Properties

Label 560.2.bw.b
Level $560$
Weight $2$
Character orbit 560.bw
Analytic conductor $4.472$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,2,Mod(289,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.bw (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{3} + (2 \zeta_{12}^{3} + \cdots - 2 \zeta_{12}) q^{5}+ \cdots - 2 \zeta_{12}^{2} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{12} q^{3} + (2 \zeta_{12}^{3} + \cdots - 2 \zeta_{12}) q^{5}+ \cdots - 16 \zeta_{12}^{3} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{5} - 4 q^{9} - 8 q^{15} - 12 q^{19} - 10 q^{21} + 6 q^{25} - 28 q^{29} + 4 q^{31} + 16 q^{35} + 4 q^{39} + 20 q^{41} - 4 q^{45} + 26 q^{49} - 4 q^{51} - 20 q^{59} - 14 q^{61} + 8 q^{65} - 12 q^{69} + 8 q^{71} + 8 q^{75} + 4 q^{79} - 2 q^{81} + 16 q^{85} + 18 q^{89} + 4 q^{91} - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-\zeta_{12}^{2}\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 −0.866025 + 0.500000i 0 1.23205 + 1.86603i 0 2.59808 + 0.500000i 0 −1.00000 + 1.73205i 0
289.2 0 0.866025 0.500000i 0 −2.23205 0.133975i 0 −2.59808 0.500000i 0 −1.00000 + 1.73205i 0
529.1 0 −0.866025 0.500000i 0 1.23205 1.86603i 0 2.59808 0.500000i 0 −1.00000 1.73205i 0
529.2 0 0.866025 + 0.500000i 0 −2.23205 + 0.133975i 0 −2.59808 + 0.500000i 0 −1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.bw.b 4
4.b odd 2 1 35.2.j.a 4
5.b even 2 1 inner 560.2.bw.b 4
7.c even 3 1 inner 560.2.bw.b 4
12.b even 2 1 315.2.bf.a 4
20.d odd 2 1 35.2.j.a 4
20.e even 4 1 175.2.e.a 2
20.e even 4 1 175.2.e.b 2
28.d even 2 1 245.2.j.c 4
28.f even 6 1 245.2.b.b 2
28.f even 6 1 245.2.j.c 4
28.g odd 6 1 35.2.j.a 4
28.g odd 6 1 245.2.b.c 2
35.j even 6 1 inner 560.2.bw.b 4
60.h even 2 1 315.2.bf.a 4
84.j odd 6 1 2205.2.d.e 2
84.n even 6 1 315.2.bf.a 4
84.n even 6 1 2205.2.d.d 2
140.c even 2 1 245.2.j.c 4
140.p odd 6 1 35.2.j.a 4
140.p odd 6 1 245.2.b.c 2
140.s even 6 1 245.2.b.b 2
140.s even 6 1 245.2.j.c 4
140.w even 12 1 175.2.e.a 2
140.w even 12 1 175.2.e.b 2
140.w even 12 1 1225.2.a.d 1
140.w even 12 1 1225.2.a.f 1
140.x odd 12 1 1225.2.a.b 1
140.x odd 12 1 1225.2.a.g 1
420.ba even 6 1 315.2.bf.a 4
420.ba even 6 1 2205.2.d.d 2
420.be odd 6 1 2205.2.d.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.j.a 4 4.b odd 2 1
35.2.j.a 4 20.d odd 2 1
35.2.j.a 4 28.g odd 6 1
35.2.j.a 4 140.p odd 6 1
175.2.e.a 2 20.e even 4 1
175.2.e.a 2 140.w even 12 1
175.2.e.b 2 20.e even 4 1
175.2.e.b 2 140.w even 12 1
245.2.b.b 2 28.f even 6 1
245.2.b.b 2 140.s even 6 1
245.2.b.c 2 28.g odd 6 1
245.2.b.c 2 140.p odd 6 1
245.2.j.c 4 28.d even 2 1
245.2.j.c 4 28.f even 6 1
245.2.j.c 4 140.c even 2 1
245.2.j.c 4 140.s even 6 1
315.2.bf.a 4 12.b even 2 1
315.2.bf.a 4 60.h even 2 1
315.2.bf.a 4 84.n even 6 1
315.2.bf.a 4 420.ba even 6 1
560.2.bw.b 4 1.a even 1 1 trivial
560.2.bw.b 4 5.b even 2 1 inner
560.2.bw.b 4 7.c even 3 1 inner
560.2.bw.b 4 35.j even 6 1 inner
1225.2.a.b 1 140.x odd 12 1
1225.2.a.d 1 140.w even 12 1
1225.2.a.f 1 140.w even 12 1
1225.2.a.g 1 140.x odd 12 1
2205.2.d.d 2 84.n even 6 1
2205.2.d.d 2 420.ba even 6 1
2205.2.d.e 2 84.j odd 6 1
2205.2.d.e 2 420.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - T_{3}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(560, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} - 13T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$29$ \( (T + 7)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 64T^{2} + 4096 \) Copy content Toggle raw display
$41$ \( (T - 5)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$59$ \( (T^{2} + 10 T + 100)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 7 T + 49)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$71$ \( (T - 2)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$79$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 121)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 9 T + 81)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 256)^{2} \) Copy content Toggle raw display
show more
show less