Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [546,2,Mod(131,546)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(546, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 5, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("546.131");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 546.z (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.35983195036\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
131.1 | −0.866025 | − | 0.500000i | −1.70193 | + | 0.321635i | 0.500000 | + | 0.866025i | 1.63964 | − | 2.83994i | 1.63473 | + | 0.572419i | 1.76715 | + | 1.96906i | − | 1.00000i | 2.79310 | − | 1.09480i | −2.83994 | + | 1.63964i | |
131.2 | −0.866025 | − | 0.500000i | −1.54393 | − | 0.785030i | 0.500000 | + | 0.866025i | −0.890016 | + | 1.54155i | 0.944570 | + | 1.45182i | −1.51727 | + | 2.16746i | − | 1.00000i | 1.76746 | + | 2.42407i | 1.54155 | − | 0.890016i | |
131.3 | −0.866025 | − | 0.500000i | −0.631675 | − | 1.61276i | 0.500000 | + | 0.866025i | −1.49759 | + | 2.59391i | −0.259332 | + | 1.71253i | −0.0366585 | − | 2.64550i | − | 1.00000i | −2.20197 | + | 2.03748i | 2.59391 | − | 1.49759i | |
131.4 | −0.866025 | − | 0.500000i | −0.526573 | − | 1.65007i | 0.500000 | + | 0.866025i | 1.35360 | − | 2.34450i | −0.369008 | + | 1.69229i | −2.61407 | + | 0.408207i | − | 1.00000i | −2.44544 | + | 1.73776i | −2.34450 | + | 1.35360i | |
131.5 | −0.866025 | − | 0.500000i | 0.115738 | + | 1.72818i | 0.500000 | + | 0.866025i | −1.85995 | + | 3.22152i | 0.763858 | − | 1.55452i | −1.49982 | − | 2.17958i | − | 1.00000i | −2.97321 | + | 0.400031i | 3.22152 | − | 1.85995i | |
131.6 | −0.866025 | − | 0.500000i | 0.587248 | + | 1.62946i | 0.500000 | + | 0.866025i | 0.386271 | − | 0.669041i | 0.306158 | − | 1.70478i | 1.82832 | + | 1.91239i | − | 1.00000i | −2.31028 | + | 1.91379i | −0.669041 | + | 0.386271i | |
131.7 | −0.866025 | − | 0.500000i | 1.11404 | − | 1.32624i | 0.500000 | + | 0.866025i | 0.737837 | − | 1.27797i | −1.62791 | + | 0.591542i | 2.24993 | − | 1.39206i | − | 1.00000i | −0.517844 | − | 2.95497i | −1.27797 | + | 0.737837i | |
131.8 | −0.866025 | − | 0.500000i | 1.72106 | + | 0.194824i | 0.500000 | + | 0.866025i | −0.735814 | + | 1.27447i | −1.39307 | − | 1.02925i | 0.322414 | + | 2.62603i | − | 1.00000i | 2.92409 | + | 0.670607i | 1.27447 | − | 0.735814i | |
131.9 | 0.866025 | + | 0.500000i | −1.73120 | − | 0.0542481i | 0.500000 | + | 0.866025i | −0.401573 | + | 0.695544i | −1.47214 | − | 0.912581i | 1.69379 | − | 2.03250i | 1.00000i | 2.99411 | + | 0.187829i | −0.695544 | + | 0.401573i | ||
131.10 | 0.866025 | + | 0.500000i | −1.61832 | + | 0.617297i | 0.500000 | + | 0.866025i | −0.166488 | + | 0.288366i | −1.71015 | − | 0.274563i | −2.56503 | + | 0.648546i | 1.00000i | 2.23789 | − | 1.99796i | −0.288366 | + | 0.166488i | ||
131.11 | 0.866025 | + | 0.500000i | −0.913445 | + | 1.47160i | 0.500000 | + | 0.866025i | 1.72310 | − | 2.98449i | −1.52687 | + | 0.817724i | 2.50296 | + | 0.857422i | 1.00000i | −1.33124 | − | 2.68846i | 2.98449 | − | 1.72310i | ||
