Properties

Label 5760.2.m.j
Level $5760$
Weight $2$
Character orbit 5760.m
Analytic conductor $45.994$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5760,2,Mod(2879,5760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5760.2879");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5760 = 2^{7} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5760.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9938315643\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{8}^{3} + 2 \zeta_{8}) q^{5} + (2 \zeta_{8}^{3} - 2 \zeta_{8}) q^{7} + (3 \zeta_{8}^{3} - 3 \zeta_{8}) q^{17} + 4 \zeta_{8}^{2} q^{23} + (3 \zeta_{8}^{2} - 4) q^{25} + (3 \zeta_{8}^{3} - 3 \zeta_{8}) q^{29}+ \cdots - 6 \zeta_{8}^{2} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{25} - 8 q^{35} + 24 q^{37} + 4 q^{49} + 48 q^{71} + 16 q^{83} - 12 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5760\mathbb{Z}\right)^\times\).

\(n\) \(641\) \(901\) \(2431\) \(3457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2879.1
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
0 0 0 −0.707107 2.12132i 0 2.82843 0 0 0
2879.2 0 0 0 −0.707107 + 2.12132i 0 2.82843 0 0 0
2879.3 0 0 0 0.707107 2.12132i 0 −2.82843 0 0 0
2879.4 0 0 0 0.707107 + 2.12132i 0 −2.82843 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner
40.f even 2 1 inner
120.m even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5760.2.m.j yes 4
3.b odd 2 1 5760.2.m.l yes 4
4.b odd 2 1 5760.2.m.l yes 4
5.b even 2 1 5760.2.m.k yes 4
8.b even 2 1 5760.2.m.k yes 4
8.d odd 2 1 5760.2.m.i 4
12.b even 2 1 inner 5760.2.m.j yes 4
15.d odd 2 1 5760.2.m.i 4
20.d odd 2 1 5760.2.m.i 4
24.f even 2 1 5760.2.m.k yes 4
24.h odd 2 1 5760.2.m.i 4
40.e odd 2 1 5760.2.m.l yes 4
40.f even 2 1 inner 5760.2.m.j yes 4
60.h even 2 1 5760.2.m.k yes 4
120.i odd 2 1 5760.2.m.l yes 4
120.m even 2 1 inner 5760.2.m.j yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5760.2.m.i 4 8.d odd 2 1
5760.2.m.i 4 15.d odd 2 1
5760.2.m.i 4 20.d odd 2 1
5760.2.m.i 4 24.h odd 2 1
5760.2.m.j yes 4 1.a even 1 1 trivial
5760.2.m.j yes 4 12.b even 2 1 inner
5760.2.m.j yes 4 40.f even 2 1 inner
5760.2.m.j yes 4 120.m even 2 1 inner
5760.2.m.k yes 4 5.b even 2 1
5760.2.m.k yes 4 8.b even 2 1
5760.2.m.k yes 4 24.f even 2 1
5760.2.m.k yes 4 60.h even 2 1
5760.2.m.l yes 4 3.b odd 2 1
5760.2.m.l yes 4 4.b odd 2 1
5760.2.m.l yes 4 40.e odd 2 1
5760.2.m.l yes 4 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5760, [\chi])\):

\( T_{7}^{2} - 8 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17}^{2} - 18 \) Copy content Toggle raw display
\( T_{37} - 6 \) Copy content Toggle raw display
\( T_{71} - 12 \) Copy content Toggle raw display
\( T_{101}^{2} - 162 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 8T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$37$ \( (T - 6)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 128)^{2} \) Copy content Toggle raw display
$71$ \( (T - 12)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$83$ \( (T - 4)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 50)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
show more
show less