Properties

Label 5780.2.c.g.5201.3
Level $5780$
Weight $2$
Character 5780.5201
Analytic conductor $46.154$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5780,2,Mod(5201,5780)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5780, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5780.5201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5780 = 2^{2} \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5780.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.1535323683\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.851059918206111744.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 33x^{10} + 360x^{8} + 1423x^{6} + 1269x^{4} + 234x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 5201.3
Root \(-0.423390i\) of defining polynomial
Character \(\chi\) \(=\) 5780.5201
Dual form 5780.2.c.g.5201.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30278i q^{3} +1.00000i q^{5} +1.53209i q^{7} -2.30278 q^{9} +2.44842i q^{11} -6.18216 q^{13} +2.30278 q^{15} +0.345896 q^{19} +3.52806 q^{21} -9.04065i q^{23} -1.00000 q^{25} -1.60555i q^{27} +5.05397i q^{29} +2.71070i q^{31} +5.63816 q^{33} -1.53209 q^{35} +4.08706i q^{37} +14.2361i q^{39} +1.14564i q^{41} -0.730943 q^{43} -2.30278i q^{45} +0.594059 q^{47} +4.65270 q^{49} +9.59749 q^{53} -2.44842 q^{55} -0.796521i q^{57} -6.74937 q^{59} -10.5856i q^{61} -3.52806i q^{63} -6.18216i q^{65} +12.3030 q^{67} -20.8186 q^{69} -1.08582i q^{71} -9.34420i q^{73} +2.30278i q^{75} -3.75119 q^{77} -11.0401i q^{79} -10.6056 q^{81} +12.2524 q^{83} +11.6382 q^{87} -10.8303 q^{89} -9.47162i q^{91} +6.24214 q^{93} +0.345896i q^{95} -6.97153i q^{97} -5.63816i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{9} - 30 q^{13} + 6 q^{15} + 6 q^{19} - 12 q^{25} - 6 q^{43} - 30 q^{47} + 60 q^{49} + 24 q^{53} + 12 q^{59} - 12 q^{67} + 6 q^{77} - 84 q^{81} + 30 q^{83} + 72 q^{87} - 12 q^{89} + 72 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5780\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\) \(2891\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.30278i − 1.32951i −0.747062 0.664754i \(-0.768536\pi\)
0.747062 0.664754i \(-0.231464\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.53209i 0.579075i 0.957167 + 0.289538i \(0.0935015\pi\)
−0.957167 + 0.289538i \(0.906498\pi\)
\(8\) 0 0
\(9\) −2.30278 −0.767592
\(10\) 0 0
\(11\) 2.44842i 0.738226i 0.929385 + 0.369113i \(0.120338\pi\)
−0.929385 + 0.369113i \(0.879662\pi\)
\(12\) 0 0
\(13\) −6.18216 −1.71462 −0.857311 0.514798i \(-0.827867\pi\)
−0.857311 + 0.514798i \(0.827867\pi\)
\(14\) 0 0
\(15\) 2.30278 0.594574
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 0.345896 0.0793540 0.0396770 0.999213i \(-0.487367\pi\)
0.0396770 + 0.999213i \(0.487367\pi\)
\(20\) 0 0
\(21\) 3.52806 0.769885
\(22\) 0 0
\(23\) − 9.04065i − 1.88511i −0.334056 0.942553i \(-0.608418\pi\)
0.334056 0.942553i \(-0.391582\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) − 1.60555i − 0.308988i
\(28\) 0 0
\(29\) 5.05397i 0.938498i 0.883066 + 0.469249i \(0.155475\pi\)
−0.883066 + 0.469249i \(0.844525\pi\)
\(30\) 0 0
\(31\) 2.71070i 0.486857i 0.969919 + 0.243428i \(0.0782721\pi\)
−0.969919 + 0.243428i \(0.921728\pi\)
\(32\) 0 0
\(33\) 5.63816 0.981477
\(34\) 0 0
\(35\) −1.53209 −0.258970
\(36\) 0 0
\(37\) 4.08706i 0.671908i 0.941878 + 0.335954i \(0.109059\pi\)
−0.941878 + 0.335954i \(0.890941\pi\)
\(38\) 0 0
\(39\) 14.2361i 2.27961i
\(40\) 0 0
\(41\) 1.14564i 0.178919i 0.995990 + 0.0894596i \(0.0285140\pi\)
−0.995990 + 0.0894596i \(0.971486\pi\)
\(42\) 0 0
\(43\) −0.730943 −0.111468 −0.0557339 0.998446i \(-0.517750\pi\)
−0.0557339 + 0.998446i \(0.517750\pi\)
\(44\) 0 0
\(45\) − 2.30278i − 0.343278i
\(46\) 0 0
\(47\) 0.594059 0.0866524 0.0433262 0.999061i \(-0.486205\pi\)
0.0433262 + 0.999061i \(0.486205\pi\)
\(48\) 0 0
\(49\) 4.65270 0.664672
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.59749 1.31832 0.659158 0.752004i \(-0.270913\pi\)
0.659158 + 0.752004i \(0.270913\pi\)
\(54\) 0 0
\(55\) −2.44842 −0.330145
\(56\) 0 0
\(57\) − 0.796521i − 0.105502i
\(58\) 0 0
\(59\) −6.74937 −0.878693 −0.439346 0.898318i \(-0.644790\pi\)
−0.439346 + 0.898318i \(0.644790\pi\)
\(60\) 0 0
\(61\) − 10.5856i − 1.35534i −0.735365 0.677672i \(-0.762989\pi\)
0.735365 0.677672i \(-0.237011\pi\)