131.12 | 0.866025 | + | 0.500000i | 0.110315 | + | 1.72853i | 0.500000 | + | 0.866025i | −1.50901 | + | 2.61368i | −0.768732 | + | 1.55211i | 0.237102 | − | 2.63511i | 1.00000i | −2.97566 | + | 0.381366i | −2.61368 | + | 1.50901i | ||
131.13 | 0.866025 | + | 0.500000i | 0.305007 | − | 1.70498i | 0.500000 | + | 0.866025i | 1.04730 | − | 1.81398i | 1.11664 | − | 1.32406i | 1.84957 | − | 1.89185i | 1.00000i | −2.81394 | − | 1.04007i | 1.81398 | − | 1.04730i | ||
131.14 | 0.866025 | + | 0.500000i | 1.48032 | − | 0.899243i | 0.500000 | + | 0.866025i | −1.85844 | + | 3.21892i | 1.73162 | − | 0.0386050i | −1.15681 | + | 2.37945i | 1.00000i | 1.38272 | − | 2.66234i | −3.21892 | + | 1.85844i | ||
131.15 | 0.866025 | + | 0.500000i | 1.55397 | + | 0.764969i | 0.500000 | + | 0.866025i | 0.698212 | − | 1.20934i | 0.963293 | + | 1.43947i | 0.352771 | + | 2.62213i | 1.00000i | 1.82964 | + | 2.37748i | 1.20934 | − | 0.698212i | ||
131.16 | 0.866025 | + | 0.500000i | 1.67937 | − | 0.423929i | 0.500000 | + | 0.866025i | 1.33293 | − | 2.30870i | 1.66634 | + | 0.472552i | −2.41436 | − | 1.08207i | 1.00000i | 2.64057 | − | 1.42387i | 2.30870 | − | 1.33293i | ||
521.1 | −0.866025 | + | 0.500000i | −1.70193 | − | 0.321635i | 0.500000 | − | 0.866025i | 1.63964 | + | 2.83994i | 1.63473 | − | 0.572419i | 1.76715 | − | 1.96906i | 1.00000i | 2.79310 | + | 1.09480i | −2.83994 | − | 1.63964i | ||
521.2 | −0.866025 | + | 0.500000i | −1.54393 | + | 0.785030i | 0.500000 | − | 0.866025i | −0.890016 | − | 1.54155i | 0.944570 | − | 1.45182i | −1.51727 | − | 2.16746i | 1.00000i | 1.76746 | − | 2.42407i | 1.54155 | + | 0.890016i | ||
521.3 | −0.866025 | + | 0.500000i | −0.631675 | + | 1.61276i | 0.500000 | − | 0.866025i | −1.49759 | − | 2.59391i | −0.259332 | − | 1.71253i | −0.0366585 | + | 2.64550i | 1.00000i | −2.20197 | − | 2.03748i | 2.59391 | + | 1.49759i | ||
521.4 | −0.866025 | + | 0.500000i | −0.526573 | + | 1.65007i | 0.500000 | − | 0.866025i | 1.35360 | + | 2.34450i | −0.369008 | − | 1.69229i | −2.61407 | − | 0.408207i | 1.00000i | −2.44544 | − | 1.73776i | −2.34450 | − | 1.35360i | ||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
21.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 546.2.z.a | ✓ | 32 |
3.b | odd | 2 | 1 | 546.2.z.b | yes | 32 | |
7.d | odd | 6 | 1 | 546.2.z.b | yes | 32 | |
21.g | even | 6 | 1 | inner | 546.2.z.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
546.2.z.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
546.2.z.a | ✓ | 32 | 21.g | even | 6 | 1 | inner |
546.2.z.b | yes | 32 | 3.b | odd | 2 | 1 | |
546.2.z.b | yes | 32 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{32} + 49 T_{5}^{30} - 24 T_{5}^{29} + 1438 T_{5}^{28} - 1028 T_{5}^{27} + 28007 T_{5}^{26} + \cdots + 567011344 \) acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\).