Properties

Label 5400.2.f.f.649.1
Level $5400$
Weight $2$
Character 5400.649
Analytic conductor $43.119$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5400,2,Mod(649,5400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5400.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5400 = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5400.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.1192170915\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 5400.649
Dual form 5400.2.f.f.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{7} -4.00000 q^{11} -2.00000i q^{13} +5.00000i q^{17} +5.00000 q^{19} -1.00000i q^{23} -2.00000 q^{29} +7.00000 q^{31} +6.00000i q^{37} +4.00000i q^{43} +4.00000i q^{47} +3.00000 q^{49} -9.00000i q^{53} +14.0000 q^{59} -11.0000 q^{61} -14.0000i q^{67} -12.0000i q^{73} +8.00000i q^{77} +3.00000 q^{79} +1.00000i q^{83} -4.00000 q^{91} -16.0000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{11} + 10 q^{19} - 4 q^{29} + 14 q^{31} + 6 q^{49} + 28 q^{59} - 22 q^{61} + 6 q^{79} - 8 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5400\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\) \(2701\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.00000i − 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.00000i 1.21268i 0.795206 + 0.606339i \(0.207363\pi\)
−0.795206 + 0.606339i \(0.792637\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 1.00000i − 0.208514i −0.994550 0.104257i \(-0.966753\pi\)
0.994550 0.104257i \(-0.0332465\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 9.00000i − 1.23625i −0.786082 0.618123i \(-0.787894\pi\)
0.786082 0.618123i \(-0.212106\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14.0000 1.82264 0.911322 0.411693i \(-0.135063\pi\)
0.911322 + 0.411693i \(0.135063\pi\)
\(60\) 0 0
\(61\) −11.0000 −1.40841 −0.704203 0.709999i \(-0.748695\pi\)
−0.704203 + 0.709999i \(0.748695\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 14.0000i − 1.71037i −0.518321 0.855186i \(-0.673443\pi\)
0.518321 0.855186i \(-0.326557\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) − 12.0000i − 1.40449i −0.711934 0.702247i \(-0.752180\pi\)
0.711934 0.702247i \(-0.247820\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.00000i 0.911685i
\(78\) 0 0
\(79\) 3.00000 0.337526 0.168763 0.985657i \(-0.446023\pi\)
0.168763 + 0.985657i \(0.446023\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.00000i 0.109764i 0.998493 + 0.0548821i \(0.0174783\pi\)
−0.998493 + 0.0548821i \(0.982522\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 16.0000i − 1.62455i −0.583272 0.812277i \(-0.698228\pi\)
0.583272 0.812277i \(-0.301772\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 19.0000 1.81987 0.909935 0.414751i \(-0.136131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.0000 0.916698
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 6.00000i − 0.532414i −0.963916 0.266207i \(-0.914230\pi\)
0.963916 0.266207i \(-0.0857705\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) − 10.0000i − 0.867110i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 17.0000i − 1.45241i −0.687479 0.726204i \(-0.741283\pi\)
0.687479 0.726204i \(-0.258717\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.00000i 0.668994i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −16.0000 −1.31077 −0.655386 0.755295i \(-0.727494\pi\)
−0.655386 + 0.755295i \(0.727494\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 16.0000i − 1.27694i −0.769647 0.638470i \(-0.779568\pi\)
0.769647 0.638470i \(-0.220432\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) − 14.0000i − 1.09656i −0.836293 0.548282i \(-0.815282\pi\)
0.836293 0.548282i \(-0.184718\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3.00000i − 0.232147i −0.993241 0.116073i \(-0.962969\pi\)
