\) 27.0000 1.16297
\(540\) 0 0
\(541\) 18.0000 0.773880 0.386940 0.922105i \(-0.373532\pi\)
0.386940 + 0.922105i \(0.373532\pi\)
\(542\) 5.00000 0.214768
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) −26.0000 −1.11168 −0.555840 0.831289i \(-0.687603\pi\)
−0.555840 + 0.831289i \(0.687603\pi\)
\(548\) −12.0000 −0.512615
\(549\) 0 0
\(550\) −12.0000 −0.511682
\(551\) 28.0000 1.19284
\(552\) 0 0
\(553\) −20.0000 −0.850487
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) 8.00000 0.339276
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 0 0
\(563\) −23.0000 −0.969334 −0.484667 0.874699i \(-0.661059\pi\)
−0.484667 + 0.874699i \(0.661059\pi\)
\(564\) 0 0
\(565\) 10.0000 0.420703
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 12.0000 0.503509
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 18.0000 0.752618
\(573\) 0 0
\(574\) −8.00000 −0.333914
\(575\) 24.0000 1.00087
\(576\) 0 0
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 7.00000 0.290659
\(581\) −48.0000 −1.99138
\(582\) 0 0
\(583\) −39.0000 −1.61521
\(584\) −7.00000 −0.289662
\(585\) 0 0
\(586\) 19.0000 0.784883
\(587\) 3.00000 0.123823 0.0619116 0.998082i \(-0.480280\pi\)
0.0619116 + 0.998082i \(0.480280\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) −9.00000 −0.370524
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −15.0000 −0.614424
\(597\) 0 0
\(598\) −36.0000 −1.47215
\(599\) 4.00000 0.163436 0.0817178 0.996656i \(-0.473959\pi\)
0.0817178 + 0.996656i \(0.473959\pi\)
\(600\) 0 0
\(601\) −5.00000 −0.203954 −0.101977 0.994787i \(-0.532517\pi\)
−0.101977 + 0.994787i \(0.532517\pi\)
\(602\) −16.0000 −0.652111
\(603\) 0 0
\(604\) −9.00000 −0.366205
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) 13.0000 0.527654 0.263827 0.964570i \(-0.415015\pi\)
0.263827 + 0.964570i \(0.415015\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) −10.0000 −0.404888
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) 24.0000 0.969351 0.484675 0.874694i \(-0.338938\pi\)
0.484675 + 0.874694i \(0.338938\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) 12.0000 0.483102 0.241551 0.970388i \(-0.422344\pi\)
0.241551 + 0.970388i \(0.422344\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) −3.00000 −0.120483
\(621\) 0 0
\(622\) 0 0
\(623\) −16.0000 −0.641026
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) −14.0000 −0.559553
\(627\) 0 0
\(628\) 12.0000 0.478852
\(629\) 0 0
\(630\) 0 0
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) −5.00000 −0.198889
\(633\) 0 0
\(634\) −2.00000 −0.0794301
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) 54.0000 2.13956
\(638\) 21.0000 0.831398
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) −16.0000 −0.631962 −0.315981 0.948766i \(-0.602334\pi\)
−0.315981 + 0.948766i \(0.602334\pi\)
\(642\) 0 0
\(643\) −38.0000 −1.49857 −0.749287 0.662246i \(-0.769604\pi\)
−0.749287 + 0.662246i \(0.769604\pi\)
\(644\) −24.0000 −0.945732
\(645\) 0 0
\(646\) 0 0
\(647\) −4.00000 −0.157256 −0.0786281 0.996904i \(-0.525054\pi\)
−0.0786281 + 0.996904i \(0.525054\pi\)
\(648\) 0 0
\(649\) −27.0000 −1.05984
\(650\) −24.0000 −0.941357
\(651\) 0 0
\(652\) 6.00000 0.234978
\(653\) 22.0000 0.860927 0.430463 0.902608i \(-0.358350\pi\)
0.430463 + 0.902608i \(0.358350\pi\)
\(654\) 0 0
\(655\) −20.0000 −0.781465
\(656\) −2.00000 −0.0780869
\(657\) 0 0