\(62\) 0 0
\(63\) − 3.52806i − 0.444493i
\(64\) 0 0
\(65\) − 6.18216i − 0.766803i
\(66\) 0 0
\(67\) 12.3030 1.50306 0.751528 0.659701i \(-0.229317\pi\)
0.751528 + 0.659701i \(0.229317\pi\)
\(68\) 0 0
\(69\) −20.8186 −2.50626
\(70\) 0 0
\(71\) − 1.08582i − 0.128863i −0.997922 0.0644314i \(-0.979477\pi\)
0.997922 0.0644314i \(-0.0205234\pi\)
\(72\) 0 0
\(73\) − 9.34420i − 1.09366i −0.837245 0.546828i \(-0.815835\pi\)
0.837245 0.546828i \(-0.184165\pi\)
\(74\) 0 0
\(75\) 2.30278i 0.265902i
\(76\) 0 0
\(77\) −3.75119 −0.427488
\(78\) 0 0
\(79\) − 11.0401i − 1.24210i −0.783769 0.621052i \(-0.786705\pi\)
0.783769 0.621052i \(-0.213295\pi\)
\(80\) 0 0
\(81\) −10.6056 −1.17839
\(82\) 0 0
\(83\) 12.2524 1.34487 0.672436 0.740156i \(-0.265248\pi\)
0.672436 + 0.740156i \(0.265248\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 11.6382 1.24774
\(88\) 0 0
\(89\) −10.8303 −1.14801 −0.574005 0.818852i \(-0.694611\pi\)
−0.574005 + 0.818852i \(0.694611\pi\)
\(90\) 0 0
\(91\) − 9.47162i − 0.992896i
\(92\) 0 0
\(93\) 6.24214 0.647280
\(94\) 0 0
\(95\) 0.345896i 0.0354882i
\(96\) 0 0
\(97\) − 6.97153i − 0.707851i −0.935274 0.353926i \(-0.884847\pi\)
0.935274 0.353926i \(-0.115153\pi\)
\(98\) 0 0
\(99\) − 5.63816i − 0.566656i
\(100\) 0 0
\(101\) 16.9191 1.68351 0.841756 0.539858i \(-0.181522\pi\)
0.841756 + 0.539858i \(0.181522\pi\)
\(102\) 0 0
\(103\) 9.06890 0.893586 0.446793 0.894637i \(-0.352566\pi\)
0.446793 + 0.894637i \(0.352566\pi\)
\(104\) 0 0
\(105\) 3.52806i 0.344303i
\(106\) 0 0
\(107\) − 5.38006i − 0.520110i −0.965594 0.260055i \(-0.916259\pi\)
0.965594 0.260055i \(-0.0837408\pi\)
\(108\) 0 0
\(109\) 7.14640i 0.684501i 0.939609 + 0.342250i \(0.111189\pi\)
−0.939609 + 0.342250i \(0.888811\pi\)
\(110\) 0 0
\(111\) 9.41158 0.893308
\(112\) 0 0
\(113\) 18.8990i 1.77787i 0.458033 + 0.888935i \(0.348554\pi\)
−0.458033 + 0.888935i \(0.651446\pi\)
\(114\) 0 0
\(115\) 9.04065 0.843045
\(116\) 0 0
\(117\) 14.2361 1.31613
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00525 0.455023
\(122\) 0 0
\(123\) 2.63816 0.237874
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) 18.6094 1.65131 0.825657 0.564172i \(-0.190805\pi\)
0.825657 + 0.564172i \(0.190805\pi\)
\(128\) 0 0
\(129\) 1.68320i 0.148197i
\(130\) 0 0
\(131\) 3.69739i 0.323043i 0.986869 + 0.161521i \(0.0516401\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(132\) 0 0
\(133\) 0.529944i 0.0459519i
\(134\) 0 0
\(135\) 1.60555 0.138184
\(136\) 0 0
\(137\) −6.28824 −0.537240 −0.268620 0.963246i \(-0.586568\pi\)
−0.268620 + 0.963246i \(0.586568\pi\)
\(138\) 0 0
\(139\) 10.0556i 0.852903i 0.904510 + 0.426452i \(0.140237\pi\)
−0.904510 + 0.426452i \(0.859763\pi\)
\(140\) 0 0
\(141\) − 1.36798i − 0.115205i
\(142\) 0 0
\(143\) − 15.1365i − 1.26578i
\(144\) 0 0
\(145\) −5.05397 −0.419709
\(146\) 0 0
\(147\) − 10.7141i − 0.883687i
\(148\) 0 0
\(149\) 1.27054 0.104086 0.0520432 0.998645i \(-0.483427\pi\)
0.0520432 + 0.998645i \(0.483427\pi\)
\(150\) 0 0
\(151\) 22.4948 1.83060 0.915300 0.402773i \(-0.131954\pi\)
0.915300 + 0.402773i \(0.131954\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.71070 −0.217729
\(156\) 0 0
\(157\) 17.0193 1.35829 0.679143 0.734006i \(-0.262352\pi\)
0.679143 + 0.734006i \(0.262352\pi\)
\(158\) 0 0
\(159\) − 22.1009i − 1.75271i
\(160\) 0 0
\(161\) 13.8511 1.09162
\(162\) 0 0
\(163\) 0.799925i 0.0626550i 0.999509 + 0.0313275i \(0.00997348\pi\)
−0.999509 + 0.0313275i \(0.990027\pi\)
\(164\) 0 0
\(165\) 5.63816i 0.438930i
\(166\) 0 0
\(167\) − 17.8105i − 1.37822i −0.724656 0.689111i \(-0.758001\pi\)
0.724656 0.689111i \(-0.241999\pi\)
\(168\) 0 0
\(169\) 25.2191 1.93993
\(170\) 0 0
\(171\) −0.796521 −0.0609115
\(172\) 0 0
\(173\) − 6.13517i − 0.466448i −0.972423 0.233224i \(-0.925072\pi\)
0.972423 0.233224i \(-0.0749275\pi\)
\(174\) 0 0
\(175\) − 1.53209i − 0.115815i
\(176\) 0 0
\(177\) 15.5423i 1.16823i
\(178\) 0 0
\(179\) 7.55270 0.564516 0.282258 0.959339i \(-0.408917\pi\)
0.282258 + 0.959339i \(0.408917\pi\)
\(180\) 0 0
\(181\) − 16.2037i − 1.20442i −0.798340 0.602208i \(-0.794288\pi\)
0.798340 0.602208i \(-0.205712\pi\)
\(182\) 0 0
\(183\) −24.3762 −1.80194
\(184\) 0 0
\(185\) −4.08706 −0.300487
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2.45985 0.178928
\(190\) 0 0