0.993241 0.116073i \(-0.0370308\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.0000i 0.988372i 0.869356 + 0.494186i \(0.164534\pi\)
−0.869356 + 0.494186i \(0.835466\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −19.0000 −1.41226 −0.706129 0.708083i \(-0.749560\pi\)
−0.706129 + 0.708083i \(0.749560\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 20.0000i − 1.46254i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.0000 −1.01300 −0.506502 0.862239i \(-0.669062\pi\)
−0.506502 + 0.862239i \(0.669062\pi\)
\(192\) 0 0
\(193\) 10.0000i 0.719816i 0.932988 + 0.359908i \(0.117192\pi\)
−0.932988 + 0.359908i \(0.882808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.00000i − 0.356235i −0.984009 0.178118i \(-0.942999\pi\)
0.984009 0.178118i \(-0.0570008\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.00000i 0.280745i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.0000 −1.38343
\(210\) 0 0
\(211\) −19.0000 −1.30801 −0.654007 0.756489i \(-0.726913\pi\)
−0.654007 + 0.756489i \(0.726913\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 14.0000i − 0.950382i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.0000 0.672673
\(222\) 0 0
\(223\) − 10.0000i − 0.669650i −0.942280 0.334825i \(-0.891323\pi\)
0.942280 0.334825i \(-0.108677\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.00000i 0.199117i 0.995032 + 0.0995585i \(0.0317430\pi\)
−0.995032 + 0.0995585i \(0.968257\pi\)
\(228\) 0 0
\(229\) 29.0000 1.91637 0.958187 0.286143i \(-0.0923732\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 6.00000i − 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 11.0000 0.708572 0.354286 0.935137i \(-0.384724\pi\)
0.354286 + 0.935137i \(0.384724\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 10.0000i − 0.636285i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) 4.00000i 0.251478i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.0000i 1.68421i 0.539311 + 0.842107i \(0.318685\pi\)
−0.539311 + 0.842107i \(0.681315\pi\)
\(258\) 0 0
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 24.0000i 1.47990i 0.672660 + 0.739952i \(0.265152\pi\)
−0.672660 + 0.739952i \(0.734848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) −9.00000 −0.546711 −0.273356 0.961913i \(-0.588134\pi\)
−0.273356 + 0.961913i \(0.588134\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.00000i 0.240337i 0.992754 + 0.120168i \(0.0383434\pi\)
−0.992754 + 0.120168i \(0.961657\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.0000 0.835170 0.417585 0.908638i \(-0.362877\pi\)
0.417585 + 0.908638i \(0.362877\pi\)
\(282\) 0 0
\(283\) 8.00000i 0.475551i 0.971320 + 0.237775i \(0.0764182\pi\)
−0.971320 + 0.237775i \(0.923582\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 7.00000i − 0.408944i −0.978872 0.204472i \(-0.934452\pi\)
0.978872 0.204472i \(-0.0655478\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 22.0000i − 1.25561i −0.778372 0.627803i \(-0.783954\pi\)
0.778372 0.627803i \(-0.216046\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.0000 1.24751 0.623753 0.781622i \(-0.285607\pi\)
0.623753 + 0.781622i \(0.285607\pi\)
\(312\) 0 0
\(313\) 8.00000i 0.452187i 0.974106 + 0.226093i \(0.0725954\pi\)
−0.974106 + 0.226093i \(0.927405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 27.0000i − 1.51647i −0.651981 0.758236i \(-0.726062\pi\)
0.651981 0.758236i \(-0.273938\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 25.0000i 1.39104i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 22.0000i − 1.19842i −0.800593 0.599208i \(-0.795482\pi\)
0.800593 0.599208i \(-0.204518\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −28.0000 −1.51629
\(342\) 0 0