\(658\) 8.00000 0.311872
\(659\) 3.00000 0.116863 0.0584317 0.998291i \(-0.481390\pi\)
0.0584317 + 0.998291i \(0.481390\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) −22.0000 −0.855054
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) −42.0000 −1.62625
\(668\) 8.00000 0.309529
\(669\) 0 0
\(670\) −6.00000 −0.231800
\(671\) −30.0000 −1.15814
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 30.0000 1.15556
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 0 0
\(681\) 0 0
\(682\) −9.00000 −0.344628
\(683\) −27.0000 −1.03313 −0.516563 0.856249i \(-0.672789\pi\)
−0.516563 + 0.856249i \(0.672789\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 8.00000 0.305441
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) −78.0000 −2.97156
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 13.0000 0.494186
\(693\) 0 0
\(694\) −17.0000 −0.645311
\(695\) 8.00000 0.303457
\(696\) 0 0
\(697\) 0 0
\(698\) 12.0000 0.454207
\(699\) 0 0
\(700\) −16.0000 −0.604743
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 0 0
\(703\) 32.0000 1.20690
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) 4.00000 0.150542
\(707\) −68.0000 −2.55740
\(708\) 0 0
\(709\) 8.00000 0.300446 0.150223 0.988652i \(-0.452001\pi\)
0.150223 + 0.988652i \(0.452001\pi\)
\(710\) 12.0000 0.450352
\(711\) 0 0
\(712\) −4.00000 −0.149906
\(713\) 18.0000 0.674105
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) 0 0
\(717\) 0 0
\(718\) 30.0000 1.11959
\(719\) −12.0000 −0.447524 −0.223762 0.974644i \(-0.571834\pi\)
−0.223762 + 0.974644i \(0.571834\pi\)
\(720\) 0 0
\(721\) 52.0000 1.93658
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) 10.0000 0.371647
\(725\) −28.0000 −1.03989
\(726\) 0 0
\(727\) −41.0000 −1.52061 −0.760303 0.649569i \(-0.774949\pi\)
−0.760303 + 0.649569i \(0.774949\pi\)
\(728\) 24.0000 0.889499
\(729\) 0 0
\(730\) −7.00000 −0.259082
\(731\) 0 0
\(732\) 0 0
\(733\) −12.0000 −0.443230 −0.221615 0.975134i \(-0.571133\pi\)
−0.221615 + 0.975134i \(0.571133\pi\)
\(734\) −17.0000 −0.627481
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) −18.0000 −0.663039
\(738\) 0 0
\(739\) 6.00000 0.220714 0.110357 0.993892i \(-0.464801\pi\)
0.110357 + 0.993892i \(0.464801\pi\)
\(740\) 8.00000 0.294086
\(741\) 0 0
\(742\) −52.0000 −1.90898
\(743\) 10.0000 0.366864 0.183432 0.983032i \(-0.441279\pi\)
0.183432 + 0.983032i \(0.441279\pi\)
\(744\) 0 0
\(745\) −15.0000 −0.549557
\(746\) −32.0000 −1.17160
\(747\) 0 0
\(748\) 0 0
\(749\) −60.0000 −2.19235
\(750\) 0 0
\(751\) 35.0000 1.27717 0.638584 0.769552i \(-0.279520\pi\)
0.638584 + 0.769552i \(0.279520\pi\)
\(752\) 2.00000 0.0729325
\(753\) 0 0
\(754\) 42.0000 1.52955
\(755\) −9.00000 −0.327544
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) −10.0000 −0.363216
\(759\) 0 0
\(760\) 4.00000 0.145095
\(761\) −34.0000 −1.23250 −0.616250 0.787551i \(-0.711349\pi\)
−0.616250 + 0.787551i \(0.711349\pi\)
\(762\) 0 0
\(763\) 40.0000 1.44810
\(764\) −14.0000 −0.506502
\(765\) 0 0
\(766\) 2.00000 0.0722629
\(767\) −54.0000 −1.94983
\(768\) 0 0
\(769\) −55.0000 −1.98335 −0.991675 0.128763i \(-0.958899\pi\)
−0.991675 + 0.128763i \(0.958899\pi\)
\(770\) 12.0000 0.432450
\(771\) 0 0
\(772\) 9.00000 0.323917
\(773\) 51.0000 1.83434 0.917171 0.398493i \(-0.130467\pi\)
0.917171 + 0.398493i \(0.130467\pi\)
\(774\) 0 0
\(775\) 12.0000 0.431053
\(776\) 3.00000 0.107694