\(191\) 21.8640 1.58203 0.791014 0.611799i \(-0.209554\pi\)
0.791014 + 0.611799i \(0.209554\pi\)
\(192\) 0 0
\(193\) 2.35506i 0.169521i 0.996401 + 0.0847606i \(0.0270125\pi\)
−0.996401 + 0.0847606i \(0.972987\pi\)
\(194\) 0 0
\(195\) −14.2361 −1.01947
\(196\) 0 0
\(197\) 9.36359i 0.667128i 0.942727 + 0.333564i \(0.108251\pi\)
−0.942727 + 0.333564i \(0.891749\pi\)
\(198\) 0 0
\(199\) 12.3432i 0.874987i 0.899222 + 0.437494i \(0.144134\pi\)
−0.899222 + 0.437494i \(0.855866\pi\)
\(200\) 0 0
\(201\) − 28.3312i − 1.99833i
\(202\) 0 0
\(203\) −7.74313 −0.543461
\(204\) 0 0
\(205\) −1.14564 −0.0800151
\(206\) 0 0
\(207\) 20.8186i 1.44699i
\(208\) 0 0
\(209\) 0.846898i 0.0585812i
\(210\) 0 0
\(211\) 5.16250i 0.355401i 0.984085 + 0.177701i \(0.0568659\pi\)
−0.984085 + 0.177701i \(0.943134\pi\)
\(212\) 0 0
\(213\) −2.50039 −0.171324
\(214\) 0 0
\(215\) − 0.730943i − 0.0498499i
\(216\) 0 0
\(217\) −4.15304 −0.281927
\(218\) 0 0
\(219\) −21.5176 −1.45402
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −14.9115 −0.998547 −0.499274 0.866444i \(-0.666400\pi\)
−0.499274 + 0.866444i \(0.666400\pi\)
\(224\) 0 0
\(225\) 2.30278 0.153518
\(226\) 0 0
\(227\) − 19.9006i − 1.32085i −0.750892 0.660425i \(-0.770376\pi\)
0.750892 0.660425i \(-0.229624\pi\)
\(228\) 0 0
\(229\) −25.4356 −1.68083 −0.840417 0.541941i \(-0.817690\pi\)
−0.840417 + 0.541941i \(0.817690\pi\)
\(230\) 0 0
\(231\) 8.63816i 0.568349i
\(232\) 0 0
\(233\) − 18.0696i − 1.18378i −0.806019 0.591890i \(-0.798382\pi\)
0.806019 0.591890i \(-0.201618\pi\)
\(234\) 0 0
\(235\) 0.594059i 0.0387521i
\(236\) 0 0
\(237\) −25.4228 −1.65139
\(238\) 0 0
\(239\) −3.46127 −0.223891 −0.111945 0.993714i \(-0.535708\pi\)
−0.111945 + 0.993714i \(0.535708\pi\)
\(240\) 0 0
\(241\) − 14.0380i − 0.904268i −0.891950 0.452134i \(-0.850663\pi\)
0.891950 0.452134i \(-0.149337\pi\)
\(242\) 0 0
\(243\) 19.6056i 1.25770i
\(244\) 0 0
\(245\) 4.65270i 0.297250i
\(246\) 0 0
\(247\) −2.13839 −0.136062
\(248\) 0 0
\(249\) − 28.2144i − 1.78802i
\(250\) 0 0
\(251\) −3.61602 −0.228241 −0.114121 0.993467i \(-0.536405\pi\)
−0.114121 + 0.993467i \(0.536405\pi\)
\(252\) 0 0
\(253\) 22.1353 1.39163
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.91274 0.618340 0.309170 0.951007i \(-0.399949\pi\)
0.309170 + 0.951007i \(0.399949\pi\)
\(258\) 0 0
\(259\) −6.26174 −0.389085
\(260\) 0 0
\(261\) − 11.6382i − 0.720384i
\(262\) 0 0
\(263\) 22.8485 1.40890 0.704449 0.709755i \(-0.251194\pi\)
0.704449 + 0.709755i \(0.251194\pi\)
\(264\) 0 0
\(265\) 9.59749i 0.589569i
\(266\) 0 0
\(267\) 24.9398i 1.52629i
\(268\) 0 0
\(269\) 16.3450i 0.996571i 0.867013 + 0.498286i \(0.166037\pi\)
−0.867013 + 0.498286i \(0.833963\pi\)
\(270\) 0 0
\(271\) −24.3015 −1.47621 −0.738105 0.674686i \(-0.764279\pi\)
−0.738105 + 0.674686i \(0.764279\pi\)
\(272\) 0 0
\(273\) −21.8110 −1.32006
\(274\) 0 0
\(275\) − 2.44842i − 0.147645i
\(276\) 0 0
\(277\) − 22.9348i − 1.37802i −0.724752 0.689010i \(-0.758046\pi\)
0.724752 0.689010i \(-0.241954\pi\)
\(278\) 0 0
\(279\) − 6.24214i − 0.373707i
\(280\) 0 0
\(281\) 16.4468 0.981132 0.490566 0.871404i \(-0.336790\pi\)
0.490566 + 0.871404i \(0.336790\pi\)
\(282\) 0 0
\(283\) − 4.05544i − 0.241071i −0.992709 0.120535i \(-0.961539\pi\)
0.992709 0.120535i \(-0.0384611\pi\)
\(284\) 0 0
\(285\) 0.796521 0.0471818
\(286\) 0 0
\(287\) −1.75522 −0.103608
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −16.0539 −0.941094
\(292\) 0 0
\(293\) 3.85188 0.225029 0.112515 0.993650i \(-0.464109\pi\)
0.112515 + 0.993650i \(0.464109\pi\)
\(294\) 0 0
\(295\) − 6.74937i − 0.392963i
\(296\) 0 0
\(297\) 3.93106 0.228103
\(298\) 0 0
\(299\) 55.8908i 3.23225i
\(300\) 0 0
\(301\) − 1.11987i − 0.0645482i
\(302\) 0 0
\(303\) − 38.9609i − 2.23824i
\(304\) 0 0
\(305\) 10.5856 0.606128
\(306\) 0 0
\(307\) −11.6595 −0.665444 −0.332722 0.943025i \(-0.607967\pi\)
−0.332722 + 0.943025i \(0.607967\pi\)
\(308\) 0 0
\(309\) − 20.8836i − 1.18803i
\(310\) 0 0
\(311\) 12.6065i 0.714850i 0.933942 + 0.357425i \(0.116345\pi\)
−0.933942 + 0.357425i \(0.883655\pi\)
\(312\) 0 0
\(313\) − 17.1453i − 0.969112i −0.874760 0.484556i \(-0.838981\pi\)
0.874760 0.484556i \(-0.161019\pi\)
\(314\) 0 0
\(315\) 3.52806 0.198783
\(316\) 0 0
\(317\) 2.62353i 0.147352i 0.997282 + 0.0736762i \(0.0234731\pi\)