\(343\) − 20.0000i − 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.0000i 1.07366i 0.843692 + 0.536828i \(0.180378\pi\)
−0.843692 + 0.536828i \(0.819622\pi\)
\(348\) 0 0
\(349\) 3.00000 0.160586 0.0802932 0.996771i \(-0.474414\pi\)
0.0802932 + 0.996771i \(0.474414\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 26.0000i − 1.38384i −0.721974 0.691920i \(-0.756765\pi\)
0.721974 0.691920i \(-0.243235\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 22.0000i 1.14839i 0.818718 + 0.574195i \(0.194685\pi\)
−0.818718 + 0.574195i \(0.805315\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −18.0000 −0.934513
\(372\) 0 0
\(373\) − 32.0000i − 1.65690i −0.560065 0.828449i \(-0.689224\pi\)
0.560065 0.828449i \(-0.310776\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.00000i 0.206010i
\(378\) 0 0
\(379\) 23.0000 1.18143 0.590715 0.806880i \(-0.298846\pi\)
0.590715 + 0.806880i \(0.298846\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 27.0000i 1.37964i 0.723983 + 0.689818i \(0.242309\pi\)
−0.723983 + 0.689818i \(0.757691\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −36.0000 −1.82527 −0.912636 0.408773i \(-0.865957\pi\)
−0.912636 + 0.408773i \(0.865957\pi\)
\(390\) 0 0
\(391\) 5.00000 0.252861
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) − 14.0000i − 0.697390i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 24.0000i − 1.18964i
\(408\) 0 0
\(409\) −25.0000 −1.23617 −0.618085 0.786111i \(-0.712091\pi\)
−0.618085 + 0.786111i \(0.712091\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 28.0000i − 1.37779i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) 3.00000 0.146211 0.0731055 0.997324i \(-0.476709\pi\)
0.0731055 + 0.997324i \(0.476709\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 22.0000i 1.06465i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.0000 −0.674356 −0.337178 0.941441i \(-0.609472\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(432\) 0 0
\(433\) 26.0000i 1.24948i 0.780833 + 0.624740i \(0.214795\pi\)
−0.780833 + 0.624740i \(0.785205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.00000i − 0.239182i
\(438\) 0 0
\(439\) 17.0000 0.811366 0.405683 0.914014i \(-0.367034\pi\)
0.405683 + 0.914014i \(0.367034\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 39.0000i − 1.85295i −0.376361 0.926473i \(-0.622825\pi\)
0.376361 0.926473i \(-0.377175\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 28.0000i − 1.30978i −0.755722 0.654892i \(-0.772714\pi\)
0.755722 0.654892i \(-0.227286\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 0 0
\(463\) − 18.0000i − 0.836531i −0.908325 0.418265i \(-0.862638\pi\)
0.908325 0.418265i \(-0.137362\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 13.0000i − 0.601568i −0.953692 0.300784i \(-0.902752\pi\)
0.953692 0.300784i \(-0.0972484\pi\)
\(468\) 0 0
\(469\) −28.0000 −1.29292
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 16.0000i − 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 28.0000 1.27935 0.639676 0.768644i \(-0.279068\pi\)
0.639676 + 0.768644i \(0.279068\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 40.0000i − 1.81257i −0.422664 0.906287i \(-0.638905\pi\)
0.422664 0.906287i \(-0.361095\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 0 0
\(493\) − 10.0000i − 0.450377i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 25.0000 1.11915 0.559577 0.828778i \(-0.310964\pi\)
0.559577 + 0.828778i \(0.310964\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.0000i 0.668817i 0.942428 + 0.334408i \(0.108537\pi\)
−0.942428 + 0.334408i \(0.891463\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.0000 1.24108 0.620539 0.784176i \(-0.286914\pi\)
0.620539 + 0.784176i \(0.286914\pi\)
\(510\) 0 0
\(511\) −24.0000 −1.06170