\(777\) 0 0
\(778\) 5.00000 0.179259
\(779\) −8.00000 −0.286630
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) 24.0000 0.855508 0.427754 0.903895i \(-0.359305\pi\)
0.427754 + 0.903895i \(0.359305\pi\)
\(788\) 10.0000 0.356235
\(789\) 0 0
\(790\) −5.00000 −0.177892
\(791\) 40.0000 1.42224
\(792\) 0 0
\(793\) −60.0000 −2.13066
\(794\) −22.0000 −0.780751
\(795\) 0 0
\(796\) −1.00000 −0.0354441
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −4.00000 −0.141421
\(801\) 0 0
\(802\) 12.0000 0.423735
\(803\) −21.0000 −0.741074
\(804\) 0 0
\(805\) −24.0000 −0.845889
\(806\) −18.0000 −0.634023
\(807\) 0 0
\(808\) −17.0000 −0.598058
\(809\) 44.0000 1.54696 0.773479 0.633822i \(-0.218515\pi\)
0.773479 + 0.633822i \(0.218515\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 28.0000 0.982607
\(813\) 0 0
\(814\) 24.0000 0.841200
\(815\) 6.00000 0.210171
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 19.0000 0.664319
\(819\) 0 0
\(820\) −2.00000 −0.0698430
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) −39.0000 −1.35945 −0.679727 0.733465i \(-0.737902\pi\)
−0.679727 + 0.733465i \(0.737902\pi\)
\(824\) 13.0000 0.452876
\(825\) 0 0
\(826\) −36.0000 −1.25260
\(827\) 5.00000 0.173867 0.0869335 0.996214i \(-0.472293\pi\)
0.0869335 + 0.996214i \(0.472293\pi\)
\(828\) 0 0
\(829\) −12.0000 −0.416777 −0.208389 0.978046i \(-0.566822\pi\)
−0.208389 + 0.978046i \(0.566822\pi\)
\(830\) −12.0000 −0.416526
\(831\) 0 0
\(832\) 6.00000 0.208013
\(833\) 0 0
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 12.0000 0.415029
\(837\) 0 0
\(838\) 3.00000 0.103633
\(839\) −30.0000 −1.03572 −0.517858 0.855467i \(-0.673270\pi\)
−0.517858 + 0.855467i \(0.673270\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) 22.0000 0.758170
\(843\) 0 0
\(844\) 8.00000 0.275371
\(845\) 23.0000 0.791224
\(846\) 0 0
\(847\) −8.00000 −0.274883
\(848\) −13.0000 −0.446422
\(849\) 0 0
\(850\) 0 0
\(851\) −48.0000 −1.64542
\(852\) 0 0
\(853\) 32.0000 1.09566 0.547830 0.836590i \(-0.315454\pi\)
0.547830 + 0.836590i \(0.315454\pi\)
\(854\) −40.0000 −1.36877
\(855\) 0 0
\(856\) −15.0000 −0.512689
\(857\) −50.0000 −1.70797 −0.853984 0.520300i \(-0.825820\pi\)
−0.853984 + 0.520300i \(0.825820\pi\)
\(858\) 0 0
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) 10.0000 0.340601
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) 0 0
\(865\) 13.0000 0.442013
\(866\) −3.00000 −0.101944
\(867\) 0 0
\(868\) −12.0000 −0.407307
\(869\) −15.0000 −0.508840
\(870\) 0 0
\(871\) −36.0000 −1.21981
\(872\) 10.0000 0.338643
\(873\) 0 0
\(874\) −24.0000 −0.811812
\(875\) −36.0000 −1.21702
\(876\) 0 0
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) −28.0000 −0.944954
\(879\) 0 0
\(880\) 3.00000 0.101130
\(881\) 46.0000 1.54978 0.774890 0.632096i \(-0.217805\pi\)
0.774890 + 0.632096i \(0.217805\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 0 0
\(889\) −64.0000 −2.14649
\(890\) −4.00000 −0.134080
\(891\) 0 0
\(892\) 17.0000 0.569202
\(893\) 8.00000 0.267710
\(894\) 0 0
\(895\) 0 0
\(896\) 4.00000 0.133631
\(897\) 0 0
\(898\) −4.00000 −0.133482
\(899\) −21.0000 −0.700389
\(900\) 0 0
\(901\) 0 0
\(902\) −6.00000 −0.199778
\(903\) 0 0
\(904\) 10.0000 0.332595
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) −54.0000 −1.79304 −0.896520 0.443003i \(-0.853913\pi\)
−0.896520 + 0.443003i \(0.853913\pi\)