−0.997282 + 0.0736762i \(0.976527\pi\)
\(318\) 0 0
\(319\) −12.3742 −0.692824
\(320\) 0 0
\(321\) −12.3891 −0.691491
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 6.18216 0.342925
\(326\) 0 0
\(327\) 16.4566 0.910049
\(328\) 0 0
\(329\) 0.910151i 0.0501783i
\(330\) 0 0
\(331\) 12.6609 0.695906 0.347953 0.937512i \(-0.386877\pi\)
0.347953 + 0.937512i \(0.386877\pi\)
\(332\) 0 0
\(333\) − 9.41158i − 0.515751i
\(334\) 0 0
\(335\) 12.3030i 0.672187i
\(336\) 0 0
\(337\) − 4.77135i − 0.259912i −0.991520 0.129956i \(-0.958516\pi\)
0.991520 0.129956i \(-0.0414836\pi\)
\(338\) 0 0
\(339\) 43.5202 2.36369
\(340\) 0 0
\(341\) −6.63693 −0.359410
\(342\) 0 0
\(343\) 17.8530i 0.963970i
\(344\) 0 0
\(345\) − 20.8186i − 1.12084i
\(346\) 0 0
\(347\) − 8.54464i − 0.458700i −0.973344 0.229350i \(-0.926340\pi\)
0.973344 0.229350i \(-0.0736601\pi\)
\(348\) 0 0
\(349\) 17.7864 0.952083 0.476041 0.879423i \(-0.342071\pi\)
0.476041 + 0.879423i \(0.342071\pi\)
\(350\) 0 0
\(351\) 9.92578i 0.529799i
\(352\) 0 0
\(353\) −32.1311 −1.71016 −0.855082 0.518492i \(-0.826493\pi\)
−0.855082 + 0.518492i \(0.826493\pi\)
\(354\) 0 0
\(355\) 1.08582 0.0576292
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.0091 −1.63660 −0.818299 0.574793i \(-0.805082\pi\)
−0.818299 + 0.574793i \(0.805082\pi\)
\(360\) 0 0
\(361\) −18.8804 −0.993703
\(362\) 0 0
\(363\) − 11.5260i − 0.604957i
\(364\) 0 0
\(365\) 9.34420 0.489098
\(366\) 0 0
\(367\) 23.4378i 1.22344i 0.791073 + 0.611722i \(0.209523\pi\)
−0.791073 + 0.611722i \(0.790477\pi\)
\(368\) 0 0
\(369\) − 2.63816i − 0.137337i
\(370\) 0 0
\(371\) 14.7042i 0.763404i
\(372\) 0 0
\(373\) −22.4192 −1.16082 −0.580412 0.814323i \(-0.697108\pi\)
−0.580412 + 0.814323i \(0.697108\pi\)
\(374\) 0 0
\(375\) −2.30278 −0.118915
\(376\) 0 0
\(377\) − 31.2444i − 1.60917i
\(378\) 0 0
\(379\) − 29.9129i − 1.53652i −0.640136 0.768262i \(-0.721122\pi\)
0.640136 0.768262i \(-0.278878\pi\)
\(380\) 0 0
\(381\) − 42.8532i − 2.19544i
\(382\) 0 0
\(383\) 28.1941 1.44065 0.720325 0.693637i \(-0.243993\pi\)
0.720325 + 0.693637i \(0.243993\pi\)
\(384\) 0 0
\(385\) − 3.75119i − 0.191178i
\(386\) 0 0
\(387\) 1.68320 0.0855618
\(388\) 0 0
\(389\) 5.87615 0.297933 0.148966 0.988842i \(-0.452405\pi\)
0.148966 + 0.988842i \(0.452405\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 8.51427 0.429488
\(394\) 0 0
\(395\) 11.0401 0.555486
\(396\) 0 0
\(397\) 39.1164i 1.96319i 0.190966 + 0.981597i \(0.438838\pi\)
−0.190966 + 0.981597i \(0.561162\pi\)
\(398\) 0 0
\(399\) 1.22034 0.0610935
\(400\) 0 0
\(401\) − 27.9328i − 1.39490i −0.716635 0.697448i \(-0.754319\pi\)
0.716635 0.697448i \(-0.245681\pi\)
\(402\) 0 0
\(403\) − 16.7580i − 0.834776i
\(404\) 0 0
\(405\) − 10.6056i − 0.526994i
\(406\) 0 0
\(407\) −10.0068 −0.496020
\(408\) 0 0
\(409\) −3.35372 −0.165831 −0.0829154 0.996557i \(-0.526423\pi\)
−0.0829154 + 0.996557i \(0.526423\pi\)
\(410\) 0 0
\(411\) 14.4804i 0.714266i
\(412\) 0 0
\(413\) − 10.3406i − 0.508829i
\(414\) 0 0
\(415\) 12.2524i 0.601445i
\(416\) 0 0
\(417\) 23.1558 1.13394
\(418\) 0 0
\(419\) − 17.7106i − 0.865219i −0.901581 0.432610i \(-0.857593\pi\)
0.901581 0.432610i \(-0.142407\pi\)
\(420\) 0 0
\(421\) −39.1191 −1.90655 −0.953274 0.302106i \(-0.902310\pi\)
−0.953274 + 0.302106i \(0.902310\pi\)
\(422\) 0 0
\(423\) −1.36798 −0.0665137
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 16.2180 0.784846
\(428\) 0 0
\(429\) −34.8560 −1.68286
\(430\) 0 0
\(431\) 34.4019i 1.65708i 0.559927 + 0.828542i \(0.310829\pi\)
−0.559927 + 0.828542i \(0.689171\pi\)
\(432\) 0 0
\(433\) 6.72002 0.322943 0.161472 0.986877i \(-0.448376\pi\)
0.161472 + 0.986877i \(0.448376\pi\)
\(434\) 0 0
\(435\) 11.6382i 0.558007i
\(436\) 0 0
\(437\) − 3.12713i − 0.149591i
\(438\) 0 0
\(439\) 28.4568i 1.35817i 0.734060 + 0.679085i \(0.237623\pi\)
−0.734060 + 0.679085i \(0.762377\pi\)
\(440\) 0 0
\(441\) −10.7141 −0.510197
\(442\) 0 0
\(443\) −6.39254 −0.303719 −0.151859 0.988402i \(-0.548526\pi\)
−0.151859 + 0.988402i \(0.548526\pi\)
\(444\) 0 0
\(445\) − 10.8303i − 0.513406i
\(446\) 0 0
\(447\) − 2.92576i − 0.138384i
\(448\) 0 0
\(449\) 24.8875i 1.17451i 0.809400 + 0.587257i \(0.199792\pi\)
−0.809400 + 0.587257i \(0.800208\pi\)
\(450\) 0 0
\(451\) −2.80501 −0.132083
\(452\) 0 0
\(453\) − 51.8004i − 2.43380i