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 16.0000i − 0.703679i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −40.0000 −1.75243 −0.876216 0.481919i \(-0.839940\pi\)
−0.876216 + 0.481919i \(0.839940\pi\)
\(522\) 0 0
\(523\) 10.0000i 0.437269i 0.975807 + 0.218635i \(0.0701603\pi\)
−0.975807 + 0.218635i \(0.929840\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 35.0000i 1.52462i
\(528\) 0 0
\(529\) 22.0000 0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000i 1.19719i 0.801050 + 0.598597i \(0.204275\pi\)
−0.801050 + 0.598597i \(0.795725\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10.0000 −0.426014
\(552\) 0 0
\(553\) − 6.00000i − 0.255146i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 10.0000i − 0.423714i −0.977301 0.211857i \(-0.932049\pi\)
0.977301 0.211857i \(-0.0679510\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 4.00000i − 0.168580i −0.996441 0.0842900i \(-0.973138\pi\)
0.996441 0.0842900i \(-0.0268622\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −5.00000 −0.209243 −0.104622 0.994512i \(-0.533363\pi\)
−0.104622 + 0.994512i \(0.533363\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 16.0000i 0.666089i 0.942911 + 0.333044i \(0.108076\pi\)
−0.942911 + 0.333044i \(0.891924\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.00000 0.0829740
\(582\) 0 0
\(583\) 36.0000i 1.49097i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 15.0000i − 0.619116i −0.950881 0.309558i \(-0.899819\pi\)
0.950881 0.309558i \(-0.100181\pi\)
\(588\) 0 0
\(589\) 35.0000 1.44215
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.00000i 0.369586i 0.982777 + 0.184793i \(0.0591614\pi\)
−0.982777 + 0.184793i \(0.940839\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18.0000 0.735460 0.367730 0.929933i \(-0.380135\pi\)
0.367730 + 0.929933i \(0.380135\pi\)
\(600\) 0 0
\(601\) −11.0000 −0.448699 −0.224350 0.974509i \(-0.572026\pi\)
−0.224350 + 0.974509i \(0.572026\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 36.0000i 1.46119i 0.682808 + 0.730597i \(0.260758\pi\)
−0.682808 + 0.730597i \(0.739242\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 33.0000i 1.32853i 0.747497 + 0.664265i \(0.231255\pi\)
−0.747497 + 0.664265i \(0.768745\pi\)
\(618\) 0 0
\(619\) −32.0000 −1.28619 −0.643094 0.765787i \(-0.722350\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −30.0000 −1.19618
\(630\) 0 0
\(631\) 13.0000 0.517522 0.258761 0.965941i \(-0.416686\pi\)
0.258761 + 0.965941i \(0.416686\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 6.00000i − 0.237729i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 6.00000i 0.236617i 0.992977 + 0.118308i \(0.0377472\pi\)
−0.992977 + 0.118308i \(0.962253\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 33.0000i 1.29736i 0.761060 + 0.648682i \(0.224679\pi\)
−0.761060 + 0.648682i \(0.775321\pi\)
\(648\) 0 0
\(649\) −56.0000 −2.19819
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 41.0000i − 1.60445i −0.597019 0.802227i \(-0.703648\pi\)
0.597019 0.802227i \(-0.296352\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) −42.0000 −1.63361 −0.816805 0.576913i \(-0.804257\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.00000i 0.0774403i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 44.0000 1.69860
\(672\) 0 0
\(673\) 30.0000i 1.15642i 0.815890 + 0.578208i \(0.196248\pi\)
−0.815890 + 0.578208i \(0.803752\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 2.00000i − 0.0768662i −0.999261 0.0384331i \(-0.987763\pi\)
0.999261 0.0384331i \(-0.0122367\pi\)
\(678\) 0 0
\(679\) −32.0000 −1.22805
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.00000i 0.344375i 0.985064 + 0.172188i \(0.0550836\pi\)