\(908\) 20.0000 0.663723
\(909\) 0 0
\(910\) 24.0000 0.795592
\(911\) 22.0000 0.728893 0.364446 0.931224i \(-0.381258\pi\)
0.364446 + 0.931224i \(0.381258\pi\)
\(912\) 0 0
\(913\) −36.0000 −1.19143
\(914\) −17.0000 −0.562310
\(915\) 0 0
\(916\) −14.0000 −0.462573
\(917\) −80.0000 −2.64183
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) −6.00000 −0.197814
\(921\) 0 0
\(922\) −35.0000 −1.15266
\(923\) 72.0000 2.36991
\(924\) 0 0
\(925\) −32.0000 −1.05215
\(926\) 5.00000 0.164310
\(927\) 0 0
\(928\) 7.00000 0.229786
\(929\) −8.00000 −0.262471 −0.131236 0.991351i \(-0.541894\pi\)
−0.131236 + 0.991351i \(0.541894\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) −24.0000 −0.786146
\(933\) 0 0
\(934\) 3.00000 0.0981630
\(935\) 0 0
\(936\) 0 0
\(937\) 19.0000 0.620703 0.310351 0.950622i \(-0.399553\pi\)
0.310351 + 0.950622i \(0.399553\pi\)
\(938\) −24.0000 −0.783628
\(939\) 0 0
\(940\) 2.00000 0.0652328
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 0 0
\(943\) 12.0000 0.390774
\(944\) −9.00000 −0.292925
\(945\) 0 0
\(946\) −12.0000 −0.390154
\(947\) 3.00000 0.0974869 0.0487435 0.998811i \(-0.484478\pi\)
0.0487435 + 0.998811i \(0.484478\pi\)
\(948\) 0 0
\(949\) −42.0000 −1.36338
\(950\) −16.0000 −0.519109
\(951\) 0 0
\(952\) 0 0
\(953\) −4.00000 −0.129573 −0.0647864 0.997899i \(-0.520637\pi\)
−0.0647864 + 0.997899i \(0.520637\pi\)
\(954\) 0 0
\(955\) −14.0000 −0.453029
\(956\) 26.0000 0.840900
\(957\) 0 0
\(958\) 14.0000 0.452319
\(959\) −48.0000 −1.55000
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 48.0000 1.54758
\(963\) 0 0
\(964\) 15.0000 0.483117
\(965\) 9.00000 0.289720
\(966\) 0 0
\(967\) 13.0000 0.418052 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(968\) −2.00000 −0.0642824
\(969\) 0 0
\(970\) 3.00000 0.0963242
\(971\) 19.0000 0.609739 0.304870 0.952394i \(-0.401387\pi\)
0.304870 + 0.952394i \(0.401387\pi\)
\(972\) 0 0
\(973\) 32.0000 1.02587
\(974\) 25.0000 0.801052
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) 16.0000 0.511885 0.255943 0.966692i \(-0.417614\pi\)
0.255943 + 0.966692i \(0.417614\pi\)
\(978\) 0 0
\(979\) −12.0000 −0.383522
\(980\) 9.00000 0.287494
\(981\) 0 0
\(982\) 23.0000 0.733959
\(983\) 14.0000 0.446531 0.223265 0.974758i \(-0.428328\pi\)
0.223265 + 0.974758i \(0.428328\pi\)
\(984\) 0 0
\(985\) 10.0000 0.318626
\(986\) 0 0
\(987\) 0 0
\(988\) 24.0000 0.763542
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) −3.00000 −0.0952501
\(993\) 0 0
\(994\) 48.0000 1.52247
\(995\) −1.00000 −0.0317021
\(996\) 0 0
\(997\) 22.0000 0.696747 0.348373 0.937356i \(-0.386734\pi\)
0.348373 + 0.937356i \(0.386734\pi\)
\(998\) 8.00000 0.253236
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5202.2.a.m.1.1 1
3.2 odd 2 1734.2.a.a.1.1 1
17.16 even 2 5202.2.a.i.1.1 1
51.2 odd 8 1734.2.f.a.1483.1 4
51.8 odd 8 1734.2.f.a.829.2 4
51.26 odd 8 1734.2.f.a.829.1 4
51.32 odd 8 1734.2.f.a.1483.2 4
51.38 odd 4 1734.2.b.g.577.2 2
51.47 odd 4 1734.2.b.g.577.1 2
51.50 odd 2 1734.2.a.g.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1734.2.a.a.1.1 1 3.2 odd 2
1734.2.a.g.1.1 yes 1 51.50 odd 2
1734.2.b.g.577.1 2 51.47 odd 4
1734.2.b.g.577.2 2 51.38 odd 4
1734.2.f.a.829.1 4 51.26 odd 8
1734.2.f.a.829.2 4 51.8 odd 8
1734.2.f.a.1483.1 4 51.2 odd 8
1734.2.f.a.1483.2 4 51.32 odd 8
5202.2.a.i.1.1 1 17.16 even 2
5202.2.a.m.1.1 1 1.1 even 1 trivial