\(454\) 0 0
\(455\) 9.47162 0.444036
\(456\) 0 0
\(457\) −15.0624 −0.704589 −0.352294 0.935889i \(-0.614598\pi\)
−0.352294 + 0.935889i \(0.614598\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.44077 −0.160253 −0.0801264 0.996785i \(-0.525532\pi\)
−0.0801264 + 0.996785i \(0.525532\pi\)
\(462\) 0 0
\(463\) 13.7212 0.637680 0.318840 0.947809i \(-0.396707\pi\)
0.318840 + 0.947809i \(0.396707\pi\)
\(464\) 0 0
\(465\) 6.24214i 0.289472i
\(466\) 0 0
\(467\) 3.18218 0.147254 0.0736269 0.997286i \(-0.476543\pi\)
0.0736269 + 0.997286i \(0.476543\pi\)
\(468\) 0 0
\(469\) 18.8494i 0.870383i
\(470\) 0 0
\(471\) − 39.1916i − 1.80585i
\(472\) 0 0
\(473\) − 1.78965i − 0.0822884i
\(474\) 0 0
\(475\) −0.345896 −0.0158708
\(476\) 0 0
\(477\) −22.1009 −1.01193
\(478\) 0 0
\(479\) − 34.1428i − 1.56002i −0.625765 0.780012i \(-0.715213\pi\)
0.625765 0.780012i \(-0.284787\pi\)
\(480\) 0 0
\(481\) − 25.2669i − 1.15207i
\(482\) 0 0
\(483\) − 31.8959i − 1.45132i
\(484\) 0 0
\(485\) 6.97153 0.316561
\(486\) 0 0
\(487\) 10.0187i 0.453989i 0.973896 + 0.226995i \(0.0728900\pi\)
−0.973896 + 0.226995i \(0.927110\pi\)
\(488\) 0 0
\(489\) 1.84205 0.0833003
\(490\) 0 0
\(491\) −0.623364 −0.0281320 −0.0140660 0.999901i \(-0.504478\pi\)
−0.0140660 + 0.999901i \(0.504478\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 5.63816 0.253416
\(496\) 0 0
\(497\) 1.66357 0.0746212
\(498\) 0 0
\(499\) 1.53671i 0.0687925i 0.999408 + 0.0343962i \(0.0109508\pi\)
−0.999408 + 0.0343962i \(0.989049\pi\)
\(500\) 0 0
\(501\) −41.0137 −1.83236
\(502\) 0 0
\(503\) − 11.6041i − 0.517401i −0.965958 0.258700i \(-0.916706\pi\)
0.965958 0.258700i \(-0.0832943\pi\)
\(504\) 0 0
\(505\) 16.9191i 0.752889i
\(506\) 0 0
\(507\) − 58.0740i − 2.57916i
\(508\) 0 0
\(509\) 38.2148 1.69384 0.846921 0.531719i \(-0.178454\pi\)
0.846921 + 0.531719i \(0.178454\pi\)
\(510\) 0 0
\(511\) 14.3161 0.633309
\(512\) 0 0
\(513\) − 0.555354i − 0.0245195i
\(514\) 0 0
\(515\) 9.06890i 0.399624i
\(516\) 0 0
\(517\) 1.45450i 0.0639690i
\(518\) 0 0
\(519\) −14.1279 −0.620146
\(520\) 0 0
\(521\) − 27.4152i − 1.20108i −0.799595 0.600540i \(-0.794952\pi\)
0.799595 0.600540i \(-0.205048\pi\)
\(522\) 0 0
\(523\) −12.8711 −0.562815 −0.281408 0.959588i \(-0.590801\pi\)
−0.281408 + 0.959588i \(0.590801\pi\)
\(524\) 0 0
\(525\) −3.52806 −0.153977
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −58.7334 −2.55363
\(530\) 0 0
\(531\) 15.5423 0.674478
\(532\) 0 0
\(533\) − 7.08254i − 0.306779i
\(534\) 0 0
\(535\) 5.38006 0.232600
\(536\) 0 0
\(537\) − 17.3922i − 0.750528i
\(538\) 0 0
\(539\) 11.3918i 0.490678i
\(540\) 0 0
\(541\) − 38.7809i − 1.66732i −0.552278 0.833660i \(-0.686241\pi\)
0.552278 0.833660i \(-0.313759\pi\)
\(542\) 0 0
\(543\) −37.3136 −1.60128
\(544\) 0 0
\(545\) −7.14640 −0.306118
\(546\) 0 0
\(547\) 34.1248i 1.45907i 0.683942 + 0.729536i \(0.260264\pi\)
−0.683942 + 0.729536i \(0.739736\pi\)
\(548\) 0 0
\(549\) 24.3762i 1.04035i
\(550\) 0 0
\(551\) 1.74815i 0.0744736i
\(552\) 0 0
\(553\) 16.9144 0.719272
\(554\) 0 0
\(555\) 9.41158i 0.399499i
\(556\) 0 0
\(557\) 33.8036 1.43231 0.716153 0.697943i \(-0.245901\pi\)
0.716153 + 0.697943i \(0.245901\pi\)
\(558\) 0 0
\(559\) 4.51881 0.191125
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.6208 −0.869063 −0.434532 0.900657i \(-0.643086\pi\)
−0.434532 + 0.900657i \(0.643086\pi\)
\(564\) 0 0
\(565\) −18.8990 −0.795088
\(566\) 0 0
\(567\) − 16.2486i − 0.682379i
\(568\) 0 0
\(569\) 15.7173 0.658906 0.329453 0.944172i \(-0.393136\pi\)
0.329453 + 0.944172i \(0.393136\pi\)
\(570\) 0 0
\(571\) 39.4858i 1.65243i 0.563357 + 0.826214i \(0.309510\pi\)
−0.563357 + 0.826214i \(0.690490\pi\)
\(572\) 0 0
\(573\) − 50.3480i − 2.10332i
\(574\) 0 0
\(575\) 9.04065i 0.377021i
\(576\) 0 0
\(577\) −10.9057 −0.454008 −0.227004 0.973894i \(-0.572893\pi\)
−0.227004 + 0.973894i \(0.572893\pi\)
\(578\) 0 0
\(579\) 5.42318 0.225380
\(580\) 0 0
\(581\) 18.7717i 0.778781i
\(582\) 0 0
\(583\) 23.4987i 0.973215i
\(584\) 0 0
\(585\) 14.2361i 0.588592i
\(586\) 0 0
\(587\) −15.2969 −0.631371 −0.315686 0.948864i \(-0.602234\pi\)
−0.315686 + 0.948864i \(0.602234\pi\)
\(588\) 0 0
\(589\) 0.937622i 0.0386340i
\(590\) 0 0
\(591\) 21.5622 0.886952
\(592\) 0 0
\(593\) −25.4750 −1.04613 −0.523067 0.852292i \(-0.675212\pi\)