−0.985064 + 0.172188i \(0.944916\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.0000 −0.685745
\(690\) 0 0
\(691\) −19.0000 −0.722794 −0.361397 0.932412i \(-0.617700\pi\)
−0.361397 + 0.932412i \(0.617700\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 30.0000i 1.13147i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.0000i 0.902613i
\(708\) 0 0
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 7.00000i − 0.262152i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 46.0000 1.71551 0.857755 0.514058i \(-0.171858\pi\)
0.857755 + 0.514058i \(0.171858\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 32.0000i − 1.18681i −0.804902 0.593407i \(-0.797782\pi\)
0.804902 0.593407i \(-0.202218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −20.0000 −0.739727
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 56.0000i 2.06279i
\(738\) 0 0
\(739\) 15.0000 0.551784 0.275892 0.961189i \(-0.411027\pi\)
0.275892 + 0.961189i \(0.411027\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −24.0000 −0.876941
\(750\) 0 0
\(751\) −3.00000 −0.109472 −0.0547358 0.998501i \(-0.517432\pi\)
−0.0547358 + 0.998501i \(0.517432\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 2.00000i − 0.0726912i −0.999339 0.0363456i \(-0.988428\pi\)
0.999339 0.0363456i \(-0.0115717\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) − 38.0000i − 1.37569i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 28.0000i − 1.01102i
\(768\) 0 0
\(769\) 35.0000 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 15.0000i 0.539513i 0.962929 + 0.269756i \(0.0869431\pi\)
−0.962929 + 0.269756i \(0.913057\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 40.0000i 1.42585i 0.701242 + 0.712923i \(0.252629\pi\)
−0.701242 + 0.712923i \(0.747371\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 22.0000i 0.781243i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.00000i 0.106265i 0.998587 + 0.0531327i \(0.0169206\pi\)
−0.998587 + 0.0531327i \(0.983079\pi\)
\(798\) 0 0
\(799\) −20.0000 −0.707549
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 48.0000i 1.69388i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 20.0000i 0.699711i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −46.0000 −1.60541 −0.802706 0.596376i \(-0.796607\pi\)
−0.802706 + 0.596376i \(0.796607\pi\)
\(822\) 0 0
\(823\) − 20.0000i − 0.697156i −0.937280 0.348578i \(-0.886665\pi\)
0.937280 0.348578i \(-0.113335\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 39.0000i − 1.35616i −0.734987 0.678081i \(-0.762812\pi\)
0.734987 0.678081i \(-0.237188\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 15.0000i 0.519719i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 10.0000i − 0.343604i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) − 28.0000i − 0.958702i −0.877623 0.479351i \(-0.840872\pi\)
0.877623 0.479351i \(-0.159128\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.0000i 0.717346i 0.933463 + 0.358673i \(0.116771\pi\)
−0.933463 + 0.358673i \(0.883229\pi\)
\(858\) 0 0
\(859\) −41.0000 −1.39890 −0.699451 0.714681i \(-0.746572\pi\)
−0.699451 + 0.714681i \(0.746572\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 33.0000i − 1.12333i −0.827364 0.561667i \(-0.810160\pi\)
0.827364 0.561667i \(-0.189840\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) −28.0000 −0.948744
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32.0000i 1.08056i 0.841484 + 0.540282i \(0.181682\pi\)
−0.841484 + 0.540282i \(0.818318\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 54.0000 1.81931 0.909653 0.415369i \(-0.136347\pi\)
0.909653 + 0.415369i \(0.136347\pi\)
\(882\) 0 0
\(883\) − 22.0000i − 0.740359i −0.928960 0.370179i \(-0.879296\pi\)
0.928960 0.370179i \(-0.120704\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 23.0000i − 0.772264i −0.922443 0.386132i \(-0.873811\pi\)
0.922443 0.386132i \(-0.126189\pi\)
\(888\) 0 0
\(889\) −12.0000 −0.402467
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 20.0000i 0.669274i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −14.0000 −0.466926
\(900\) 0 0
\(901\) 45.0000 1.49917
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 12.0000i − 0.398453i −0.979953 0.199227i \(-0.936157\pi\)
0.979953 0.199227i \(-0.0638430\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.00000 0.0662630 0.0331315 0.999451i \(-0.489452\pi\)
0.0331315 + 0.999451i \(0.489452\pi\)
\(912\) 0 0
\(913\) − 4.00000i − 0.132381i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 36.0000i − 1.18882i
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8.00000 −0.262471 −0.131236 0.991351i \(-0.541894\pi\)
−0.131236 + 0.991351i \(0.541894\pi\)
\(930\) 0 0
\(931\) 15.0000 0.491605
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 56.0000i 1.82944i 0.404088 + 0.914720i \(0.367589\pi\)
−0.404088 + 0.914720i \(0.632411\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −34.0000 −1.10837 −0.554184 0.832394i \(-0.686970\pi\)
−0.554184 + 0.832394i \(0.686970\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 53.0000i − 1.72227i −0.508378 0.861134i \(-0.669755\pi\)
0.508378 0.861134i \(-0.330245\pi\)
\(948\) 0 0
\(949\) −24.0000 −0.779073
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 6.00000i − 0.194359i −0.995267 0.0971795i \(-0.969018\pi\)
0.995267 0.0971795i \(-0.0309821\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −34.0000 −1.09792
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 30.0000i 0.964735i 0.875969 + 0.482367i \(0.160223\pi\)
−0.875969 + 0.482367i \(0.839777\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −14.0000 −0.449281 −0.224641 0.974442i \(-0.572121\pi\)
−0.224641 + 0.974442i \(0.572121\pi\)
\(972\) 0 0
\(973\) 24.0000i 0.769405i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.00000i 0.0639857i 0.999488 + 0.0319928i \(0.0101854\pi\)
−0.999488 + 0.0319928i \(0.989815\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.00000i 0.0956851i 0.998855 + 0.0478426i \(0.0152346\pi\)
−0.998855 + 0.0478426i \(0.984765\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.00000 0.127193
\(990\) 0 0
\(991\) −55.0000 −1.74713 −0.873566 0.486705i \(-0.838199\pi\)
−0.873566 + 0.486705i \(0.838199\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 48.0000i 1.52018i 0.649821 + 0.760088i \(0.274844\pi\)
−0.649821 + 0.760088i \(0.725156\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5400.2.f.f.649.1 2
3.2 odd 2 5400.2.f.x.649.1 2
5.2 odd 4 1080.2.a.e.1.1 1
5.3 odd 4 5400.2.a.j.1.1 1
5.4 even 2 inner 5400.2.f.f.649.2 2
15.2 even 4 1080.2.a.l.1.1 yes 1
15.8 even 4 5400.2.a.q.1.1 1
15.14 odd 2 5400.2.f.x.649.2 2
20.7 even 4 2160.2.a.e.1.1 1
40.27 even 4 8640.2.a.bi.1.1 1
40.37 odd 4 8640.2.a.cd.1.1 1
45.2 even 12 3240.2.q.b.1081.1 2
45.7 odd 12 3240.2.q.p.1081.1 2
45.22 odd 12 3240.2.q.p.2161.1 2
45.32 even 12 3240.2.q.b.2161.1 2
60.47 odd 4 2160.2.a.m.1.1 1
120.77 even 4 8640.2.a.t.1.1 1
120.107 odd 4 8640.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.a.e.1.1 1 5.2 odd 4
1080.2.a.l.1.1 yes 1 15.2 even 4
2160.2.a.e.1.1 1 20.7 even 4
2160.2.a.m.1.1 1 60.47 odd 4
3240.2.q.b.1081.1 2 45.2 even 12
3240.2.q.b.2161.1 2 45.32 even 12
3240.2.q.p.1081.1 2 45.7 odd 12
3240.2.q.p.2161.1 2 45.22 odd 12
5400.2.a.j.1.1 1 5.3 odd 4
5400.2.a.q.1.1 1 15.8 even 4
5400.2.f.f.649.1 2 1.1 even 1 trivial
5400.2.f.f.649.2 2 5.4 even 2 inner
5400.2.f.x.649.1 2 3.2 odd 2
5400.2.f.x.649.2 2 15.14 odd 2
8640.2.a.k.1.1 1 120.107 odd 4
8640.2.a.t.1.1 1 120.77 even 4
8640.2.a.bi.1.1 1 40.27 even 4
8640.2.a.cd.1.1 1 40.37 odd 4