−0.523067 + 0.852292i \(0.675212\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 28.4237 1.16330
\(598\) 0 0
\(599\) −19.8734 −0.812006 −0.406003 0.913872i \(-0.633078\pi\)
−0.406003 + 0.913872i \(0.633078\pi\)
\(600\) 0 0
\(601\) − 36.9027i − 1.50529i −0.658424 0.752647i \(-0.728777\pi\)
0.658424 0.752647i \(-0.271223\pi\)
\(602\) 0 0
\(603\) −28.3312 −1.15373
\(604\) 0 0
\(605\) 5.00525i 0.203492i
\(606\) 0 0
\(607\) 27.0762i 1.09899i 0.835497 + 0.549494i \(0.185180\pi\)
−0.835497 + 0.549494i \(0.814820\pi\)
\(608\) 0 0
\(609\) 17.8307i 0.722536i
\(610\) 0 0
\(611\) −3.67257 −0.148576
\(612\) 0 0
\(613\) 34.9934 1.41337 0.706685 0.707529i \(-0.250190\pi\)
0.706685 + 0.707529i \(0.250190\pi\)
\(614\) 0 0
\(615\) 2.63816i 0.106381i
\(616\) 0 0
\(617\) − 34.4944i − 1.38869i −0.719641 0.694346i \(-0.755694\pi\)
0.719641 0.694346i \(-0.244306\pi\)
\(618\) 0 0
\(619\) 13.2602i 0.532971i 0.963839 + 0.266485i \(0.0858624\pi\)
−0.963839 + 0.266485i \(0.914138\pi\)
\(620\) 0 0
\(621\) −14.5152 −0.582476
\(622\) 0 0
\(623\) − 16.5930i − 0.664784i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.95022 0.0778841
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 10.2715 0.408900 0.204450 0.978877i \(-0.434459\pi\)
0.204450 + 0.978877i \(0.434459\pi\)
\(632\) 0 0
\(633\) 11.8881 0.472509
\(634\) 0 0
\(635\) 18.6094i 0.738490i
\(636\) 0 0
\(637\) −28.7638 −1.13966
\(638\) 0 0
\(639\) 2.50039i 0.0989140i
\(640\) 0 0
\(641\) − 1.97743i − 0.0781037i −0.999237 0.0390519i \(-0.987566\pi\)
0.999237 0.0390519i \(-0.0124338\pi\)
\(642\) 0 0
\(643\) 43.7321i 1.72462i 0.506377 + 0.862312i \(0.330984\pi\)
−0.506377 + 0.862312i \(0.669016\pi\)
\(644\) 0 0
\(645\) −1.68320 −0.0662758
\(646\) 0 0
\(647\) 44.5243 1.75043 0.875216 0.483732i \(-0.160719\pi\)
0.875216 + 0.483732i \(0.160719\pi\)
\(648\) 0 0
\(649\) − 16.5253i − 0.648674i
\(650\) 0 0
\(651\) 9.56352i 0.374824i
\(652\) 0 0
\(653\) − 10.5300i − 0.412071i −0.978545 0.206035i \(-0.933944\pi\)
0.978545 0.206035i \(-0.0660562\pi\)
\(654\) 0 0
\(655\) −3.69739 −0.144469
\(656\) 0 0
\(657\) 21.5176i 0.839481i
\(658\) 0 0
\(659\) −19.1763 −0.747004 −0.373502 0.927629i \(-0.621843\pi\)
−0.373502 + 0.927629i \(0.621843\pi\)
\(660\) 0 0
\(661\) 38.9860 1.51638 0.758190 0.652034i \(-0.226084\pi\)
0.758190 + 0.652034i \(0.226084\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.529944 −0.0205503
\(666\) 0 0
\(667\) 45.6912 1.76917
\(668\) 0 0
\(669\) 34.3378i 1.32758i
\(670\) 0 0
\(671\) 25.9179 1.00055
\(672\) 0 0
\(673\) − 45.3288i − 1.74730i −0.486558 0.873648i \(-0.661748\pi\)
0.486558 0.873648i \(-0.338252\pi\)
\(674\) 0 0
\(675\) 1.60555i 0.0617977i
\(676\) 0 0
\(677\) − 33.3408i − 1.28139i −0.767794 0.640696i \(-0.778646\pi\)
0.767794 0.640696i \(-0.221354\pi\)
\(678\) 0 0
\(679\) 10.6810 0.409899
\(680\) 0 0
\(681\) −45.8266 −1.75608
\(682\) 0 0
\(683\) − 10.9924i − 0.420613i −0.977636 0.210306i \(-0.932554\pi\)
0.977636 0.210306i \(-0.0674461\pi\)
\(684\) 0 0
\(685\) − 6.28824i − 0.240261i
\(686\) 0 0
\(687\) 58.5725i 2.23468i
\(688\) 0 0
\(689\) −59.3332 −2.26042
\(690\) 0 0
\(691\) 37.6221i 1.43121i 0.698503 + 0.715607i \(0.253850\pi\)
−0.698503 + 0.715607i \(0.746150\pi\)
\(692\) 0 0
\(693\) 8.63816 0.328136
\(694\) 0 0
\(695\) −10.0556 −0.381430
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −41.6103 −1.57384
\(700\) 0 0
\(701\) 21.0184 0.793855 0.396927 0.917850i \(-0.370076\pi\)
0.396927 + 0.917850i \(0.370076\pi\)
\(702\) 0 0
\(703\) 1.41370i 0.0533186i
\(704\) 0 0
\(705\) 1.36798 0.0515213
\(706\) 0 0
\(707\) 25.9215i 0.974880i
\(708\) 0 0
\(709\) 35.0263i 1.31544i 0.753263 + 0.657720i \(0.228479\pi\)
−0.753263 + 0.657720i \(0.771521\pi\)
\(710\) 0 0
\(711\) 25.4228i 0.953429i
\(712\) 0 0
\(713\) 24.5065 0.917777
\(714\) 0 0
\(715\) 15.1365 0.566073
\(716\) 0 0
\(717\) 7.97053i 0.297665i
\(718\) 0 0
\(719\) 12.7653i 0.476066i 0.971257 + 0.238033i \(0.0765026\pi\)
−0.971257 + 0.238033i \(0.923497\pi\)
\(720\) 0 0
\(721\) 13.8944i 0.517453i
\(722\) 0 0
\(723\) −32.3264 −1.20223
\(724\) 0 0
\(725\) − 5.05397i − 0.187700i
\(726\) 0 0
\(727\) −40.6908 −1.50914 −0.754569 0.656221i \(-0.772154\pi\)
−0.754569 + 0.656221i \(0.772154\pi\)
\(728\) 0 0
\(729\) 13.3305 0.493723
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 15.1041 0.557881 0.278941 0.960308i \(-0.410017\pi\)
0.278941 + 0.960308i \(0.410017\pi\)
\(734\) 0 0
\(735\) 10.7141 0.395197
\(736\) 0 0
\(737\) 30.1230i 1.10959i
\(738\) 0 0
\(739\) −10.4340 −0.383822 −0.191911 0.981412i \(-0.561468\pi\)
−0.191911 + 0.981412i \(0.561468\pi\)
\(740\) 0 0
\(741\) 4.92422i 0.180896i
\(742\) 0 0
\(743\) − 21.8006i − 0.799786i −0.916562 0.399893i \(-0.869047\pi\)
0.916562 0.399893i \(-0.130953\pi\)
\(744\) 0 0
\(745\) 1.27054i 0.0465489i
\(746\) 0 0
\(747\) −28.2144 −1.03231
\(748\) 0 0
\(749\) 8.24274 0.301183
\(750\) 0 0
\(751\) − 26.5462i − 0.968683i −0.874879 0.484342i \(-0.839059\pi\)
0.874879 0.484342i \(-0.160941\pi\)
\(752\) 0 0
\(753\) 8.32688i 0.303448i
\(754\) 0 0
\(755\) 22.4948i 0.818669i
\(756\) 0 0
\(757\) 25.5323 0.927988 0.463994 0.885838i \(-0.346416\pi\)
0.463994 + 0.885838i \(0.346416\pi\)
\(758\) 0 0
\(759\) − 50.9726i − 1.85019i
\(760\) 0 0
\(761\) −13.4659 −0.488139 −0.244070 0.969758i \(-0.578483\pi\)
−0.244070 + 0.969758i \(0.578483\pi\)
\(762\) 0 0
\(763\) −10.9489 −0.396377
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 41.7257 1.50663
\(768\) 0 0
\(769\) −30.5735 −1.10251 −0.551255 0.834337i \(-0.685851\pi\)
−0.551255 + 0.834337i \(0.685851\pi\)
\(770\) 0 0
\(771\) − 22.8268i − 0.822088i
\(772\) 0 0
\(773\) 19.6308 0.706073 0.353036 0.935610i \(-0.385149\pi\)
0.353036 + 0.935610i \(0.385149\pi\)
\(774\) 0 0
\(775\) − 2.71070i − 0.0973714i
\(776\) 0 0
\(777\) 14.4194i 0.517292i
\(778\) 0 0
\(779\) 0.396273i 0.0141980i
\(780\) 0 0
\(781\) 2.65853 0.0951298
\(782\) 0 0
\(783\) 8.11441 0.289985
\(784\) 0 0
\(785\) 17.0193i 0.607444i
\(786\) 0 0
\(787\) − 12.7767i − 0.455439i −0.973727 0.227720i \(-0.926873\pi\)
0.973727 0.227720i \(-0.0731269\pi\)
\(788\) 0 0
\(789\) − 52.6149i − 1.87314i
\(790\) 0 0
\(791\) −28.9550 −1.02952
\(792\) 0 0
\(793\) 65.4417i 2.32390i
\(794\) 0 0
\(795\) 22.1009 0.783837
\(796\) 0 0
\(797\) 9.76822 0.346008 0.173004 0.984921i \(-0.444653\pi\)
0.173004 + 0.984921i \(0.444653\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 24.9398 0.881203
\(802\) 0 0
\(803\) 22.8785 0.807365
\(804\) 0 0
\(805\) 13.8511i 0.488187i
\(806\) 0 0
\(807\) 37.6388 1.32495
\(808\) 0 0
\(809\) − 39.9796i − 1.40561i −0.711384 0.702803i \(-0.751931\pi\)
0.711384 0.702803i \(-0.248069\pi\)
\(810\) 0 0
\(811\) − 6.22771i − 0.218684i −0.994004 0.109342i \(-0.965126\pi\)
0.994004 0.109342i \(-0.0348744\pi\)
\(812\) 0 0
\(813\) 55.9609i 1.96263i
\(814\) 0 0
\(815\) −0.799925 −0.0280202
\(816\) 0 0
\(817\) −0.252830 −0.00884541
\(818\) 0 0
\(819\) 21.8110i 0.762139i
\(820\) 0 0
\(821\) − 3.43848i − 0.120004i −0.998198 0.0600019i \(-0.980889\pi\)
0.998198 0.0600019i \(-0.0191107\pi\)
\(822\) 0 0
\(823\) 29.2112i 1.01824i 0.860696 + 0.509119i \(0.170029\pi\)
−0.860696 + 0.509119i \(0.829971\pi\)
\(824\) 0 0
\(825\) −5.63816 −0.196295
\(826\) 0 0
\(827\) 54.9557i 1.91100i 0.294999 + 0.955498i \(0.404681\pi\)
−0.294999 + 0.955498i \(0.595319\pi\)
\(828\) 0 0
\(829\) 11.5572 0.401397 0.200698 0.979653i \(-0.435679\pi\)
0.200698 + 0.979653i \(0.435679\pi\)
\(830\) 0 0
\(831\) −52.8137 −1.83209
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 17.8105 0.616359
\(836\) 0 0
\(837\) 4.35217 0.150433
\(838\) 0 0
\(839\) − 49.5915i − 1.71209i −0.516901 0.856045i \(-0.672915\pi\)
0.516901 0.856045i \(-0.327085\pi\)
\(840\) 0 0
\(841\) 3.45740 0.119221
\(842\) 0 0
\(843\) − 37.8732i − 1.30442i
\(844\) 0 0
\(845\) 25.2191i 0.867564i
\(846\) 0 0
\(847\) 7.66849i 0.263493i
\(848\) 0 0
\(849\) −9.33877 −0.320506
\(850\) 0 0
\(851\) 36.9497 1.26662
\(852\) 0 0
\(853\) − 1.12515i − 0.0385242i −0.999814 0.0192621i \(-0.993868\pi\)
0.999814 0.0192621i \(-0.00613170\pi\)
\(854\) 0 0
\(855\) − 0.796521i − 0.0272404i
\(856\) 0 0
\(857\) − 16.8681i − 0.576202i −0.957600 0.288101i \(-0.906976\pi\)
0.957600 0.288101i \(-0.0930240\pi\)
\(858\) 0 0
\(859\) 26.9983 0.921168 0.460584 0.887616i \(-0.347640\pi\)
0.460584 + 0.887616i \(0.347640\pi\)
\(860\) 0 0
\(861\) 4.04189i 0.137747i
\(862\) 0 0
\(863\) 27.1761 0.925086 0.462543 0.886597i \(-0.346937\pi\)
0.462543 + 0.886597i \(0.346937\pi\)
\(864\) 0 0
\(865\) 6.13517 0.208602
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 27.0307 0.916953
\(870\) 0 0
\(871\) −76.0594 −2.57717
\(872\) 0 0
\(873\) 16.0539i 0.543341i
\(874\) 0 0
\(875\) 1.53209 0.0517941
\(876\) 0 0
\(877\) − 30.5465i − 1.03148i −0.856745 0.515741i \(-0.827517\pi\)
0.856745 0.515741i \(-0.172483\pi\)
\(878\) 0 0
\(879\) − 8.87002i − 0.299178i
\(880\) 0 0
\(881\) 31.8061i 1.07157i 0.844353 + 0.535787i \(0.179985\pi\)
−0.844353 + 0.535787i \(0.820015\pi\)
\(882\) 0 0
\(883\) −4.30075 −0.144732 −0.0723658 0.997378i \(-0.523055\pi\)
−0.0723658 + 0.997378i \(0.523055\pi\)
\(884\) 0 0
\(885\) −15.5423 −0.522448
\(886\) 0 0
\(887\) − 19.7877i − 0.664405i −0.943208 0.332202i \(-0.892208\pi\)
0.943208 0.332202i \(-0.107792\pi\)
\(888\) 0 0
\(889\) 28.5112i 0.956235i
\(890\) 0 0
\(891\) − 25.9668i − 0.869921i
\(892\) 0 0
\(893\) 0.205483 0.00687622
\(894\) 0 0
\(895\) 7.55270i 0.252459i
\(896\) 0 0
\(897\) 128.704 4.29730
\(898\) 0 0
\(899\) −13.6998 −0.456914
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −2.57881 −0.0858174
\(904\) 0 0
\(905\) 16.2037 0.538631
\(906\) 0 0
\(907\) − 36.4938i − 1.21176i −0.795558 0.605878i \(-0.792822\pi\)
0.795558 0.605878i \(-0.207178\pi\)
\(908\) 0 0
\(909\) −38.9609 −1.29225
\(910\) 0 0
\(911\) − 29.9058i − 0.990825i −0.868658 0.495412i \(-0.835017\pi\)
0.868658 0.495412i \(-0.164983\pi\)
\(912\) 0 0
\(913\) 29.9989i 0.992818i
\(914\) 0 0
\(915\) − 24.3762i − 0.805852i
\(916\) 0 0
\(917\) −5.66474 −0.187066
\(918\) 0 0
\(919\) −20.3390 −0.670923 −0.335462 0.942054i \(-0.608892\pi\)
−0.335462 + 0.942054i \(0.608892\pi\)
\(920\) 0 0
\(921\) 26.8493i 0.884713i
\(922\) 0 0
\(923\) 6.71269i 0.220951i
\(924\) 0 0
\(925\) − 4.08706i − 0.134382i
\(926\) 0 0
\(927\) −20.8836 −0.685909
\(928\) 0 0
\(929\) 30.0855i 0.987074i 0.869725 + 0.493537i \(0.164296\pi\)
−0.869725 + 0.493537i \(0.835704\pi\)
\(930\) 0 0
\(931\) 1.60935 0.0527444
\(932\) 0 0
\(933\) 29.0300 0.950399
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 20.4044 0.666583 0.333292 0.942824i \(-0.391841\pi\)
0.333292 + 0.942824i \(0.391841\pi\)
\(938\) 0 0
\(939\) −39.4819 −1.28844
\(940\) 0 0
\(941\) 34.5644i 1.12677i 0.826196 + 0.563383i \(0.190501\pi\)
−0.826196 + 0.563383i \(0.809499\pi\)
\(942\) 0 0
\(943\) 10.3573 0.337282
\(944\) 0 0
\(945\) 2.45985i 0.0800188i
\(946\) 0 0
\(947\) 0.166858i 0.00542215i 0.999996 + 0.00271107i \(0.000862963\pi\)
−0.999996 + 0.00271107i \(0.999137\pi\)
\(948\) 0 0
\(949\) 57.7673i 1.87521i
\(950\) 0 0
\(951\) 6.04141 0.195906
\(952\) 0 0
\(953\) −26.0938 −0.845261 −0.422631 0.906302i \(-0.638893\pi\)
−0.422631 + 0.906302i \(0.638893\pi\)
\(954\) 0 0
\(955\) 21.8640i 0.707504i
\(956\) 0 0
\(957\) 28.4951i 0.921115i
\(958\) 0 0
\(959\) − 9.63414i − 0.311103i
\(960\) 0 0
\(961\) 23.6521 0.762970
\(962\) 0 0
\(963\) 12.3891i 0.399233i
\(964\) 0 0
\(965\) −2.35506 −0.0758122
\(966\) 0 0
\(967\) 28.5476 0.918030 0.459015 0.888428i \(-0.348202\pi\)
0.459015 + 0.888428i \(0.348202\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.54834 0.145963 0.0729815 0.997333i \(-0.476749\pi\)
0.0729815 + 0.997333i \(0.476749\pi\)
\(972\) 0 0
\(973\) −15.4060 −0.493895
\(974\) 0 0
\(975\) − 14.2361i − 0.455921i
\(976\) 0 0
\(977\) −25.7740 −0.824583 −0.412292 0.911052i \(-0.635272\pi\)
−0.412292 + 0.911052i \(0.635272\pi\)
\(978\) 0 0
\(979\) − 26.5171i − 0.847490i
\(980\) 0 0
\(981\) − 16.4566i − 0.525417i
\(982\) 0 0
\(983\) − 18.1671i − 0.579441i −0.957111 0.289720i \(-0.906438\pi\)
0.957111 0.289720i \(-0.0935623\pi\)
\(984\) 0 0
\(985\) −9.36359 −0.298349
\(986\) 0 0
\(987\) 2.09587 0.0667124
\(988\) 0 0
\(989\) 6.60820i 0.210129i
\(990\) 0 0
\(991\) 30.3752i 0.964900i 0.875923 + 0.482450i \(0.160253\pi\)
−0.875923 + 0.482450i \(0.839747\pi\)
\(992\) 0 0
\(993\) − 29.1552i − 0.925212i
\(994\) 0 0
\(995\) −12.3432 −0.391306
\(996\) 0 0
\(997\) 29.8884i 0.946574i 0.880908 + 0.473287i \(0.156933\pi\)
−0.880908 + 0.473287i \(0.843067\pi\)
\(998\) 0 0
\(999\) 6.56198 0.207612
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5780.2.c.g.5201.3 12
17.4 even 4 5780.2.a.l.1.1 6
17.13 even 4 5780.2.a.o.1.6 yes 6
17.16 even 2 inner 5780.2.c.g.5201.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5780.2.a.l.1.1 6 17.4 even 4
5780.2.a.o.1.6 yes 6 17.13 even 4
5780.2.c.g.5201.3 12 1.1 even 1 trivial
5780.2.c.g.5201.10 12 17.16 even 2 inner